Failure analysis and control of natural gas pipelines under excavation impact based on machine learning scheme

Third-party excavation operations pose a serious threat to the safe operation of natural gas pipelines, and quantifying the failure conditions of pipelines can effectively identify the hazards of excavation operations. Considering the current lack of test data on the full-size critical conditions of...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:The International journal of pressure vessels and piping Ročník 201; s. 104870
Hlavní autoři: Xu, Duo, Chen, Liqiong, Yu, Chang, Zhang, Sen, Zhao, Xiang, Lai, Xin
Médium: Journal Article
Jazyk:angličtina
Vydáno: Elsevier Ltd 01.02.2023
Témata:
ISSN:0308-0161, 1879-3541
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Third-party excavation operations pose a serious threat to the safe operation of natural gas pipelines, and quantifying the failure conditions of pipelines can effectively identify the hazards of excavation operations. Considering the current lack of test data on the full-size critical conditions of pipelines under different failure modes, to make the research results have better field application, this study aims to develop a failure prediction model, which is adopted for predicting the failure modes of the pipeline under different excavation conditions in order to propose control strategies. In this work, finite element analysis is combined with machine learning algorithms. The finite element analysis process derives the critical loads for different failure modes of the pipe and establishes the failure condition data set. Correlation analysis and sensitivity analysis were employed to investigate the influence pattern of the features. The prediction performance of different machine learning combination algorithms was tested, and a hybrid data-driven prediction model was established and combined with the excavation equipment parameters to determine the risk level of the excavation equipment and the risk area of the operation. The results demonstrate that the critical load value for failure grows when the strength of the pipe increases. The four features of yield strength, strength limit, pipe diameter, and wall thickness exhibit the highest importance scores. The bucket tooth wedge angle only influences the magnitude of the puncture critical load, with correlation and sensitivity coefficients being 0.315 and 0.116, respectively. In the test of the combined algorithm, the RFECV-CSVR-NSGAIII algorithm built in this study has the highest generalization performance, the mean absolute error percentage (MAPE) is lower than 0.0476, the coefficient of determination R2 reaches over 0.9960, and the prediction model has excellent accuracy. The prediction model was subjected to case studies to obtain rapid identification of risk levels and operational risk areas of excavation equipment. •The relationship between pipeline failure forms and excavation forces was quantified.•A dataset of natural gas pipeline failure conditions under excavation operations was established.•A data-driven prediction model for natural gas pipeline failure conditions was developed.•The quantitative criteria of the risk level and the division method of operation risk area are proposed.
AbstractList Third-party excavation operations pose a serious threat to the safe operation of natural gas pipelines, and quantifying the failure conditions of pipelines can effectively identify the hazards of excavation operations. Considering the current lack of test data on the full-size critical conditions of pipelines under different failure modes, to make the research results have better field application, this study aims to develop a failure prediction model, which is adopted for predicting the failure modes of the pipeline under different excavation conditions in order to propose control strategies. In this work, finite element analysis is combined with machine learning algorithms. The finite element analysis process derives the critical loads for different failure modes of the pipe and establishes the failure condition data set. Correlation analysis and sensitivity analysis were employed to investigate the influence pattern of the features. The prediction performance of different machine learning combination algorithms was tested, and a hybrid data-driven prediction model was established and combined with the excavation equipment parameters to determine the risk level of the excavation equipment and the risk area of the operation. The results demonstrate that the critical load value for failure grows when the strength of the pipe increases. The four features of yield strength, strength limit, pipe diameter, and wall thickness exhibit the highest importance scores. The bucket tooth wedge angle only influences the magnitude of the puncture critical load, with correlation and sensitivity coefficients being 0.315 and 0.116, respectively. In the test of the combined algorithm, the RFECV-CSVR-NSGAIII algorithm built in this study has the highest generalization performance, the mean absolute error percentage (MAPE) is lower than 0.0476, the coefficient of determination R2 reaches over 0.9960, and the prediction model has excellent accuracy. The prediction model was subjected to case studies to obtain rapid identification of risk levels and operational risk areas of excavation equipment. •The relationship between pipeline failure forms and excavation forces was quantified.•A dataset of natural gas pipeline failure conditions under excavation operations was established.•A data-driven prediction model for natural gas pipeline failure conditions was developed.•The quantitative criteria of the risk level and the division method of operation risk area are proposed.
