Automating the extraction of data from HTML tables with unknown structure

Data on the Web in HTML tables is mostly structured, but we usually do not know the structure in advance. Thus, we cannot directly query for data of interest. We propose a solution to this problem based on document-independent extraction ontologies. Our solution entails elements of table understandi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Data & knowledge engineering Ročník 54; číslo 1; s. 3 - 28
Hlavní autoři: Embley, David W., Tao, Cui, Liddle, Stephen W.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier B.V 01.07.2005
Témata:
ISSN:0169-023X, 1872-6933
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Data on the Web in HTML tables is mostly structured, but we usually do not know the structure in advance. Thus, we cannot directly query for data of interest. We propose a solution to this problem based on document-independent extraction ontologies. Our solution entails elements of table understanding, data integration, and wrapper creation. Table understanding allows us to find tables of interest within a Web page, recognize attributes and values within the table, pair attributes with values, and form records. Data-integration techniques allow us to match source records with a target schema. Ontologically specified wrappers allow us to extract data from source records into a target schema. Experimental results show that we can successfully locate data of interest in tables and map the data from source HTML tables with unknown structure to a given target database schema. We can thus “directly” query source data with unknown structure through a known target schema.
ISSN:0169-023X
1872-6933
DOI:10.1016/j.datak.2004.10.004