Weighted automata extraction and explanation of recurrent neural networks for natural language tasks

Recurrent Neural Networks (RNNs) have achieved tremendous success in processing sequential data, yet understanding and analyzing their behaviours remains a significant challenge. To this end, many efforts have been made to extract finite automata from RNNs, which are more amenable for analysis and e...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of logical and algebraic methods in programming Ročník 136; s. 100907
Hlavní autori: Wei, Zeming, Zhang, Xiyue, Zhang, Yihao, Sun, Meng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier Inc 01.01.2024
Predmet:
ISSN:2352-2208
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Recurrent Neural Networks (RNNs) have achieved tremendous success in processing sequential data, yet understanding and analyzing their behaviours remains a significant challenge. To this end, many efforts have been made to extract finite automata from RNNs, which are more amenable for analysis and explanation. However, existing approaches like exact learning and compositional approaches for model extraction have limitations in either scalability or precision. In this paper, we propose a novel framework of Weighted Finite Automata (WFA) extraction and explanation to tackle the limitations for natural language tasks. First, to address the transition sparsity and context loss problems we identified in WFA extraction for natural language tasks, we propose an empirical method to complement missing rules in the transition diagram, and adjust transition matrices to enhance the context-awareness of the WFA. We also propose two data augmentation tactics to track more dynamic behaviours of RNN, which further allows us to improve the extraction precision. Based on the extracted model, we propose an explanation method for RNNs including a word embedding method – Transition Matrix Embeddings (TME) and TME-based task oriented explanation for the target RNN. Our evaluation demonstrates the advantage of our method in extraction precision than existing approaches, and the effectiveness of TME-based explanation method in applications to pretraining and adversarial example generation.
AbstractList Recurrent Neural Networks (RNNs) have achieved tremendous success in processing sequential data, yet understanding and analyzing their behaviours remains a significant challenge. To this end, many efforts have been made to extract finite automata from RNNs, which are more amenable for analysis and explanation. However, existing approaches like exact learning and compositional approaches for model extraction have limitations in either scalability or precision. In this paper, we propose a novel framework of Weighted Finite Automata (WFA) extraction and explanation to tackle the limitations for natural language tasks. First, to address the transition sparsity and context loss problems we identified in WFA extraction for natural language tasks, we propose an empirical method to complement missing rules in the transition diagram, and adjust transition matrices to enhance the context-awareness of the WFA. We also propose two data augmentation tactics to track more dynamic behaviours of RNN, which further allows us to improve the extraction precision. Based on the extracted model, we propose an explanation method for RNNs including a word embedding method – Transition Matrix Embeddings (TME) and TME-based task oriented explanation for the target RNN. Our evaluation demonstrates the advantage of our method in extraction precision than existing approaches, and the effectiveness of TME-based explanation method in applications to pretraining and adversarial example generation.