ArticleNumber 104870
Author Zhang, Sen
Xu, Duo
Zhao, Xiang
Lai, Xin
Chen, Liqiong
Yu, Chang
Author_xml – sequence: 1
  givenname: Duo
  surname: Xu
  fullname: Xu, Duo
  email: 202011000103@stu.swpu.edu.cn
– sequence: 2
  givenname: Liqiong
  surname: Chen
  fullname: Chen, Liqiong
– sequence: 3
  givenname: Chang
  surname: Yu
  fullname: Yu, Chang
– sequence: 4
  givenname: Sen
  surname: Zhang
  fullname: Zhang, Sen
– sequence: 5
  givenname: Xiang
  surname: Zhao
  fullname: Zhao, Xiang
– sequence: 6
  givenname: Xin
  surname: Lai
  fullname: Lai, Xin
BookMark eNqFkE1OwzAQhS1UJNrCCdj4Ail23DjJggWqKCBVYgNra-JMWkeJE9luRW-P27JiAav50ftG896MTOxgkZB7zhaccfnQLkw7HsZFytI0bpZFzq7IlBd5mYhsySdkygQrkijlN2TmfcsYz1kmp8SuwXR7hxQsdEdvfGxqqgcb3NDRoaEWwt5BR7fg6WhG7IxFT_e2RkfxS8MBghksNf0IOtAKPNY0zj3oXVTSDsFZY7fU6x32eEuuG-g83v3UOflcP3-sXpPN-8vb6mmTaMFESFJdCFlJoREqyFnJoNAixaZBUWVVVugirRmvoJSlxDRDDhIazZcyKyXPhRBzUl7uajd477BR2oTzp8FFw4ozdQpOteocnDoFpy7BRVb8YkdnenDHf6jHC4XR1sGgU14btBpr41AHVQ_mT_4bdRiNNA
CitedBy_id crossref_primary_10_1007_s12046_024_02488_x
crossref_primary_10_1016_j_rineng_2025_107287
crossref_primary_10_1061_JPSEA2_PSENG_1464
crossref_primary_10_3390_app13179992
crossref_primary_10_1080_10589759_2025_2459307
crossref_primary_10_1016_j_ijpvp_2024_105148
crossref_primary_10_1016_j_ijhydene_2025_151491
crossref_primary_10_1016_j_jpse_2025_100361
crossref_primary_10_1016_j_egyr_2023_08_009
crossref_primary_10_1016_j_tust_2024_106111
Cites_doi 10.1016/j.psep.2019.11.038
10.1016/j.egyr.2021.01.018
10.1016/j.ijpvp.2003.08.002
10.1002/widm.1157
10.1016/j.petrol.2021.109327
10.1023/A:1010933404324
10.1016/j.jngse.2016.07.060
10.1016/j.knosys.2021.106988
10.1016/j.jlp.2020.104388
10.1016/j.ijpvp.2003.08.003
10.1016/j.eswa.2014.09.038
10.1016/j.ress.2022.108507
10.1016/j.ress.2020.107262
10.1016/j.patrec.2011.09.031
10.1016/j.ijpvp.2005.07.005
10.1016/j.jfranklin.2021.06.012
10.1016/j.apenergy.2011.12.030
10.1023/A:1012487302797
10.1016/j.apgeochem.2020.104760
10.1016/j.knosys.2013.10.012
10.1016/j.engfailanal.2018.03.027
10.1016/j.enbuild.2018.01.017
10.1016/j.tust.2013.12.008
10.1061/(ASCE)PS.1949-1204.0000137
10.1016/j.ijpvp.2016.06.003
10.1016/j.engappai.2011.08.010
10.1016/j.scs.2020.102311
10.1016/j.engfailanal.2014.11.014
10.1016/j.engfailanal.2019.104171
10.1016/j.energy.2016.04.020
10.1016/j.jlp.2018.11.018
10.1016/j.engfailanal.2020.104601
10.1007/s10994-006-6226-1
10.1016/j.jlp.2018.03.012
10.1016/j.asoc.2021.107541
10.1109/TEVC.2013.2281535
ContentType Journal Article
Copyright 2022 Elsevier Ltd
Copyright_xml – notice: 2022 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.ijpvp.2022.104870
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-3541
ExternalDocumentID 10_1016_j_ijpvp_2022_104870
S0308016122002551
GroupedDBID --K
--M
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYOK
ABEFU
ABFNM
ABJNI
ABMAC
ABTAH
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SPC
SPCBC
SST
SSZ
T5K
WUQ
XPP
ZMT
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-2c836b63ceaba7090a8c32effe3b5b58c82d01ba9696e25e1a6afc14659617333
ISICitedReferencesCount 12
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000966323700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0308-0161
IngestDate Sat Nov 29 07:20:20 EST 2025
Tue Nov 18 22:04:22 EST 2025
Fri Feb 23 02:37:47 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Machine learning combinatorial algorithms
Data-driven predictive model
Safety of natural gas pipelines
Quantifying failure risk analysis
Impact load
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-2c836b63ceaba7090a8c32effe3b5b58c82d01ba9696e25e1a6afc14659617333
ParticipantIDs crossref_citationtrail_10_1016_j_ijpvp_2022_104870
crossref_primary_10_1016_j_ijpvp_2022_104870
elsevier_sciencedirect_doi_10_1016_j_ijpvp_2022_104870
