Failure analysis and control of natural gas pipelines under excavation impact based on machine learning scheme
Third-party excavation operations pose a serious threat to the safe operation of natural gas pipelines, and quantifying the failure conditions of pipelines can effectively identify the hazards of excavation operations. Considering the current lack of test data on the full-size critical conditions of...
Uloženo v:
| Vydáno v: | The International journal of pressure vessels and piping Ročník 201; s. 104870 |
|---|---|
| Hlavní autoři: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Elsevier Ltd
01.02.2023
|
| Témata: | |
| ISSN: | 0308-0161, 1879-3541 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | Third-party excavation operations pose a serious threat to the safe operation of natural gas pipelines, and quantifying the failure conditions of pipelines can effectively identify the hazards of excavation operations. Considering the current lack of test data on the full-size critical conditions of pipelines under different failure modes, to make the research results have better field application, this study aims to develop a failure prediction model, which is adopted for predicting the failure modes of the pipeline under different excavation conditions in order to propose control strategies. In this work, finite element analysis is combined with machine learning algorithms. The finite element analysis process derives the critical loads for different failure modes of the pipe and establishes the failure condition data set. Correlation analysis and sensitivity analysis were employed to investigate the influence pattern of the features. The prediction performance of different machine learning combination algorithms was tested, and a hybrid data-driven prediction model was established and combined with the excavation equipment parameters to determine the risk level of the excavation equipment and the risk area of the operation. The results demonstrate that the critical load value for failure grows when the strength of the pipe increases. The four features of yield strength, strength limit, pipe diameter, and wall thickness exhibit the highest importance scores. The bucket tooth wedge angle only influences the magnitude of the puncture critical load, with correlation and sensitivity coefficients being 0.315 and 0.116, respectively. In the test of the combined algorithm, the RFECV-CSVR-NSGAIII algorithm built in this study has the highest generalization performance, the mean absolute error percentage (MAPE) is lower than 0.0476, the coefficient of determination R2 reaches over 0.9960, and the prediction model has excellent accuracy. The prediction model was subjected to case studies to obtain rapid identification of risk levels and operational risk areas of excavation equipment.
•The relationship between pipeline failure forms and excavation forces was quantified.•A dataset of natural gas pipeline failure conditions under excavation operations was established.•A data-driven prediction model for natural gas pipeline failure conditions was developed.•The quantitative criteria of the risk level and the division method of operation risk area are proposed. |
|---|---|
| AbstractList | Third-party excavation operations pose a serious threat to the safe operation of natural gas pipelines, and quantifying the failure conditions of pipelines can effectively identify the hazards of excavation operations. Considering the current lack of test data on the full-size critical conditions of pipelines under different failure modes, to make the research results have better field application, this study aims to develop a failure prediction model, which is adopted for predicting the failure modes of the pipeline under different excavation conditions in order to propose control strategies. In this work, finite element analysis is combined with machine learning algorithms. The finite element analysis process derives the critical loads for different failure modes of the pipe and establishes the failure condition data set. Correlation analysis and sensitivity analysis were employed to investigate the influence pattern of the features. The prediction performance of different machine learning combination algorithms was tested, and a hybrid data-driven prediction model was established and combined with the excavation equipment parameters to determine the risk level of the excavation equipment and the risk area of the operation. The results demonstrate that the critical load value for failure grows when the strength of the pipe increases. The four features of yield strength, strength limit, pipe diameter, and wall thickness exhibit the highest importance scores. The bucket tooth wedge angle only influences the magnitude of the puncture critical load, with correlation and sensitivity coefficients being 0.315 and 0.116, respectively. In the test of the combined algorithm, the RFECV-CSVR-NSGAIII algorithm built in this study has the highest generalization performance, the mean absolute error percentage (MAPE) is lower than 0.0476, the coefficient of determination R2 reaches over 0.9960, and the prediction model has excellent accuracy. The prediction model was subjected to case studies to obtain rapid identification of risk levels and operational risk areas of excavation equipment.