ArticleNumber 100907
Author Zhang, Xiyue
Zhang, Yihao
Sun, Meng
Wei, Zeming
Author_xml – sequence: 1
  givenname: Zeming
  surname: Wei
  fullname: Wei, Zeming
  organization: School of Mathematical Sciences, Peking University, Beijing, China
– sequence: 2
  givenname: Xiyue
  surname: Zhang
  fullname: Zhang, Xiyue
  organization: Department of Computer Science, University of Oxford, Oxford, United Kingdom
– sequence: 3
  givenname: Yihao
  surname: Zhang
  fullname: Zhang, Yihao
  organization: School of Mathematical Sciences, Peking University, Beijing, China
– sequence: 4
  givenname: Meng
  orcidid: 0000-0001-6550-7396
  surname: Sun
  fullname: Sun, Meng
  email: sunm@pku.edu.cn
  organization: School of Mathematical Sciences, Peking University, Beijing, China
BookMark eNqFkMtOwzAQRb0oEgX6BWz8Ayl-NImzYIEqXlIlNiCWlmtPitPUrmyHx9_jpqxYwGo0V3NGuucMTZx3gNAlJXNKaHXVzbte7fZzRhjPCWlIPUFTxktWMEbEKZrF2BGST0UtOJ0i8wp285bAYDUkv1NJYfhMQelkvcPKmbzue-XUuPsWB9BDCOASdjAE1eeRPnzYRtz6gPPdGGZiM6gN4KTiNl6gk1b1EWY_8xy93N0-Lx-K1dP94_JmVWhOeCoYBc551RDNG2IEYWZRUt4Y1vKKE7oWZV3SCqDUtG014xpqUQnBYLFYrxtR8nPEj3918DEGaOU-2J0KX5ISefAjOzn6kQc_8ugnU80vSts09s0ebP8Pe31kIdd6txBk1BacBmOzqCSNt3_y33yuh4E
CitedBy_id crossref_primary_10_3390_a17050210
crossref_primary_10_1016_j_eswa_2025_128474
Cites_doi 10.1016/0890-5401(87)90052-6
10.1162/0899766053630350
10.35940/ijeat.D7637.049420
10.1016/0893-6080(95)00086-0
10.1162/neco.1993.5.6.976
10.1038/s41598-018-24271-9
10.1109/69.485647
10.1016/S0016-0032(96)00063-4
10.1109/TASLP.2014.2339736
10.1162/neco.1997.9.8.1735
10.1162/neco_a_01111
ContentType Journal Article
Copyright 2023 Elsevier Inc.
Copyright_xml – notice: 2023 Elsevier Inc.
DBID AAYXX
CITATION
DOI 10.1016/j.jlamp.2023.100907
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_jlamp_2023_100907
S2352220823000615
GroupedDBID --M
0R~
4.4
457
4G.
7-5
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXUO
AAYFN
ABBOA
ABMAC
ABVKL
ABXDB
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
AEBSH
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
AXJTR
BKOJK
BLXMC
EBS
EFJIC
EFLBG
EJD
FDB
FIRID
FYGXN
GBLVA
GBOLZ
HZ~
KOM
M41
NCXOZ
O9-
OAUVE
RIG
ROL
SPC
SPCBC
SSV
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ACLOT
ACVFH
ADCNI
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
CITATION
EFKBS
ID FETCH-LOGICAL-c303t-21e333690c390d802d45139d2f36301b857516ee5c1ffc23ce786882e44bb9853
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001336366500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2352-2208
IngestDate Tue Nov 18 21:59:36 EST 2025
Thu Nov 13 04:37:26 EST 2025
Fri Feb 23 02:36:12 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Weighted finite automata
Recurrent neural networks
Abstraction
Natural languages
Explanation
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-21e333690c390d802d45139d2f36301b857516ee5c1ffc23ce786882e44bb9853
ORCID 0000-0001-6550-7396
ParticipantIDs crossref_primary_10_1016_j_jlamp_2023_100907
crossref_citationtrail_10_1016_j_jlamp_2023_100907
elsevier_sciencedirect_doi_10_1016_j_jlamp_2023_100907
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationTitle Journal of logical and algebraic methods in programming
PublicationYear 2024
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Krakovna, Doshi-Velez (br0320)
Omlin, Giles (br0280) 1996; 9
Datta, David, Mittal, Jain (br0060) 2020; 9
Zhang, Du, Xie, Ma, Liu, Sun (br0210) 2021
Guo, Lin, Lu (br0350)
Wang, Zhang, Liu, Giles (br0120)
Van der Maaten, Hinton (br0250) 2008; 9
Dong, Wang, Sun, Zhang, Wang, Dai, Dong, Wang (br0140) 2020
Angluin (br0070) 1987; 75
Che, Purushotham, Cho, Sontag, Liu (br0040) 2018; 8