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationTitle The International journal of pressure vessels and piping
PublicationYear 2023
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Tang, Yu, Wang, Li, Wang (bib20) 2012; 93
Huang, Liu, Zhang, Mi, Tong, Xiao, Shuai (bib31) 2021; 109
Delavar (bib30) 2022; 208
Liang, Hu, Zhang, Guo, Lin (bib7) 2012; 25
Melki, Kecman (bib44) 2016; 2016
Borchani, Varando, Bielza, Larra Aga (bib22) 2015; 5
De Giorgi, Malvoni, Congedo (bib21) 2016; 107
Zhu, Jia (bib32) 2014; 41
Cristianini, Shawe-Taylor (bib46) 2000
Qadir, Khan, Khalaji, Munawar, Al-Turjman, Mahmud, Kouzani, Le (bib36) 2021; 7
Zhu, Yang, Gao, Xu, Xu, Gao (bib41) 2016; vols. 382–383
Liu, Zhang, Xia, Wu, Chen, Zheng, Li (bib17) 2018; 90
Cui, Quddus, Mashuga (bib9) 2020; 134
Guyon, Weston, Barnhill, Vapnik (bib34) 2002; 46
Ferrari (bib45) 2008
Li, Zhang, Abbassi, Yang, Zhang, Chen (bib11) 2021; 69
Tapia, Bulacio, Angelone (bib37) 2012; 33
Melki, Cano, Kecman, Ventura (bib25) 2017; vols. 415–416
Brooker (bib14) 2003; 80
Peng, Yao, Liang, Yu, He (bib1) 2016; 34
Lam, Zhou (bib6) 2016; 145
(bib4) 2020
Yin, Ren (bib29) 2021; 358
Breiman (bib39) 2001; 45
Brooker (bib15) 2005; 82
Chen, Pedrycz, Ha, Ma (bib43) 2015; 42
Lam, Zhou (bib3) 2016; 145
Kecman (bib42) 2001
Deb, Jain (bib48) 2014; 18
Xiang, Zhou (bib10) 2021; 205
Langley (bib26) 1997
(bib47) 2010
Peng, Yao, Liang, Yu, He (bib5) 2016; 34
Wu, Zhang, Liu, Bolati, Liu, Chen, Zhao (bib18) 2019; 106
Wang, Pan, Chen, Ouyang, Rao, Jiang (bib35) 2020; 122
Moodi, Ghazvini, Moodi (bib27) 2021; 222
Barman, Dev Choudhury (bib28) 2020; 61
Xu, An, Qiao, Zhu, Li (bib23) 2013
Jiang, Dong (bib12) 2020; 114
Geurts, Ernst, Wehenkel (bib38) 2006; 63
Ruiz-Tagle, Lewis, Schell, Lever, Groth (bib2) 2022; 223
Guo, Zhang, Liang, Haugen (bib8) 2018; 54
Owolabi, Suleiman, Adeyemo, Akande, Alhiyafi, Olatunji (bib40) 2019; 57
Brooker (bib13) 2003; 80
Yao, Xu, Zeng, Jiang (bib16) 2015; 6
Xiong, Bao, Hu (bib24) 2014; 55
Luo, Lu, Shi, Li, Zheng (bib33) 2015; 48
Ahmad, Chen, Guo, Wang (bib19) 2018; 165
Tang (10.1016/j.ijpvp.2022.104870_bib20) 2012; 93
Kecman (10.1016/j.ijpvp.2022.104870_bib42) 2001
Ferrari (10.1016/j.ijpvp.2022.104870_bib45) 2008
Borchani (10.1016/j.ijpvp.2022.104870_bib22) 2015; 5
Peng (10.1016/j.ijpvp.2022.104870_bib1) 2016; 34
Brooker (10.1016/j.ijpvp.2022.104870_bib14) 2003; 80
Ahmad (10.1016/j.ijpvp.2022.104870_bib19) 2018; 165
Yin (10.1016/j.ijpvp.2022.104870_bib29) 2021; 358
Langley (10.1016/j.ijpvp.2022.104870_bib26) 1997
Cristianini (10.1016/j.ijpvp.2022.104870_bib46)
Jiang (10.1016/j.ijpvp.2022.104870_bib12) 2020; 114
Liu (10.1016/j.ijpvp.2022.104870_bib17) 2018; 90
Huang (10.1016/j.ijpvp.2022.104870_bib31) 2021; 109
Guo (10.1016/j.ijpvp.2022.104870_bib8) 2018; 54
Wu (10.1016/j.ijpvp.2022.104870_bib18) 2019; 106
Yao (10.1016/j.ijpvp.2022.104870_bib16) 2015; 6
Zhu (10.1016/j.ijpvp.2022.104870_bib32) 2014; 41
Guyon (10.1016/j.ijpvp.2022.104870_bib34) 2002; 46
Deb (10.1016/j.ijpvp.2022.104870_bib48) 2014; 18
Brooker (10.1016/j.ijpvp.2022.104870_bib15) 2005; 82
Wang (10.1016/j.ijpvp.2022.104870_bib35) 2020; 122
Brooker (10.1016/j.ijpvp.2022.104870_bib13) 2003; 80
Peng (10.1016/j.ijpvp.2022.104870_bib5) 2016; 34
Li (10.1016/j.ijpvp.2022.104870_bib11) 2021; 69
Luo (10.1016/j.ijpvp.2022.104870_bib33) 2015; 48
(10.1016/j.ijpvp.2022.104870_bib47) 2010
Xu (10.1016/j.ijpvp.2022.104870_bib23) 2013
Lam (10.1016/j.ijpvp.2022.104870_bib6) 2016; 145
Liang (10.1016/j.ijpvp.2022.104870_bib7) 2012; 25
De Giorgi (10.1016/j.ijpvp.2022.104870_bib21) 2016; 107
Delavar (10.1016/j.ijpvp.2022.104870_bib30) 2022; 208
Breiman (10.1016/j.ijpvp.2022.104870_bib39) 2001; 45
Owolabi (10.1016/j.ijpvp.2022.104870_bib40) 2019; 57
Ruiz-Tagle (10.1016/j.ijpvp.2022.104870_bib2) 2022; 223
(10.1016/j.ijpvp.2022.104870_bib4) 2020
Qadir (10.1016/j.ijpvp.2022.104870_bib36) 2021; 7
Lam (10.1016/j.ijpvp.2022.104870_bib3) 2016; 145