•The relationship between pipeline failure forms and excavation forces was quantified.•A dataset of natural gas pipeline failure conditions under excavation operations was established.•A data-driven prediction model for natural gas pipeline failure conditions was developed.•The quantitative criteria of the risk level and the division method of operation risk area are proposed. |
| ArticleNumber | 104870 |
| Author | Zhang, Sen Xu, Duo Zhao, Xiang Lai, Xin Chen, Liqiong Yu, Chang |
| Author_xml | – sequence: 1 givenname: Duo surname: Xu fullname: Xu, Duo email: 202011000103@stu.swpu.edu.cn – sequence: 2 givenname: Liqiong surname: Chen fullname: Chen, Liqiong – sequence: 3 givenname: Chang surname: Yu fullname: Yu, Chang – sequence: 4 givenname: Sen surname: Zhang fullname: Zhang, Sen – sequence: 5 givenname: Xiang surname: Zhao fullname: Zhao, Xiang – sequence: 6 givenname: Xin surname: Lai fullname: Lai, Xin |
| BookMark | eNqFkE1OwzAQhS1UJNrCCdj4Ail23DjJggWqKCBVYgNra-JMWkeJE9luRW-P27JiAav50ftG896MTOxgkZB7zhaccfnQLkw7HsZFytI0bpZFzq7IlBd5mYhsySdkygQrkijlN2TmfcsYz1kmp8SuwXR7hxQsdEdvfGxqqgcb3NDRoaEWwt5BR7fg6WhG7IxFT_e2RkfxS8MBghksNf0IOtAKPNY0zj3oXVTSDsFZY7fU6x32eEuuG-g83v3UOflcP3-sXpPN-8vb6mmTaMFESFJdCFlJoREqyFnJoNAixaZBUWVVVugirRmvoJSlxDRDDhIazZcyKyXPhRBzUl7uajd477BR2oTzp8FFw4ozdQpOteocnDoFpy7BRVb8YkdnenDHf6jHC4XR1sGgU14btBpr41AHVQ_mT_4bdRiNNA |
| CitedBy_id | crossref_primary_10_1007_s12046_024_02488_x crossref_primary_10_1016_j_rineng_2025_107287 crossref_primary_10_1061_JPSEA2_PSENG_1464 crossref_primary_10_3390_app13179992 crossref_primary_10_1080_10589759_2025_2459307 crossref_primary_10_1016_j_ijpvp_2024_105148 crossref_primary_10_1016_j_ijhydene_2025_151491 crossref_primary_10_1016_j_jpse_2025_100361 crossref_primary_10_1016_j_egyr_2023_08_009 crossref_primary_10_1016_j_tust_2024_106111 |
| Cites_doi | 10.1016/j.psep.2019.11.038 10.1016/j.egyr.2021.01.018 10.1016/j.ijpvp.2003.08.002 10.1002/widm.1157 10.1016/j.petrol.2021.109327 10.1023/A:1010933404324 10.1016/j.jngse.2016.07.060 10.1016/j.knosys.2021.106988 10.1016/j.jlp.2020.104388 10.1016/j.ijpvp.2003.08.003 10.1016/j.eswa.2014.09.038 10.1016/j.ress.2022.108507 10.1016/j.ress.2020.107262 10.1016/j.patrec.2011.09.031 10.1016/j.ijpvp.2005.07.005 10.1016/j.jfranklin.2021.06.012 10.1016/j.apenergy.2011.12.030 10.1023/A:1012487302797 10.1016/j.apgeochem.2020.104760 10.1016/j.knosys.2013.10.012 10.1016/j.engfailanal.2018.03.027 10.1016/j.enbuild.2018.01.017 10.1016/j.tust.2013.12.008 10.1061/(ASCE)PS.1949-1204.0000137 10.1016/j.ijpvp.2016.06.003 10.1016/j.engappai.2011.08.010 10.1016/j.scs.2020.102311 10.1016/j.engfailanal.2014.11.014 10.1016/j.engfailanal.2019.104171 10.1016/j.energy.2016.04.020 10.1016/j.jlp.2018.11.018 10.1016/j.engfailanal.2020.104601 10.1007/s10994-006-6226-1 10.1016/j.jlp.2018.03.012 10.1016/j.asoc.2021.107541 10.1109/TEVC.2013.2281535 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier Ltd |
| Copyright_xml | – notice: 2022 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.ijpvp.2022.104870 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-3541 |
| ExternalDocumentID | 10_1016_j_ijpvp_2022_104870 S0308016122002551 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYOK ABEFU ABFNM ABJNI ABMAC ABTAH ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K WUQ XPP ZMT ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-2c836b63ceaba7090a8c32effe3b5b58c82d01ba9696e25e1a6afc14659617333 |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966323700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0308-0161 |
| IngestDate | Sat Nov 29 07:20:20 EST 2025 Tue Nov 18 22:04:22 EST 2025 Fri Feb 23 02:37:47 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Machine learning combinatorial algorithms Data-driven predictive model Safety of natural gas pipelines Quantifying failure risk analysis Impact load |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-2c836b63ceaba7090a8c32effe3b5b58c82d01ba9696e25e1a6afc14659617333 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_ijpvp_2022_104870 crossref_primary_10_1016_j_ijpvp_2022_104870 elsevier_sciencedirect_doi_10_1016_j_ijpvp_2022_104870 |
| PublicationCentury | 2000 |