Weiss, Goldberg, Yahav (br0080) 2018
Hochreiter, Schmidhuber (br0170) 1997; 9
Abdel-Hamid, Mohamed, Jiang, Deng, Penn, Yu (br0020) 2014; 22
Okudono, Waga, Sekiyama, Hasuo (br0100) 2020
Pennington, Socher, Manning (br0180) 2014
He, Zhang, Ren, Sun (br0010) 2016
Hou, Zhou (br0330) 2020; 31
Goldberg (br0030) 2017; 10
Menéndez, Pardo, Pardo, Pardo (br0230) 1997; 334
Du, Xie, Li, Ma, Liu, Zhao (br0130) 2019
Du, Li, Xie, Ma, Liu, Zhao (br0150) 2020
Jacobsson (br0260) 2005; 17
Li, Roth (br0200) 2002
Mikolov, Chen, Corrado, Dean (br0240)
Jigsaw (br0220)
Zeng, Goodman, Smyth (br0300) 1993; 5
Omlin, Giles (br0290) 1996; 8
Powers (br0190) 1998
Weiss, Goldberg, Yahav (br0090) 2019; vol. 32
Jiang, Zhao, Chu, Shen, Tu (br0340) 2020
Wang, Zhang, Ororbia, Xing, Liu, Giles (br0110) 2018; 30
Cechin, Regina, Simon, Stertz (br0310) 2003
Wang, Li, Cao, Chen, Wang (br0050) 2019
Xie, Guo, Ma, Le, Wang, Zhou, Liu, Xing (br0160) 2021
Omlin, Giles, Miller (br0270) 1992; vol. 1
Wang (10.1016/j.jlamp.2023.100907_br0110) 2018; 30
Angluin (10.1016/j.jlamp.2023.100907_br0070) 1987; 75
Wang (10.1016/j.jlamp.2023.100907_br0120)
Dong (10.1016/j.jlamp.2023.100907_br0140) 2020
Abdel-Hamid (10.1016/j.jlamp.2023.100907_br0020) 2014; 22
Weiss (10.1016/j.jlamp.2023.100907_br0080) 2018
Datta (10.1016/j.jlamp.2023.100907_br0060) 2020; 9
Jacobsson (10.1016/j.jlamp.2023.100907_br0260) 2005; 17
Cechin (10.1016/j.jlamp.2023.100907_br0310) 2003
Du (10.1016/j.jlamp.2023.100907_br0150) 2020
Zhang (10.1016/j.jlamp.2023.100907_br0210) 2021
Omlin (10.1016/j.jlamp.2023.100907_br0270) 1992; vol. 1
Pennington (10.1016/j.jlamp.2023.100907_br0180) 2014
Li (10.1016/j.jlamp.2023.100907_br0200) 2002
Omlin (10.1016/j.jlamp.2023.100907_br0290) 1996; 8
Krakovna (10.1016/j.jlamp.2023.100907_br0320)
Menéndez (10.1016/j.jlamp.2023.100907_br0230) 1997; 334
Che (10.1016/j.jlamp.2023.100907_br0040) 2018; 8
Powers (10.1016/j.jlamp.2023.100907_br0190) 1998
Weiss (10.1016/j.jlamp.2023.100907_br0090) 2019; vol. 32
Xie (10.1016/j.jlamp.2023.100907_br0160) 2021
Jiang (10.1016/j.jlamp.2023.100907_br0340) 2020
Hochreiter (10.1016/j.jlamp.2023.100907_br0170) 1997; 9
Guo (10.1016/j.jlamp.2023.100907_br0350)
Goldberg (10.1016/j.jlamp.2023.100907_br0030) 2017; 10
Jigsaw (10.1016/j.jlamp.2023.100907_br0220)
Wang (10.1016/j.jlamp.2023.100907_br0050) 2019
Zeng (10.1016/j.jlamp.2023.100907_br0300) 1993; 5
Okudono (10.1016/j.jlamp.2023.100907_br0100) 2020
Omlin (10.1016/j.jlamp.2023.100907_br0280) 1996; 9
He (10.1016/j.jlamp.2023.100907_br0010) 2016
Mikolov (10.1016/j.jlamp.2023.100907_br0240)
Van der Maaten (10.1016/j.jlamp.2023.100907_br0250) 2008; 9
Hou (10.1016/j.jlamp.2023.100907_br0330) 2020; 31
Du (10.1016/j.jlamp.2023.100907_br0130) 2019
References_xml – start-page: 151
  year: 1998
  end-page: 160
  ident: br0190
  article-title: Applications and explanations of Zipf's law
  publication-title: New Methods in Language Processing and Computational Natural Language Learning
– volume: vol. 32
  start-page: 8558
  year: 2019
  end-page: 8569
  ident: br0090
  article-title: Learning deterministic weighted automata with queries and counterexamples
  publication-title: Advances in Neural Information Processing Systems
– ident: br0120
  article-title: Verification of recurrent neural networks through rule extraction
– start-page: 11383
  year: 2021
  end-page: 11392
  ident: br0160
  article-title: RNNRepair: automatic RNN repair via model-based analysis
  publication-title: International Conference on Machine Learning
– volume: 334
  start-page: 307
  year: 1997
  end-page: 318
  ident: br0230
  article-title: The Jensen-Shannon divergence
  publication-title: J. Franklin Inst.