Xiong (10.1016/j.ijpvp.2022.104870_bib24) 2014; 55
Tapia (10.1016/j.ijpvp.2022.104870_bib37) 2012; 33
Cui (10.1016/j.ijpvp.2022.104870_bib9) 2020; 134
Chen (10.1016/j.ijpvp.2022.104870_bib43) 2015; 42
Xiang (10.1016/j.ijpvp.2022.104870_bib10) 2021; 205
Geurts (10.1016/j.ijpvp.2022.104870_bib38) 2006; 63
Barman (10.1016/j.ijpvp.2022.104870_bib28) 2020; 61
Zhu (10.1016/j.ijpvp.2022.104870_bib41) 2016; vols. 382–383
Melki (10.1016/j.ijpvp.2022.104870_bib25) 2017; vols. 415–416
Melki (10.1016/j.ijpvp.2022.104870_bib44) 2016; 2016
Moodi (10.1016/j.ijpvp.2022.104870_bib27) 2021; 222
References_xml – year: 2020
  ident: bib4
  article-title: 11th Report of the European Gas Pipeline Incident Data Group (Period 1970 – 2019) Comprising
– volume: 41
  start-page: 255
  year: 2014
  end-page: 262
  ident: bib32
  article-title: 3D mechanical modeling of soil orthogonal cutting under a single reamer cutter based on Drucker–Prager criterion
  publication-title: Tunn. Undergr. Space Technol.
– volume: 106
  year: 2019
  ident: bib18
  article-title: Stress and strain analysis of buried PE pipelines subjected to mechanical excavation
  publication-title: Eng. Fail. Anal.
– volume: 145
  start-page: 29
  year: 2016
  end-page: 40
  ident: bib6
  article-title: Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 7
  start-page: 8465
  year: 2021
  end-page: 8475
  ident: bib36
  article-title: Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids
  publication-title: Energy Rep.
– volume: 18
  start-page: 577
  year: 2014
  end-page: 601
  ident: bib48
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
– start-page: 450
  year: 2010
  end-page: 457
  ident: bib47
  publication-title: Oil and Gas Pipeline Protection Law of the People's Republic of China
– volume: 33
  start-page: 164
  year: 2012
  end-page: 172
  ident: bib37
  article-title: Sparse and stable gene selection with consensus SVM-RFE
  publication-title: Pattern Recogn. Lett.
– year: 2001
  ident: bib42
  article-title: Learning and Soft Computing: Support Vector Machines, Neural Networks, and Fuzzy Logic Models
– volume: 61
  year: 2020
  ident: bib28
  article-title: A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India
  publication-title: Sustain. Cities Soc.
– volume: 57
  start-page: 156
  year: 2019
  end-page: 163
  ident: bib40
  article-title: Estimation of minimum ignition energy of explosive chemicals using gravitational search algorithm based support vector regression
  publication-title: J. Loss Prev. Process. Ind.
– volume: 145
  start-page: 29
  year: 2016
  end-page: 40
  ident: bib3
  article-title: Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 82
  start-page: 825
  year: 2005
  end-page: 832
  ident: bib15
  article-title: Experimental puncture loads for external interference of pipelines by excavator equipment
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 222
  year: 2021
  ident: bib27
  article-title: A hybrid intelligent approach to detect Android Botnet using Smart Self-Adaptive Learning-based PSO-SVM
  publication-title: Knowl. Base Syst.
– volume: vols. 382–383
  start-page: 292
  year: 2016
  end-page: 307
  ident: bib41
  publication-title: Finding the Samples Near the Decision Plane for Support Vector Learning
– volume: 54
  start-page: 163
  year: 2018
  end-page: 178
  ident: bib8
  article-title: Risk identification of third-party damage on oil and gas pipelines through the Bayesian network
  publication-title: J. Loss Prev. Process. Ind.
– volume: 34
  start-page: 993
  year: 2016
  end-page: 1003
  ident: bib5
  article-title: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 25
  start-page: 594
  year: 2012
  end-page: 608
  ident: bib7
  article-title: Assessing and classifying risk of pipeline third-party interference based on fault tree and SOM
  publication-title: Eng. Appl. Artif. Intell.
