Modified Teaching–Learning-Based Optimization algorithm for global numerical optimization—A comparative study

Teaching–Learning-Based Optimization (TLBO) is recently being used as a new, reliable, accurate and robust optimization technique for global optimization over continuous spaces. Few variants of TLBO have been proposed by researchers to improve the performance of the basic TLBO algorithm. In this pap...

Full description

Saved in:
Bibliographic Details
Published in:Swarm and evolutionary computation Vol. 16; pp. 28 - 37
Main Authors: Satapathy, Suresh Chandra, Naik, Anima
Format: Journal Article
Language:English
Published: Elsevier B.V 01.06.2014
Subjects:
ISSN:2210-6502
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Teaching–Learning-Based Optimization (TLBO) is recently being used as a new, reliable, accurate and robust optimization technique for global optimization over continuous spaces. Few variants of TLBO have been proposed by researchers to improve the performance of the basic TLBO algorithm. In this paper the authors investigate the performance of a new variant of TLBO called modified TLBO (mTLBO) for global function optimization problems. The performance of mTLBO is compared with the state-of-the art forms of Particle Swarm Optimization (PSO), Differential Evolution (DE) and Artificial Bee Colony (ABC) algorithms. Several advanced variants of PSO, DE and ABC are considered for the comparison purpose. The suite of benchmark functions are chosen from the competition and special session on real parameter optimization under IEEE Congress on Evolutionary Computation (CEC) 2005. Statistical hypothesis testing is undertaken to demonstrate the significance of mTLBO over other investigated algorithms. Finally, the paper investigates the data clustering performance of mTLBO over other evolutionary algorithms on a few standard synthetic and artificial datasets. Results of our work reveal that mTLBO performs better than many other algorithms investigated in this work.
AbstractList Teaching–Learning-Based Optimization (TLBO) is recently being used as a new, reliable, accurate and robust optimization technique for global optimization over continuous spaces. Few variants of TLBO have been proposed by researchers to improve the performance of the basic TLBO algorithm. In this paper the authors investigate the performance of a new variant of TLBO called modified TLBO (mTLBO) for global function optimization problems. The performance of mTLBO is compared with the state-of-the art forms of Particle Swarm Optimization (PSO), Differential Evolution (DE) and Artificial Bee Colony (ABC) algorithms. Several advanced variants of PSO, DE and ABC are considered for the comparison purpose. The suite of benchmark functions are chosen from the competition and special session on real parameter optimization under IEEE Congress on Evolutionary Computation (CEC) 2005. Statistical hypothesis testing is undertaken to demonstrate the significance of mTLBO over other investigated algorithms. Finally, the paper investigates the data clustering performance of mTLBO over other evolutionary algorithms on a few standard synthetic and artificial datasets. Results of our work reveal that mTLBO performs better than many other algorithms investigated in this work.
Author Satapathy, Suresh Chandra
Naik, Anima
Author_xml – sequence: 1
  givenname: Suresh Chandra
  surname: Satapathy
  fullname: Satapathy, Suresh Chandra
  email: sureshsatapathy@ieee.org
  organization: Anil Neerukonda Institute of Technology and Sciences, Vishakapatnam, India
– sequence: 2
  givenname: Anima
  surname: Naik
  fullname: Naik, Anima
  email: animanaik@gmail.com
  organization: Majhighariani Institute of Technology and Science (MITS), Rayagada, India
BookMark eNqFkM9OAjEQxnvARESewMu-wK79Qwt78IDEfwmGC56bbncKJbtbbAsGT76DPqFP4gIejAedy3yTmd8k33eGOo1rAKELgjOCibhcZeEFti6jmLCM0Axj3kFdSglOBcf0FPVDWOG2BKac5130_OhKayyUyRyUXtpm8fn2PgXlm1am1yq0m9k62tq-qmhdk6hq4byNyzoxzieLyhWqSppNDd7qVrkft59vH-NEu3qtfDtvIQlxU-7O0YlRVYD-d--hp9ub-eQ-nc7uHibjaaoZZjGlRA-IMTxnIi-I5rzAKhck1wJ4WQjBjBkOhBlxyDVmI1rwUvOClUUBOYHhgPUQO_7V3oXgwci1t7XyO0mw3IclV_IQltyHJQmVbVgtlf-itI0HN9ErW_3DXh1ZaG1tLXgZtIVGQ2k96ChLZ__kvwA-2JBL