– ident: br0350
  article-title: An interpretable LSTM neural network for autoregressive exogenous model
– volume: 22
  start-page: 1533
  year: 2014
  end-page: 1545
  ident: br0020
  article-title: Convolutional neural networks for speech recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
– volume: 9
  start-page: 41
  year: 1996
  end-page: 52
  ident: br0280
  article-title: Extraction of rules from discrete-time recurrent neural networks
  publication-title: Neural Netw.
– start-page: 423
  year: 2020
  end-page: 435
  ident: br0150
  article-title: Marble: model-based robustness analysis of stateful deep learning systems
  publication-title: Proceedings of the 35th IEEE/ACM International Conference on Automated Software Engineering
– start-page: 11699
  year: 2021
  end-page: 11707
  ident: br0210
  article-title: Decision-guided weighted automata extraction from recurrent neural networks
  publication-title: Thirty-Fifth AAAI Conference on Artificial Intelligence
– ident: br0320
  article-title: Increasing the interpretability of recurrent neural networks using hidden Markov models
– start-page: 5306
  year: 2020
  end-page: 5314
  ident: br0100
  article-title: Weighted automata extraction from recurrent neural networks via regression on state spaces
  publication-title: Proceedings of the AAAI Conference on Artificial Intelligence
– ident: br0240
  article-title: Efficient estimation of word representations in vector space
– year: 2002
  ident: br0200
  article-title: Learning question classifiers
  publication-title: COLING 2002: The 19th International Conference on Computational Linguistics
– start-page: 5247
  year: 2018
  end-page: 5256
  ident: br0080
  article-title: Extracting automata from recurrent neural networks using queries and counterexamples
  publication-title: International Conference on Machine Learning
– start-page: 770
  year: 2016
  end-page: 778
  ident: br0010
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 5
  start-page: 976
  year: 1993
  end-page: 990
  ident: br0300
  article-title: Learning finite state machines with self-clustering recurrent networks
  publication-title: Neural Comput.
– start-page: 1
  year: 2019
  end-page: 6
  ident: br0050
  article-title: Convolutional recurrent neural networks for text classification
  publication-title: 2019 International Joint Conference on Neural Networks
– volume: vol. 1
  start-page: 33
  year: 1992
  end-page: 38
  ident: br0270
  article-title: Heuristics for the extraction of rules from discrete-time recurrent neural networks
  publication-title: [Proceedings 1992] IJCNN International Joint Conference on Neural Networks
– volume: 75
  start-page: 87
  year: 1987
  end-page: 106
  ident: br0070
  article-title: Learning regular sets from queries and counterexamples
  publication-title: Inf. Comput.
– volume: 31
  start-page: 2267
  year: 2020
  end-page: 2279
  ident: br0330
  article-title: Learning with interpretable structure from gated RNN
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: br0170
  article-title: Long short-term memory
  publication-title: Neural Comput.