– year: 2008
  ident: bib45
  article-title: Libsvm : A Library for Support Vector Machines
– volume: 165
  start-page: 301
  year: 2018
  end-page: 320
  ident: bib19
  article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review
  publication-title: Energy Build.
– volume: 46
  start-page: 389
  year: 2002
  end-page: 422
  ident: bib34
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
– volume: vols. 415–416
  start-page: 53
  year: 2017
  end-page: 69
  ident: bib25
  publication-title: Multi-Target Support Vector Regression via Correlation Regressor Chains
– volume: 6
  start-page: A4014003
  year: 2015
  ident: bib16
  article-title: Numerical analyses of the stress and limiting load for buried gas pipelines under excavation machine impact
  publication-title: J. Pipeline Syst. Eng. Pract.
– volume: 2016
  year: 2016
  ident: bib44
  article-title: Speeding up online training of L1 support vector machines
  publication-title: IEEE Southeastcon
– volume: 223
  year: 2022
  ident: bib2
  article-title: BaNTERA: a bayesian network for third-party excavation risk assessment
  publication-title: Reliab. Eng. Syst. Saf.
– year: 2000
  ident: bib46
  article-title: An introduction to support vector machines and other kernel-based learning methods: pseudocode for the SMO algorithm
– volume: 34
  start-page: 993
  year: 2016
  end-page: 1003
  ident: bib1
  article-title: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory
  publication-title: J. Nat. Gas Sci. Eng.
– volume: 48
  start-page: 144
  year: 2015
  end-page: 152
  ident: bib33
  article-title: Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement
  publication-title: Eng. Fail. Anal.
– volume: 5
  start-page: 216
  year: 2015
  end-page: 233
  ident: bib22
  article-title: A survey on multi-output regression
  publication-title: Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery
– year: 1997
  ident: bib26
  article-title: Selection of relevant features in machine learning
  publication-title: proc.aaai fall symp.on relevance
– volume: 114
  year: 2020
  ident: bib12
  article-title: Collision failure risk analysis of falling object on subsea pipelines based on machine learning scheme
  publication-title: Eng. Fail. Anal.
– volume: 42
  start-page: 2502
  year: 2015
  end-page: 2509
  ident: bib43
  article-title: Set-valued samples based support vector regression and its applications
  publication-title: Expert Syst. Appl.
– volume: 107
  start-page: 360
  year: 2016
  end-page: 373
  ident: bib21
  article-title: Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine
  publication-title: Energy
– volume: 205
  year: 2021
  ident: bib10
  article-title: Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets
  publication-title: Reliab. Eng. Syst. Saf.
– volume: 69
  year: 2021
  ident: bib11
  article-title: Dynamic probability assessment of urban natural gas pipeline accidents considering integrated external activities
  publication-title: J. Loss Prev. Process. Ind.
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: bib39
  article-title: Random forests
  publication-title: Mach. Learn.
– volume: 208
  year: 2022
  ident: bib30
  article-title: Hybrid machine learning approaches for classification and detection of fractures in carbonate reservoir
  publication-title: J. Petrol. Sci. Eng.
– volume: 90
  start-page: 355
  year: 2018
  end-page: 370
  ident: bib17
  article-title: Mechanical response of buried polyethylene pipelines under excavation load during pavement construction
  publication-title: Eng. Fail. Anal.
– volume: 80
  start-page: 727
  year: 2003
  end-page: 735
  ident: bib14
  article-title: Numerical modelling of pipeline puncture under excavator loading. Part II: parametric study
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 80
  start-page: 715
  year: 2003
  end-page: 725
  ident: bib13
  article-title: Numerical modelling of pipeline puncture under excavator loading. Part I. Development and validation of a finite element material failure model for puncture simulation
  publication-title: Int. J. Pres. Ves. Pip.
– volume: 63
  start-page: 3
  year: 2006
  end-page: 42
  ident: bib38
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
– volume: 93
  start-page: 432
  year: 2012
  end-page: 443
  ident: bib20
  article-title: A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
  publication-title: Appl. Energy
– volume: 55
  start-page: 87
  year: 2014
  end-page: 100
  ident: bib24
  article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
  publication-title: Knowl. Base Syst.
– volume: 122
  year: 2020
  ident: bib35
  article-title: Indicator element selection and geochemical anomaly mapping using recursive feature elimination and random forest methods in the Jingdezhen region of Jiangxi Province, South China
  publication-title: Appl. Geochem.
– year: 2013
  ident: bib23
  article-title: Multi-output Least-Squares Support Vector Regression Machines
– volume: 109
  year: 2021
  ident: bib31
  article-title: Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM
  publication-title: Appl. Soft Comput.
– volume: 358
  start-page: 6348
  year: 2021
  end-page: 6367
  ident: bib29
  article-title: Direct symbol decoding using GA-SVM in chaotic baseband wireless communication system
  publication-title: J. Franklin Inst.
– volume: 134
  start-page: 178
  year: 2020
  end-page: 188
  ident: bib9
  article-title: Bayesian network and game theory risk assessment model for third-party damage to oil and gas pipelines
  publication-title: Process Saf. Environ. Protect.