| PublicationDate | February 2023 2023-02-00 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
| PublicationDecade | 2020 |
| PublicationTitle | The International journal of pressure vessels and piping |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Tang, Yu, Wang, Li, Wang (bib20) 2012; 93 Huang, Liu, Zhang, Mi, Tong, Xiao, Shuai (bib31) 2021; 109 Delavar (bib30) 2022; 208 Liang, Hu, Zhang, Guo, Lin (bib7) 2012; 25 Melki, Kecman (bib44) 2016; 2016 Borchani, Varando, Bielza, Larra Aga (bib22) 2015; 5 De Giorgi, Malvoni, Congedo (bib21) 2016; 107 Zhu, Jia (bib32) 2014; 41 Cristianini, Shawe-Taylor (bib46) 2000 Qadir, Khan, Khalaji, Munawar, Al-Turjman, Mahmud, Kouzani, Le (bib36) 2021; 7 Zhu, Yang, Gao, Xu, Xu, Gao (bib41) 2016; vols. 382–383 Liu, Zhang, Xia, Wu, Chen, Zheng, Li (bib17) 2018; 90 Cui, Quddus, Mashuga (bib9) 2020; 134 Guyon, Weston, Barnhill, Vapnik (bib34) 2002; 46 Ferrari (bib45) 2008 Li, Zhang, Abbassi, Yang, Zhang, Chen (bib11) 2021; 69 Tapia, Bulacio, Angelone (bib37) 2012; 33 Melki, Cano, Kecman, Ventura (bib25) 2017; vols. 415–416 Brooker (bib14) 2003; 80 Peng, Yao, Liang, Yu, He (bib1) 2016; 34 Lam, Zhou (bib6) 2016; 145 (bib4) 2020 Yin, Ren (bib29) 2021; 358 Breiman (bib39) 2001; 45 Brooker (bib15) 2005; 82 Chen, Pedrycz, Ha, Ma (bib43) 2015; 42 Lam, Zhou (bib3) 2016; 145 Kecman (bib42) 2001 Deb, Jain (bib48) 2014; 18 Xiang, Zhou (bib10) 2021; 205 Langley (bib26) 1997 (bib47) 2010 Peng, Yao, Liang, Yu, He (bib5) 2016; 34 Wu, Zhang, Liu, Bolati, Liu, Chen, Zhao (bib18) 2019; 106 Wang, Pan, Chen, Ouyang, Rao, Jiang (bib35) 2020; 122 Moodi, Ghazvini, Moodi (bib27) 2021; 222 Barman, Dev Choudhury (bib28) 2020; 61 Xu, An, Qiao, Zhu, Li (bib23) 2013 Jiang, Dong (bib12) 2020; 114 Geurts, Ernst, Wehenkel (bib38) 2006; 63 Ruiz-Tagle, Lewis, Schell, Lever, Groth (bib2) 2022; 223 Guo, Zhang, Liang, Haugen (bib8) 2018; 54 Owolabi, Suleiman, Adeyemo, Akande, Alhiyafi, Olatunji (bib40) 2019; 57 Brooker (bib13) 2003; 80 Yao, Xu, Zeng, Jiang (bib16) 2015; 6 Xiong, Bao, Hu (bib24) 2014; 55 Luo, Lu, Shi, Li, Zheng (bib33) 2015; 48 Ahmad, Chen, Guo, Wang (bib19) 2018; 165 Tang (10.1016/j.ijpvp.2022.104870_bib20) 2012; 93 Kecman (10.1016/j.ijpvp.2022.104870_bib42) 2001 Ferrari (10.1016/j.ijpvp.2022.104870_bib45) 2008 Borchani (10.1016/j.ijpvp.2022.104870_bib22) 2015; 5 Peng (10.1016/j.ijpvp.2022.104870_bib1) 2016; 34 Brooker (10.1016/j.ijpvp.2022.104870_bib14) 2003; 80 Ahmad (10.1016/j.ijpvp.2022.104870_bib19) 2018; 165 Yin (10.1016/j.ijpvp.2022.104870_bib29) 2021; 358 Langley (10.1016/j.ijpvp.2022.104870_bib26) 1997 Cristianini (10.1016/j.ijpvp.2022.104870_bib46) Jiang (10.1016/j.ijpvp.2022.104870_bib12) 2020; 114 Liu (10.1016/j.ijpvp.2022.104870_bib17) 2018; 90 Huang (10.1016/j.ijpvp.2022.104870_bib31) 2021; 109 Guo (10.1016/j.ijpvp.2022.104870_bib8) 2018; 54 Wu (10.1016/j.ijpvp.2022.104870_bib18) 2019; 106 Yao (10.1016/j.ijpvp.2022.104870_bib16) 2015; 6 Zhu (10.1016/j.ijpvp.2022.104870_bib32) 2014; 41 Guyon (10.1016/j.ijpvp.2022.104870_bib34) 2002; 46 Deb (10.1016/j.ijpvp.2022.104870_bib48) 2014; 18 Brooker (10.1016/j.ijpvp.2022.104870_bib15) 2005; 82 Wang (10.1016/j.ijpvp.2022.104870_bib35) 2020; 122 Brooker (10.1016/j.ijpvp.2022.104870_bib13) 2003; 80 Peng (10.1016/j.ijpvp.2022.104870_bib5) 2016; 34 Li (10.1016/j.ijpvp.2022.104870_bib11) 2021; 69 Luo (10.1016/j.ijpvp.2022.104870_bib33) 2015; 48 (10.1016/j.ijpvp.2022.104870_bib47) 2010 Xu (10.1016/j.ijpvp.2022.104870_bib23) 2013 Lam (10.1016/j.ijpvp.2022.104870_bib6) 2016; 145 Liang (10.1016/j.ijpvp.2022.104870_bib7) 2012; 25 De Giorgi (10.1016/j.ijpvp.2022.104870_bib21) 2016; 107 Delavar (10.1016/j.ijpvp.2022.104870_bib30) 2022; 208 Breiman (10.1016/j.ijpvp.2022.104870_bib39) 2001; 45 Owolabi (10.1016/j.ijpvp.2022.104870_bib40) 2019; 57 Ruiz-Tagle (10.1016/j.ijpvp.2022.104870_bib2) 2022; 223 (10.1016/j.ijpvp.2022.104870_bib4) 2020 Qadir (10.1016/j.ijpvp.2022.104870_bib36) 2021; 7 Lam (10.1016/j.ijpvp.2022.104870_bib3) 2016; 145 Xiong (10.1016/j.ijpvp.2022.104870_bib24) 2014; 55 Tapia (10.1016/j.ijpvp.2022.104870_bib37) 2012; 33 Cui (10.1016/j.ijpvp.2022.104870_bib9) 2020; 134 Chen (10.1016/j.ijpvp.2022.104870_bib43) 2015; 42 Xiang (10.1016/j.ijpvp.2022.104870_bib10) 2021; 205 Geurts (10.1016/j.ijpvp.2022.104870_bib38) 2006; 63 Barman (10.1016/j.ijpvp.2022.104870_bib28) 2020; 61 Zhu (10.1016/j.ijpvp.2022.104870_bib41) 2016; vols. 382–383 Melki (10.1016/j.ijpvp.2022.104870_bib25) 2017; vols. 415–416 Melki (10.1016/j.ijpvp.2022.104870_bib44) 2016; 2016 Moodi (10.1016/j.ijpvp.2022.104870_bib27) 2021; 222 |