– start-page: 73
  year: 2003
  end-page: 78
  ident: br0310
  article-title: State automata extraction from recurrent neural nets using k-means and fuzzy clustering
  publication-title: Proceedings of the 23rd International Conference of the Chilean Computer Science Society, 2003
– volume: 8
  start-page: 183
  year: 1996
  end-page: 188
  ident: br0290
  article-title: Rule revision with recurrent neural networks
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 477
  year: 2019
  end-page: 487
  ident: br0130
  article-title: Deepstellar: model-based quantitative analysis of stateful deep learning systems
  publication-title: Proceedings of the 2019 27th ACM Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering
– volume: 8
  start-page: 1
  year: 2018
  end-page: 12
  ident: br0040
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci. Rep.
– ident: br0220
  article-title: Toxic comment classification challenge
– volume: 10
  start-page: 1
  year: 2017
  end-page: 309
  ident: br0030
  article-title: Neural network methods for natural language processing
  publication-title: Synth. Lect. Hum. Lang. Technol.
– volume: 30
  start-page: 2568
  year: 2018
  end-page: 2591
  ident: br0110
  article-title: An empirical evaluation of rule extraction from recurrent neural networks
  publication-title: Neural Comput.
– volume: 9
  start-page: 1395
  year: 2020
  end-page: 1400
  ident: br0060
  article-title: Neural machine translation using recurrent neural network
  publication-title: Int. J. Eng. Adv. Technol.
– start-page: 499
  year: 2020
  end-page: 510
  ident: br0140
  article-title: Towards interpreting recurrent neural networks through probabilistic abstraction
  publication-title: 2020 35th IEEE/ACM International Conference on Automated Software Engineering
– volume: 9
  year: 2008
  ident: br0250
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– start-page: 1532
  year: 2014
  end-page: 1543
  ident: br0180
  article-title: Glove: global vectors for word representation
  publication-title: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing
– start-page: 3193
  year: 2020
  end-page: 3207
  ident: br0340
  article-title: Cold-start and interpretability: turning regular expressions into trainable recurrent neural networks
  publication-title: Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing
– volume: 17
  start-page: 1223
  year: 2005
  end-page: 1263
  ident: br0260
  article-title: Rule extraction from recurrent neural networks: ataxonomy and review
  publication-title: Neural Comput.
– volume: 75
  start-page: 87
  issue: 2
  year: 1987
  ident: 10.1016/j.jlamp.2023.100907_br0070
  article-title: Learning regular sets from queries and counterexamples
  publication-title: Inf. Comput.
  doi: 10.1016/0890-5401(87)90052-6
– start-page: 5247
  year: 2018
  ident: 10.1016/j.jlamp.2023.100907_br0080
  article-title: Extracting automata from recurrent neural networks using queries and counterexamples
– volume: 17
  start-page: 1223
  issue: 6
  year: 2005
  ident: 10.1016/j.jlamp.2023.100907_br0260
  article-title: Rule extraction from recurrent neural networks: ataxonomy and review
  publication-title: Neural Comput.
  doi: 10.1162/0899766053630350
– start-page: 499
  year: 2020
  ident: 10.1016/j.jlamp.2023.100907_br0140
  article-title: Towards interpreting recurrent neural networks through probabilistic abstraction
– volume: 9
  start-page: 1395
  issue: 4
  year: 2020
  ident: 10.1016/j.jlamp.2023.100907_br0060
  article-title: Neural machine translation using recurrent neural network
  publication-title: Int. J. Eng. Adv. Technol.
  doi: 10.35940/ijeat.D7637.049420
– start-page: 477
  year: 2019
  ident: 10.1016/j.jlamp.2023.100907_br0130
  article-title: Deepstellar: model-based quantitative analysis of stateful deep learning systems
– ident: 10.1016/j.jlamp.2023.100907_br0240
– start-page: 11383
  year: 2021
  ident: 10.1016/j.jlamp.2023.100907_br0160
  article-title: RNNRepair: automatic RNN repair via model-based analysis
– year: 2002
  ident: 10.1016/j.jlamp.2023.100907_br0200
  article-title: Learning question classifiers
– volume: 31
  start-page: 2267
  issue: 7
  year: 2020
  ident: 10.1016/j.jlamp.2023.100907_br0330
  article-title: Learning with interpretable structure from gated RNN
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 9
  start-page: 41
  issue: 1
  year: 1996
  ident: 10.1016/j.jlamp.2023.100907_br0280
  article-title: Extraction of rules from discrete-time recurrent neural networks
  publication-title: Neural Netw.