– volume: 134
  start-page: 178
  year: 2020
  ident: 10.1016/j.ijpvp.2022.104870_bib9
  article-title: Bayesian network and game theory risk assessment model for third-party damage to oil and gas pipelines
  publication-title: Process Saf. Environ. Protect.
  doi: 10.1016/j.psep.2019.11.038
– volume: 7
  start-page: 8465
  year: 2021
  ident: 10.1016/j.ijpvp.2022.104870_bib36
  article-title: Predicting the energy output of hybrid PV–wind renewable energy system using feature selection technique for smart grids
  publication-title: Energy Rep.
  doi: 10.1016/j.egyr.2021.01.018
– volume: 80
  start-page: 727
  year: 2003
  ident: 10.1016/j.ijpvp.2022.104870_bib14
  article-title: Numerical modelling of pipeline puncture under excavator loading. Part II: parametric study
  publication-title: Int. J. Pres. Ves. Pip.
  doi: 10.1016/j.ijpvp.2003.08.002
– year: 2008
  ident: 10.1016/j.ijpvp.2022.104870_bib45
– volume: 5
  start-page: 216
  year: 2015
  ident: 10.1016/j.ijpvp.2022.104870_bib22
  article-title: A survey on multi-output regression
  publication-title: Wiley Interdisciplinary Reviews Data Mining & Knowledge Discovery
  doi: 10.1002/widm.1157
– volume: 208
  year: 2022
  ident: 10.1016/j.ijpvp.2022.104870_bib30
  article-title: Hybrid machine learning approaches for classification and detection of fractures in carbonate reservoir
  publication-title: J. Petrol. Sci. Eng.
  doi: 10.1016/j.petrol.2021.109327
– year: 1997
  ident: 10.1016/j.ijpvp.2022.104870_bib26
  article-title: Selection of relevant features in machine learning
  publication-title: proc.aaai fall symp.on relevance
– volume: vols. 415–416
  start-page: 53
  year: 2017
  ident: 10.1016/j.ijpvp.2022.104870_bib25
– volume: 45
  start-page: 5
  issue: 1
  year: 2001
  ident: 10.1016/j.ijpvp.2022.104870_bib39
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 34
  start-page: 993
  year: 2016
  ident: 10.1016/j.ijpvp.2022.104870_bib1
  article-title: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.07.060
– volume: 222
  year: 2021
  ident: 10.1016/j.ijpvp.2022.104870_bib27
  article-title: A hybrid intelligent approach to detect Android Botnet using Smart Self-Adaptive Learning-based PSO-SVM
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2021.106988
– volume: 69
  year: 2021
  ident: 10.1016/j.ijpvp.2022.104870_bib11
  article-title: Dynamic probability assessment of urban natural gas pipeline accidents considering integrated external activities
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2020.104388
– volume: 80
  start-page: 715
  year: 2003
  ident: 10.1016/j.ijpvp.2022.104870_bib13
  article-title: Numerical modelling of pipeline puncture under excavator loading. Part I. Development and validation of a finite element material failure model for puncture simulation
  publication-title: Int. J. Pres. Ves. Pip.
  doi: 10.1016/j.ijpvp.2003.08.003
– volume: 42
  start-page: 2502
  year: 2015
  ident: 10.1016/j.ijpvp.2022.104870_bib43
  article-title: Set-valued samples based support vector regression and its applications
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2014.09.038
– volume: 223
  year: 2022
  ident: 10.1016/j.ijpvp.2022.104870_bib2
  article-title: BaNTERA: a bayesian network for third-party excavation risk assessment
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2022.108507
– volume: 205
  year: 2021
  ident: 10.1016/j.ijpvp.2022.104870_bib10
  article-title: Bayesian network model for predicting probability of third-party damage to underground pipelines and learning model parameters from incomplete datasets
  publication-title: Reliab. Eng. Syst. Saf.
  doi: 10.1016/j.ress.2020.107262
– start-page: 450
  year: 2010
  ident: 10.1016/j.ijpvp.2022.104870_bib47
– volume: 33
  start-page: 164
  year: 2012
  ident: 10.1016/j.ijpvp.2022.104870_bib37
  article-title: Sparse and stable gene selection with consensus SVM-RFE
  publication-title: Pattern Recogn. Lett.
  doi: 10.1016/j.patrec.2011.09.031
– volume: 82
  start-page: 825
  year: 2005
  ident: 10.1016/j.ijpvp.2022.104870_bib15
  article-title: Experimental puncture loads for external interference of pipelines by excavator equipment
  publication-title: Int. J. Pres. Ves. Pip.
  doi: 10.1016/j.ijpvp.2005.07.005
– volume: 358
  start-page: 6348
  year: 2021
  ident: 10.1016/j.ijpvp.2022.104870_bib29
  article-title: Direct symbol decoding using GA-SVM in chaotic baseband wireless communication system
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2021.06.012
– volume: 93
  start-page: 432
  year: 2012
  ident: 10.1016/j.ijpvp.2022.104870_bib20
  article-title: A novel hybrid ensemble learning paradigm for nuclear energy consumption forecasting
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2011.12.030
– volume: 46
  start-page: 389
  year: 2002
  ident: 10.1016/j.ijpvp.2022.104870_bib34
  article-title: Gene selection for cancer classification using support vector machines
  publication-title: Mach. Learn.