| References_xml | – year: 2020 ident: bib4 article-title: 11th Report of the European Gas Pipeline Incident Data Group (Period 1970 – 2019) Comprising – volume: 41 start-page: 255 year: 2014 end-page: 262 ident: bib32 article-title: 3D mechanical modeling of soil orthogonal cutting under a single reamer cutter based on Drucker–Prager criterion publication-title: Tunn. Undergr. Space Technol. – volume: 106 year: 2019 ident: bib18 article-title: Stress and strain analysis of buried PE pipelines subjected to mechanical excavation publication-title: Eng. Fail. Anal. – volume: 145 start-page: 29 year: 2016 end-page: 40 ident: bib6 article-title: Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database publication-title: Int. J. Pres. Ves. Pip. – volume: 7 start-page: 8465 year: 2021 end-page: 8475 ident: bib36 article-title: Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids publication-title: Energy Rep. – volume: 18 start-page: 577 year: 2014 end-page: 601 ident: bib48 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. – start-page: 450 year: 2010 end-page: 457 ident: bib47 publication-title: Oil and Gas Pipeline Protection Law of the People's Republic of China – volume: 33 start-page: 164 year: 2012 end-page: 172 ident: bib37 article-title: Sparse and stable gene selection with consensus SVM-RFE publication-title: Pattern Recogn. Lett. – year: 2001 ident: bib42 article-title: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models – volume: 61 year: 2020 ident: bib28 article-title: A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India publication-title: Sustain. Cities Soc. – volume: 57 start-page: 156 year: 2019 end-page: 163 ident: bib40 article-title: Estimation of minimum ignition energy of explosive chemicals using gravitational search algorithm based support vector regression publication-title: J. Loss Prev. Process. Ind. – volume: 145 start-page: 29 year: 2016 end-page: 40 ident: bib3 article-title: Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database publication-title: Int. J. Pres. Ves. Pip. – volume: 82 start-page: 825 year: 2005 end-page: 832 ident: bib15 article-title: Experimental puncture loads for external interference of pipelines by excavator equipment publication-title: Int. J. Pres. Ves. Pip. – volume: 222 year: 2021 ident: bib27 article-title: A hybrid intelligent approach to detect Android Botnet using Smart Self-Adaptive Learning-based PSO-SVM publication-title: Knowl. Base Syst. – volume: vols. 382–383 start-page: 292 year: 2016 end-page: 307 ident: bib41 publication-title: Finding the Samples Near the Decision Plane for Support Vector Learning – volume: 54 start-page: 163 year: 2018 end-page: 178 ident: bib8 article-title: Risk identification of third-party damage on oil and gas pipelines through the Bayesian network publication-title: J. Loss Prev. Process. Ind. – volume: 34 start-page: 993 year: 2016 end-page: 1003 ident: bib5 article-title: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory publication-title: J. Nat. Gas Sci. Eng. – volume: 25 start-page: 594 year: 2012 end-page: 608 ident: bib7 article-title: Assessing and classifying risk of pipeline third-party interference based on fault tree and SOM publication-title: Eng. Appl. Artif. Intell. – year: 2008 ident: bib45 article-title: Libsvm : A Library for Support Vector Machines – volume: 165 start-page: 301 year: 2018 end-page: 320 ident: bib19 article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review publication-title: Energy Build. – volume: 46 start-page: 389 year: 2002 end-page: 422 ident: bib34 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. – volume: vols. 415–416 start-page: 53 year: 2017 end-page: 69 ident: bib25 publication-title: Multi-Target Support Vector Regression via Correlation Regressor Chains – volume: 6 start-page: A4014003 year: 2015 ident: bib16 article-title: Numerical analyses of the stress and limiting load for buried gas pipelines under excavation machine impact publication-title: J. Pipeline Syst. Eng. Pract. – volume: 2016 year: 2016 ident: bib44 article-title: Speeding up online training of L1 support vector machines publication-title: IEEE Southeastcon – volume: 223 year: 2022 ident: bib2 article-title: BaNTERA: a bayesian network for third-party excavation risk assessment publication-title: Reliab. Eng. Syst. Saf. – year: 2000 ident: bib46 article-title: An introduction to support vector machines and other kernel-based learning methods: pseudocode for the SMO algorithm – volume: 34 start-page: 993 year: 2016 end-page: 1003 ident: bib1 article-title: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory publication-title: J. Nat. Gas Sci. Eng. – volume: 48 start-page: 144 year: 2015 end-page: 152 ident: bib33 article-title: Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement publication-title: Eng. Fail. Anal. – volume: 5 start-page: 216 year: 2015 end-page: 233 ident: bib22 article-title: A survey on multi-output regression publication-title: Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery – year: 1997 ident: bib26 article-title: Selection of relevant features in machine learning publication-title: proc.aaai fall symp.on relevance – volume: 114 year: 2020 ident: bib12 article-title: Collision failure risk analysis of falling object on subsea pipelines based on machine learning scheme publication-title: Eng. Fail. Anal. – volume: 42 start-page: 2502 year: 2015 end-page: 2509 ident: bib43 article-title: Set-valued samples based support vector regression and its applications publication-title: Expert Syst. Appl. – volume: 107 start-page: 360 year: 2016 end-page: 373 ident: bib21 article-title: Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine publication-title: Energy – volume: 205 year: 2021 ident: bib10 article-title: Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets publication-title: Reliab. Eng. Syst. Saf. – volume: 69 year: 2021 ident: bib11 article-title: Dynamic probability assessment of urban natural gas pipeline accidents considering integrated external activities publication-title: J. Loss Prev. Process. Ind. – volume: 45 start-page: 5 year: 2001 end-page: 32 ident: bib39 article-title: Random forests publication-title: Mach. Learn. – volume: 208 year: 2022 ident: bib30 article-title: Hybrid machine learning approaches for classification and detection of fractures in carbonate reservoir publication-title: J. Petrol. Sci. Eng. – volume: 90 start-page: 355 year: 2018 end-page: 370 ident: bib17 article-title: Mechanical response of buried polyethylene pipelines under excavation load during pavement construction publication-title: Eng. Fail. Anal. – volume: 80 start-page: 727 year: 2003 end-page: 735 ident: bib14 article-title: Numerical modelling of pipeline puncture under excavator loading. Part II: parametric study publication-title: Int. J. Pres. Ves. Pip. – volume: 80 start-page: 715 year: 2003 end-page: 725 ident: bib13 article-title: Numerical modelling of pipeline puncture under excavator loading. Part I. Development and validation of a finite element material failure model for puncture simulation publication-title: Int. J. Pres. Ves. Pip. – volume: 63 start-page: 3 year: 2006 end-page: 42 ident: bib38 article-title: Extremely randomized trees publication-title: Mach. Learn. – volume: 93 start-page: 432 year: 2012 end-page: 443 ident: bib20 article-title: A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting publication-title: Appl. Energy – volume: 55 start-page: 87 year: 2014 end-page: 100 ident: bib24 article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting publication-title: Knowl. Base Syst. – volume: 122 year: 2020 ident: bib35 article-title: Indicator element selection and geochemical anomaly mapping using recursive feature elimination and random forest methods in the Jingdezhen region of Jiangxi Province, South China publication-title: Appl. Geochem. – year: 2013 ident: bib23 article-title: Multi-output Least-Squares Support Vector Regression Machines – volume: 109 year: 2021 ident: bib31 