  doi: 10.1016/0893-6080(95)00086-0
– volume: 5
  start-page: 976
  issue: 6
  year: 1993
  ident: 10.1016/j.jlamp.2023.100907_br0300
  article-title: Learning finite state machines with self-clustering recurrent networks
  publication-title: Neural Comput.
  doi: 10.1162/neco.1993.5.6.976
– volume: 8
  start-page: 1
  issue: 1
  year: 2018
  ident: 10.1016/j.jlamp.2023.100907_br0040
  article-title: Recurrent neural networks for multivariate time series with missing values
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-018-24271-9
– start-page: 1
  year: 2019
  ident: 10.1016/j.jlamp.2023.100907_br0050
  article-title: Convolutional recurrent neural networks for text classification
– volume: 9
  issue: 11
  year: 2008
  ident: 10.1016/j.jlamp.2023.100907_br0250
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 8
  start-page: 183
  issue: 1
  year: 1996
  ident: 10.1016/j.jlamp.2023.100907_br0290
  article-title: Rule revision with recurrent neural networks
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/69.485647
– volume: vol. 32
  start-page: 8558
  year: 2019
  ident: 10.1016/j.jlamp.2023.100907_br0090
  article-title: Learning deterministic weighted automata with queries and counterexamples
– ident: 10.1016/j.jlamp.2023.100907_br0320
– ident: 10.1016/j.jlamp.2023.100907_br0350
– volume: 334
  start-page: 307
  issue: 2
  year: 1997
  ident: 10.1016/j.jlamp.2023.100907_br0230
  article-title: The Jensen-Shannon divergence
  publication-title: J. Franklin Inst.
  doi: 10.1016/S0016-0032(96)00063-4
– ident: 10.1016/j.jlamp.2023.100907_br0120
– volume: 22
  start-page: 1533
  issue: 10
  year: 2014
  ident: 10.1016/j.jlamp.2023.100907_br0020
  article-title: Convolutional neural networks for speech recognition
  publication-title: IEEE/ACM Trans. Audio Speech Lang. Process.
  doi: 10.1109/TASLP.2014.2339736
– volume: vol. 1
  start-page: 33
  year: 1992
  ident: 10.1016/j.jlamp.2023.100907_br0270
  article-title: Heuristics for the extraction of rules from discrete-time recurrent neural networks
– start-page: 3193
  year: 2020
  ident: 10.1016/j.jlamp.2023.100907_br0340
  article-title: Cold-start and interpretability: turning regular expressions into trainable recurrent neural networks
– start-page: 423
  year: 2020
  ident: 10.1016/j.jlamp.2023.100907_br0150
  article-title: Marble: model-based robustness analysis of stateful deep learning systems
– volume: 10
  start-page: 1
  issue: 1
  year: 2017
  ident: 10.1016/j.jlamp.2023.100907_br0030
  article-title: Neural network methods for natural language processing
  publication-title: Synth. Lect. Hum. Lang. Technol.
– ident: 10.1016/j.jlamp.2023.100907_br0220
– start-page: 11699
  year: 2021
  ident: 10.1016/j.jlamp.2023.100907_br0210
  article-title: Decision-guided weighted automata extraction from recurrent neural networks
– start-page: 770
  year: 2016
  ident: 10.1016/j.jlamp.2023.100907_br0010
  article-title: Deep residual learning for image recognition
– start-page: 151
  year: 1998
  ident: 10.1016/j.jlamp.2023.100907_br0190
  article-title: Applications and explanations of Zipf's law
– start-page: 73
  year: 2003
  ident: 10.1016/j.jlamp.2023.100907_br0310
  article-title: State automata extraction from recurrent neural nets using k-means and fuzzy clustering
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 10.1016/j.jlamp.2023.100907_br0170
  article-title: Long short-term memory
  publication-title: Neural Comput.