  doi: 10.1023/A:1012487302797
– volume: 34
  start-page: 993
  year: 2016
  ident: 10.1016/j.ijpvp.2022.104870_bib5
  article-title: Overall reliability analysis on oil/gas pipeline under typical third-party actions based on fragility theory
  publication-title: J. Nat. Gas Sci. Eng.
  doi: 10.1016/j.jngse.2016.07.060
– year: 2020
  ident: 10.1016/j.ijpvp.2022.104870_bib4
– volume: 122
  year: 2020
  ident: 10.1016/j.ijpvp.2022.104870_bib35
  article-title: Indicator element selection and geochemical anomaly mapping using recursive feature elimination and random forest methods in the Jingdezhen region of Jiangxi Province, South China
  publication-title: Appl. Geochem.
  doi: 10.1016/j.apgeochem.2020.104760
– volume: 55
  start-page: 87
  year: 2014
  ident: 10.1016/j.ijpvp.2022.104870_bib24
  article-title: Multiple-output support vector regression with a firefly algorithm for interval-valued stock price index forecasting
  publication-title: Knowl. Base Syst.
  doi: 10.1016/j.knosys.2013.10.012
– volume: 90
  start-page: 355
  year: 2018
  ident: 10.1016/j.ijpvp.2022.104870_bib17
  article-title: Mechanical response of buried polyethylene pipelines under excavation load during pavement construction
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2018.03.027
– volume: 165
  start-page: 301
  year: 2018
  ident: 10.1016/j.ijpvp.2022.104870_bib19
  article-title: A comprehensive overview on the data driven and large scale based approaches for forecasting of building energy demand: a review
  publication-title: Energy Build.
  doi: 10.1016/j.enbuild.2018.01.017
– ident: 10.1016/j.ijpvp.2022.104870_bib46
– volume: vols. 382–383
  start-page: 292
  year: 2016
  ident: 10.1016/j.ijpvp.2022.104870_bib41
– volume: 41
  start-page: 255
  year: 2014
  ident: 10.1016/j.ijpvp.2022.104870_bib32
  article-title: 3D mechanical modeling of soil orthogonal cutting under a single reamer cutter based on Drucker–Prager criterion
  publication-title: Tunn. Undergr. Space Technol.
  doi: 10.1016/j.tust.2013.12.008
– volume: 6
  start-page: A4014003
  year: 2015
  ident: 10.1016/j.ijpvp.2022.104870_bib16
  article-title: Numerical analyses of the stress and limiting load for buried gas pipelines under excavation machine impact
  publication-title: J. Pipeline Syst. Eng. Pract.
  doi: 10.1061/(ASCE)PS.1949-1204.0000137
– volume: 145
  start-page: 29
  year: 2016
  ident: 10.1016/j.ijpvp.2022.104870_bib3
  article-title: Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database
  publication-title: Int. J. Pres. Ves. Pip.
  doi: 10.1016/j.ijpvp.2016.06.003
– volume: 25
  start-page: 594
  year: 2012
  ident: 10.1016/j.ijpvp.2022.104870_bib7
  article-title: Assessing and classifying risk of pipeline third-party interference based on fault tree and SOM
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2011.08.010
– volume: 61
  year: 2020
  ident: 10.1016/j.ijpvp.2022.104870_bib28
  article-title: A similarity based hybrid GWO-SVM method of power system load forecasting for regional special event days in anomalous load situations in Assam, India
  publication-title: Sustain. Cities Soc.
  doi: 10.1016/j.scs.2020.102311
– volume: 48
  start-page: 144
  year: 2015
  ident: 10.1016/j.ijpvp.2022.104870_bib33
  article-title: Numerical simulation of strength failure of buried polyethylene pipe under foundation settlement
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2014.11.014
– volume: 2016
  year: 2016
  ident: 10.1016/j.ijpvp.2022.104870_bib44
  article-title: Speeding up online training of L1 support vector machines
  publication-title: IEEE Southeastcon
– year: 2001
  ident: 10.1016/j.ijpvp.2022.104870_bib42
– volume: 145
  start-page: 29
  year: 2016
  ident: 10.1016/j.ijpvp.2022.104870_bib6
  article-title: Statistical analyses of incidents on onshore gas transmission pipelines based on PHMSA database
  publication-title: Int. J. Pres. Ves. Pip.