article-title: Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM publication-title: Appl. Soft Comput. – volume: 358 start-page: 6348 year: 2021 end-page: 6367 ident: bib29 article-title: Direct symbol decoding using GA-SVM in chaotic baseband wireless communication system publication-title: J. Franklin Inst. – volume: 134 start-page: 178 year: 2020 end-page: 188 ident: bib9 article-title: Bayesian network and game theory risk assessment model for third-party damage to oil and gas pipelines publication-title: Process Saf. Environ. Protect. – volume: 134 start-page: 178 year: 2020 ident: 10.1016/j.ijpvp.2022.104870_bib9 article-title: Bayesian network and game theory risk assessment model for third-party damage to oil and gas pipelines publication-title: Process Saf. Environ. Protect. doi: 10.1016/j.psep.2019.11.038 – volume: 7 start-page: 8465 year: 2021 ident: 10.1016/j.ijpvp.2022.104870_bib36 article-title: Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids publication-title: Energy Rep. doi: 10.1016/j.egyr.2021.01.018 – volume: 80 start-page: 727 year: 2003 ident: 10.1016/j.ijpvp.2022.104870_bib14 article-title: Numerical modelling of pipeline puncture under excavator loading. Part II: parametric study publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2003.08.002 – year: 2008 ident: 10.1016/j.ijpvp.2022.104870_bib45 – volume: 5 start-page: 216 year: 2015 ident: 10.1016/j.ijpvp.2022.104870_bib22 article-title: A survey on multi-output regression publication-title: Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery doi: 10.1002/widm.1157 – volume: 208 year: 2022 ident: 10.1016/j.ijpvp.2022.104870_bib30 article-title: Hybrid machine learning approaches for classification and detection of fractures in carbonate reservoir publication-title: J. Petrol. Sci. Eng. doi: 10.1016/j.petrol.2021.109327 – year: 1997 ident: 10.1016/j.ijpvp.2022.104870_bib26 article-title: Selection of relevant features in machine learning publication-title: proc.aaai fall symp.on relevance – volume: vols. 415–416 start-page: 53 year: 2017 ident: 10.1016/j.ijpvp.2022.104870_bib25 – volume: 45 start-page: 5 issue: 1 year: 2001 ident: 10.1016/j.ijpvp.2022.104870_bib39 article-title: Random forests publication-title: Mach. Learn. doi: 10.1023/A:1010933404324 – volume: 34 start-page: 993 year: 2016 ident: 10.1016/j.ijpvp.2022.104870_bib1 article-title: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.07.060 – volume: 222 year: 2021 ident: 10.1016/j.ijpvp.2022.104870_bib27 article-title: A hybrid intelligent approach to detect Android Botnet using Smart Self-Adaptive Learning-based PSO-SVM publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2021.106988 – volume: 69 year: 2021 ident: 10.1016/j.ijpvp.2022.104870_bib11 article-title: Dynamic probability assessment of urban natural gas pipeline accidents considering integrated external activities publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2020.104388 – volume: 80 start-page: 715 year: 2003 ident: 10.1016/j.ijpvp.2022.104870_bib13 article-title: Numerical modelling of pipeline puncture under excavator loading. Part I. Development and validation of a finite element material failure model for puncture simulation publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2003.08.003 – volume: 42 start-page: 2502 year: 2015 ident: 10.1016/j.ijpvp.2022.104870_bib43 article-title: Set-valued samples based support vector regression and its applications publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2014.09.038 – volume: 223 year: 2022 ident: 10.1016/j.ijpvp.2022.104870_bib2 article-title: BaNTERA: a bayesian network for third-party excavation risk assessment publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2022.108507 – volume: 205 year: 2021 ident: 10.1016/j.ijpvp.2022.104870_bib10 article-title: Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets publication-title: Reliab. Eng. Syst. Saf. doi: 10.1016/j.ress.2020.107262 – start-page: 450 year: 2010 ident: 10.1016/j.ijpvp.2022.104870_bib47 – volume: 33 start-page: 164 year: 2012 ident: 10.1016/j.ijpvp.2022.104870_bib37 article-title: Sparse and stable gene selection with consensus SVM-RFE publication-title: Pattern Recogn. Lett. doi: 