  doi: 10.1162/neco.1997.9.8.1735
– start-page: 5306
  year: 2020
  ident: 10.1016/j.jlamp.2023.100907_br0100
  article-title: Weighted automata extraction from recurrent neural networks via regression on state spaces
– start-page: 1532
  year: 2014
  ident: 10.1016/j.jlamp.2023.100907_br0180
  article-title: Glove: global vectors for word representation
– volume: 30
  start-page: 2568
  issue: 9
  year: 2018
  ident: 10.1016/j.jlamp.2023.100907_br0110
  article-title: An empirical evaluation of rule extraction from recurrent neural networks
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01111
SSID ssj0001687831
Score 2.3371503
Snippet Recurrent Neural Networks (RNNs) have achieved tremendous success in processing sequential data, yet understanding and analyzing their behaviours remains a...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 100907
SubjectTerms Abstraction
Explanation
Natural languages
Recurrent neural networks
Weighted finite automata
Title Weighted automata extraction and explanation of recurrent neural networks for natural language tasks
URI https://dx.doi.org/10.1016/j.jlamp.2023.100907
Volume 136
WOSCitedRecordID wos001336366500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2352-2208
  databaseCode: AIEXJ
  dateStart: 20211207
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001687831
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LTttAFB2l0EU3LfQhKG01i-5SI3vGj_ESVVSlC8SCqmk31nhm3CYEByUOop_Sv-XOyzYNRLBgY0Uje2LlnNw5vnN9LkIfyzKGdZjnQSVpGcQJVwGTLA04q0BcE5UwHptmE9nxMRuN8pPB4J9_F-ZymtU1u7rKLx4VahgDsPWrsw-Au50UBuAzgA5HgB2O9wL-h0l2go7ky2YGepQPIf7OfUvwWmpT_ymvW6k41xl349GkvS0BsdpWhhujhqEx_oRBn9ccNnxxtrhD0vo4agxgp7_1nvRYuCbVtl7dVoOd-_XSbAmZeoJfqj_YprFH479LtTL6c_yHz7rtLFuOrNzlLoVB4l4Kw0Q6AiowICRkN8Iy7QfWCLSgbY-7EvNt-mGyP4G_kHYgJXS_O_umw_Z_K19bj-hL3SaFmaTQkxR2kidok2RJDgFz8-DocPStS-ClLGOm32V7-97VytQPrtzO7cqnp2ZOt9Bzhxk-sPTZRgNVv0QvfIsP7CL-KyQ9m7BnE-7YhAFn3GMTnlW4ZRO2bMKeTRjYhB2bsGcTNmx6jb5_OTz9_DVwjTkCAYqnCUikKKVpHgqah5KFRMYJPElIUtEUFoxSd32NUqUSEVWVIFSojKXwKKfiuCxzEIhv0EY9q9UOwro_ZMZkwgmP4kxEnKlKlsY3L4dZwl1E_I9WCOdar5unTIs1mO2iT-1FF9a0Zf3pqUejcLrT6skCKLbuwrcP-5499Kxj_zu00cyX6j16Ki6b8WL-wfHrGlo9qGk
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Weighted+automata+extraction+and+explanation+of+recurrent+neural+networks+for+natural+language+tasks&rft.jtitle=Journal+of+logical+and+algebraic+methods+in+programming&rft.au=Wei%2C+Zeming&rft.au=Zhang%2C+Xiyue&rft.au=Zhang%2C+Yihao&rft.au=Sun%2C+Meng&rft.date=2024-01-01&rft.issn=2352-2208&rft.volume=136&rft.spage=100907&rft_id=info:doi/10.1016%2Fj.jlamp.2023.100907&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_jlamp_2023_100907
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2352-2208&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2352-2208&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2352-2208&client=summon