  doi: 10.1016/j.ijpvp.2016.06.003
– volume: 106
  year: 2019
  ident: 10.1016/j.ijpvp.2022.104870_bib18
  article-title: Stress and strain analysis of buried PE pipelines subjected to mechanical excavation
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2019.104171
– volume: 107
  start-page: 360
  year: 2016
  ident: 10.1016/j.ijpvp.2022.104870_bib21
  article-title: Comparison of strategies for multi-step ahead photovoltaic power forecasting models based on hybrid group method of data handling networks and least square support vector machine
  publication-title: Energy
  doi: 10.1016/j.energy.2016.04.020
– year: 2013
  ident: 10.1016/j.ijpvp.2022.104870_bib23
– volume: 57
  start-page: 156
  year: 2019
  ident: 10.1016/j.ijpvp.2022.104870_bib40
  article-title: Estimation of minimum ignition energy of explosive chemicals using gravitational search algorithm based support vector regression
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2018.11.018
– volume: 114
  year: 2020
  ident: 10.1016/j.ijpvp.2022.104870_bib12
  article-title: Collision failure risk analysis of falling object on subsea pipelines based on machine learning scheme
  publication-title: Eng. Fail. Anal.
  doi: 10.1016/j.engfailanal.2020.104601
– volume: 63
  start-page: 3
  year: 2006
  ident: 10.1016/j.ijpvp.2022.104870_bib38
  article-title: Extremely randomized trees
  publication-title: Mach. Learn.
  doi: 10.1007/s10994-006-6226-1
– volume: 54
  start-page: 163
  year: 2018
  ident: 10.1016/j.ijpvp.2022.104870_bib8
  article-title: Risk identification of third-party damage on oil and gas pipelines through the Bayesian network
  publication-title: J. Loss Prev. Process. Ind.
  doi: 10.1016/j.jlp.2018.03.012
– volume: 109
  year: 2021
  ident: 10.1016/j.ijpvp.2022.104870_bib31
  article-title: Railway dangerous goods transportation system risk identification: comparisons among SVM, PSO-SVM, GA-SVM and GS-SVM
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107541
– volume: 18
  start-page: 577
  year: 2014
  ident: 10.1016/j.ijpvp.2022.104870_bib48
  article-title: An evolutionary many-objective optimization algorithm using reference-point-based nondominated sorting approach, Part I: solving problems with box constraints
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2013.2281535
SSID ssj0017056
Score 2.4022322
Snippet Third-party excavation operations pose a serious threat to the safe operation of natural gas pipelines, and quantifying the failure conditions of pipelines can...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 104870
SubjectTerms Data-driven predictive model
Impact load
Machine learning combinatorial algorithms
Quantifying failure risk analysis
Safety of natural gas pipelines
Title Failure analysis and control of natural gas pipelines under excavation impact based on machine learning scheme
URI https://dx.doi.org/10.1016/j.ijpvp.2022.104870
Volume 201
WOSCitedRecordID wos000966323700001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1879-3541
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0017056
  issn: 0308-0161
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBYh20N7WPqk2xc69JZ6sSU_5ONSdmnLshSaQnoysiIHh6zj5kV-yf7ejjSSnXbL0hZ6MY6xJKP5Io2kb74h5K2dxPJKBJkuqyDmrAoEL8MAPAcYFKtcR9pmLbnMrq7EZJJ_HgxufCzMbpE1jdjv8_a_mhqegbFN6OxfmLurFB7APRgdrmB2uP6R4S9kvcBTASc3gpFryEg3tA2JUhszuR61dWvi0fXapsNdjfReSdyj9eGTZpabmhOFa8u61D7NxGwEy2L9s9LBuCNi-h3GA10KS7g137UzauUL_KzWZM6eeaNPtnYE3C57zgEOipf1d6ive-_b1hEF-kf9vrcLbXMbGYx77rPfXfMRNj2dyUZ1WbIdCrafahykRZYHPEHBLD-KM6zq1oyAmxPz03re7ow-KWPmWFtgtpJfpLa_mNZMY4zZtRasqo9YluRiSI7OPp5PPnXnU1mY4Cm4-zqvZ2WZg7ea-r3Pc-DHjB-SY7cAoWcInEdkoJvH5MGBLOUT0jgIUQ8huJlSByG6rKiDEAUI0Q5C1EKI9hCiCCFqIUTht4MQ9RCiCKGn5OvF-fj9h8Dl5QgUODybgCnB0zLlSstSZmEeSqE4M_wjXiZlIpRg0zAqpRFe0izRkUxlpWBKTnLwlznnz8iwWTb6OaEs0mkVVirOmYpTLWWodZnGUZzFpXGtTwjzPVcoJ1pvcqcsCs9OnBe2uwvT3QV29wl51xVqUbPl7tdTb5LCuZ3oThaAobsKvvjXgi_J_f4P8IoMN6utfk3uqd2mXq_eOKz9ALRPrGc
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+analysis+and+control+of+natural+gas+pipelines+under+excavation+impact+based+on+machine+learning+scheme&rft.jtitle=The+International+journal+of+pressure+vessels+and+piping&rft.au=Xu%2C+Duo&rft.au=Chen%2C+Liqiong&rft.au=Yu%2C+Chang&rft.au=Zhang%2C+Sen&rft.date=2023-02-01&rft.pub=Elsevier+Ltd&rft.issn=0308-0161&rft.eissn=1879-3541&rft.volume=201&rft_id=info:doi/10.1016%2Fj.ijpvp.2022.104870&rft.externalDocID=S0308016122002551
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0308-0161&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0308-0161&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0308-0161&client=summon