10.1016/j.patrec.2011.09.031 – volume: 82 start-page: 825 year: 2005 ident: 10.1016/j.ijpvp.2022.104870_bib15 article-title: Experimental puncture loads for external interference of pipelines by excavator equipment publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2005.07.005 – volume: 358 start-page: 6348 year: 2021 ident: 10.1016/j.ijpvp.2022.104870_bib29 article-title: Direct symbol decoding using GA-SVM in chaotic baseband wireless communication system publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2021.06.012 – volume: 93 start-page: 432 year: 2012 ident: 10.1016/j.ijpvp.2022.104870_bib20 article-title: A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting publication-title: Appl. Energy doi: 10.1016/j.apenergy.2011.12.030 – volume: 46 start-page: 389 year: 2002 ident: 10.1016/j.ijpvp.2022.104870_bib34 article-title: Gene selection for cancer classification using support vector machines publication-title: Mach. Learn. doi: 10.1023/A:1012487302797 – volume: 34 start-page: 993 year: 2016 ident: 10.1016/j.ijpvp.2022.104870_bib5 article-title: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory publication-title: J. Nat. Gas Sci. Eng. doi: 10.1016/j.jngse.2016.07.060 – year: 2020 ident: 10.1016/j.ijpvp.2022.104870_bib4 – volume: 122 year: 2020 ident: 10.1016/j.ijpvp.2022.104870_bib35 article-title: Indicator element selection and geochemical anomaly mapping using recursive feature elimination and random forest methods in the Jingdezhen region of Jiangxi Province, South China publication-title: Appl. Geochem. doi: 10.1016/j.apgeochem.2020.104760 – volume: 55 start-page: 87 year: 2014 ident: 10.1016/j.ijpvp.2022.104870_bib24 article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting publication-title: Knowl. Base Syst. doi: 10.1016/j.knosys.2013.10.012 – volume: 90 start-page: 355 year: 2018 ident: 10.1016/j.ijpvp.2022.104870_bib17 article-title: Mechanical response of buried polyethylene pipelines under excavation load during pavement construction publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2018.03.027 – volume: 165 start-page: 301 year: 2018 ident: 10.1016/j.ijpvp.2022.104870_bib19 article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review publication-title: Energy Build. doi: 10.1016/j.enbuild.2018.01.017 – ident: 10.1016/j.ijpvp.2022.104870_bib46 – volume: vols. 382–383 start-page: 292 year: 2016 ident: 10.1016/j.ijpvp.2022.104870_bib41 – volume: 41 start-page: 255 year: 2014 ident: 10.1016/j.ijpvp.2022.104870_bib32 article-title: 3D mechanical modeling of soil orthogonal cutting under a single reamer cutter based on Drucker–Prager criterion publication-title: Tunn. Undergr. Space Technol. doi: 10.1016/j.tust.2013.12.008 – volume: 6 start-page: A4014003 year: 2015 ident: 10.1016/j.ijpvp.2022.104870_bib16 article-title: Numerical analyses of the stress and limiting load for buried gas pipelines under excavation machine impact publication-title: J. Pipeline Syst. Eng. Pract. doi: 10.1061/(ASCE)PS.1949-1204.0000137 – volume: 145 start-page: 29 year: 2016 ident: 10.1016/j.ijpvp.2022.104870_bib3 article-title: Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2016.06.003 – volume: 25 start-page: 594 year: 2012 ident: 10.1016/j.ijpvp.2022.104870_bib7 article-title: Assessing and classifying risk of pipeline third-party interference based on fault tree and SOM publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2011.08.010 – volume: 61 year: 2020 ident: 10.1016/j.ijpvp.2022.104870_bib28 article-title: A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India publication-title: Sustain. Cities Soc. doi: 10.1016/j.scs.2020.102311 – volume: 48 start-page: 144 year: 2015 ident: 10.1016/j.ijpvp.2022.104870_bib33 article-title: Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2014.11.014 – volume: 2016 year: 2016 ident: 10.1016/j.ijpvp.2022.104870_bib44 article-title: Speeding up online training of L1 support vector machines publication-title: IEEE Southeastcon – year: 2001 ident: 10.1016/j.ijpvp.2022.104870_bib42 – volume: 145 start-page: 29 year: 2016 ident: 10.1016/j.ijpvp.2022.104870_bib6 article-title: Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database publication-title: Int. J. Pres. Ves. Pip. doi: 10.1016/j.ijpvp.2016.06.003 – volume: 106 year: 2019 ident: 10.1016/j.ijpvp.2022.104870_bib18 article-title: Stress and strain analysis of buried PE pipelines subjected to mechanical excavation publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2019.104171 – volume: 107 start-page: 360 year: 2016 ident: 10.1016/j.ijpvp.2022.104870_bib21 article-title: Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine publication-title: Energy doi: 10.1016/j.energy.2016.04.020 – year: 2013 ident: 10.1016/j.ijpvp.2022.104870_bib23 – volume: 57 start-page: 156 year: 2019 ident: 10.1016/j.ijpvp.2022.104870_bib40 article-title: Estimation of minimum ignition energy of explosive chemicals using gravitational search algorithm based support vector regression publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2018.11.018 – volume: 114 year: 2020 ident: 10.1016/j.ijpvp.2022.104870_bib12 article-title: Collision failure risk analysis of falling object on subsea pipelines based on machine learning scheme publication-title: Eng. Fail. Anal. doi: 10.1016/j.engfailanal.2020.104601 – volume: 63 start-page: 3 year: 2006 ident: 10.1016/j.ijpvp.2022.104870_bib38 article-title: Extremely randomized trees publication-title: Mach. Learn. doi: 10.1007/s10994-006-6226-1 – volume: 54 start-page: 163 year: 2018 ident: 10.1016/j.ijpvp.2022.104870_bib8 article-title: Risk identification of third-party damage on oil and gas pipelines through the Bayesian network publication-title: J. Loss Prev. Process. Ind. doi: 10.1016/j.jlp.2018.03.012 – volume: 109 year: 2021 ident: 10.1016/j.ijpvp.2022.104870_bib31 article-title: Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107541 – volume: 18 start-page: 577 year: 2014 ident: 10.1016/j.ijpvp.2022.104870_bib48 article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2013.2281535 |
| SSID | ssj0017056 |
| Score | 2.4022322 |
| Snippet | Third-party excavation operations pose a serious threat to the safe operation of natural gas pipelines, and quantifying the failure conditions of pipelines can... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 104870 |
| SubjectTerms | Data-driven predictive model Impact load Machine learning combinatorial algorithms Quantifying failure risk analysis Safety of natural gas pipelines |
| Title | Failure analysis and control of natural gas pipelines under excavation impact based on machine learning scheme |
| URI | https://dx.doi.org/10.1016/j.ijpvp.2022.104870 |
| Volume | 201 |
| WOSCitedRecordID | wos000966323700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1879-3541 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0017056 issn: 0308-0161 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBYh20N7WPqk2xc69JZ6sSU_5ONSdmnLshSaQnoysiIHh6zj5kV-yf7ejjSSnXbL0hZ6MY6xJKP5Io2kb74h5K2dxPJKBJkuqyDmrAoEL8MAPAcYFKtcR9pmLbnMrq7EZJJ_HgxufCzMbpE1jdjv8_a_mhqegbFN6OxfmLurFB7APRgdrmB2uP6R4S9kvcBTASc3gpFryEg3tA2JUhszuR61dWvi0fXapsNdjfReSdyj9eGTZpabmhOFa8u61D7NxGwEy2L9s9LBuCNi-h3GA10KS7g137UzauUL_KzWZM6eeaNPtnYE3C57zgEOipf1d6ive-_b1hEF-kf9vrcLbXMbGYx77rPfXfMRNj2dyUZ1WbIdCrafahykRZYHPEHBLD-KM6zq1oyAmxPz03re7ow-KWPmWFtgtpJfpLa_mNZMY4zZtRasqo9YluRiSI7OPp5PPnXnU1mY4Cm4-zqvZ2WZg7ea-r3Pc-DHjB-SY7cAoWcInEdkoJvH5MGBLOUT0jgIUQ8huJlSByG6rKiDEAUI0Q5C1EKI9hCiCCFqIUTht4MQ9RCiCKGn5OvF-fj9h8Dl5QgUODybgCnB0zLlSstSZmEeSqE4M_wjXiZlIpRg0zAqpRFe0izRkUxlpWBKTnLwlznnz8iwWTb6OaEs0mkVVirOmYpTLWWodZnGUZzFpXGtTwjzPVcoJ1pvcqcsCs9OnBe2uwvT3QV29wl51xVqUbPl7tdTb5LCuZ3oThaAobsKvvjXgi_J_f4P8IoMN6utfk3uqd2mXq_eOKz9ALRPrGc |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+analysis+and+control+of+natural+gas+pipelines+under+excavation+impact+based+on+machine+learning+scheme&rft.jtitle=The+International+journal+of+pressure+vessels+and+piping&rft.au=Xu%2C+Duo&rft.au=Chen%2C+Liqiong&rft.au=Yu%2C+Chang&rft.au=Zhang%2C+Sen&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0308-0161&rft.eissn=1879-3541&rft.volume=201&rft_id=info:doi/10.1016%2Fj.ijpvp.2022.104870&rft.externalDocID=S0308016122002551 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-0161&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-0161&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-0161&client=summon |