CitedBy_id crossref_primary_10_1007_s12065_021_00640_8
crossref_primary_10_1016_j_compbiomed_2024_108064
crossref_primary_10_1186_s40537_025_01260_0
crossref_primary_10_1080_17445760_2017_1416387
crossref_primary_10_1016_j_knosys_2022_109989
crossref_primary_10_1016_j_swevo_2020_100826
crossref_primary_10_1080_0305215X_2020_1741566
crossref_primary_10_1016_j_ins_2017_02_027
crossref_primary_10_1016_j_swevo_2018_06_008
crossref_primary_10_1016_j_amc_2014_09_079
crossref_primary_10_1016_j_neucom_2015_08_068
crossref_primary_10_1063_5_0060730
crossref_primary_10_1016_j_patrec_2017_05_028
crossref_primary_10_1109_ACCESS_2019_2934994
crossref_primary_10_1007_s00521_023_08229_1
crossref_primary_10_1007_s00366_021_01577_3
crossref_primary_10_1007_s40565_014_0087_6
crossref_primary_10_1016_j_swevo_2016_05_003
crossref_primary_10_1080_1206212X_2019_1686562
crossref_primary_10_1155_2016_9820294
crossref_primary_10_1016_j_neucom_2015_12_081
crossref_primary_10_1016_j_compbiomed_2024_109080
crossref_primary_10_1016_j_ins_2016_02_054
crossref_primary_10_1016_j_energy_2014_12_008
crossref_primary_10_1080_19942060_2022_2098826
crossref_primary_10_3233_JIFS_222516
crossref_primary_10_3390_en15031067
crossref_primary_10_1016_j_electacta_2016_12_129
crossref_primary_10_1007_s00500_019_03939_y
crossref_primary_10_1016_j_asoc_2020_106524
crossref_primary_10_1016_j_cma_2023_116582
crossref_primary_10_1016_j_knosys_2019_104966
crossref_primary_10_1007_s40747_021_00510_x
crossref_primary_10_1016_j_enconman_2018_08_039
crossref_primary_10_1016_j_rser_2015_03_066
crossref_primary_10_1016_j_engappai_2017_10_024
crossref_primary_10_1007_s00158_021_03010_1
crossref_primary_10_1007_s10462_019_09691_x
crossref_primary_10_1016_j_eswa_2017_02_037
crossref_primary_10_1063_5_0149442
crossref_primary_10_1007_s11227_024_06291_7
crossref_primary_10_1007_s00158_019_02228_4
crossref_primary_10_1007_s00500_017_2722_4
crossref_primary_10_1007_s00500_023_09385_1
crossref_primary_10_1002_cpe_7762
crossref_primary_10_1007_s00170_019_03453_3
crossref_primary_10_1007_s00500_019_03949_w
crossref_primary_10_1080_23311916_2014_997421
crossref_primary_10_1016_j_compeleceng_2021_107510
crossref_primary_10_1016_j_asoc_2017_02_008
crossref_primary_10_1080_01691864_2014_986524
crossref_primary_10_1109_ACCESS_2019_2954500
crossref_primary_10_1016_j_protcy_2015_10_032
crossref_primary_10_1016_j_asoc_2023_110017
crossref_primary_10_1016_j_knosys_2022_108271
crossref_primary_10_1007_s10489_018_1301_4
crossref_primary_10_1080_15502287_2022_2042869
crossref_primary_10_1007_s00366_020_01197_3
crossref_primary_10_1016_j_jclepro_2017_04_132
crossref_primary_10_1002_cpe_6514
crossref_primary_10_1007_s11227_021_04284_4
crossref_primary_10_1016_j_applthermaleng_2024_124052
crossref_primary_10_1016_j_swevo_2014_10_001
crossref_primary_10_1016_j_knosys_2018_06_004
crossref_primary_10_3390_en14217312
crossref_primary_10_1016_j_compeleceng_2021_107606
crossref_primary_10_1007_s00521_020_05665_1
crossref_primary_10_1002_cpe_6425
crossref_primary_10_1007_s10845_014_0918_3
crossref_primary_10_1109_TCYB_2020_2977375
crossref_primary_10_1016_j_asoc_2015_08_047
crossref_primary_10_1007_s12065_021_00610_0
crossref_primary_10_1155_2020_2010545
crossref_primary_10_1016_j_neucom_2018_06_076
crossref_primary_10_3390_aerospace9100610
crossref_primary_10_1016_j_asoc_2024_111332
crossref_primary_10_1016_j_neucom_2023_126898
crossref_primary_10_1007_s00366_021_01564_8
crossref_primary_10_1088_1755_1315_558_5_052050
crossref_primary_10_1080_0305215X_2014_928818
crossref_primary_10_1016_j_ins_2021_06_064
crossref_primary_10_1016_j_advengsoft_2022_103158
crossref_primary_10_1155_2018_1806947
crossref_primary_10_1007_s12652_020_02012_z
crossref_primary_10_1007_s00500_019_04280_0
Cites_doi 10.1016/j.engstruct.2011.08.035
10.2174/2213275911306010008
10.1080/10426914.2011.602792
10.1109/TEVC.2004.826074
10.1016/j.asoc.2009.11.032
10.1016/j.cad.2010.12.015
10.1016/j.ipl.2011.06.002
10.1109/TSMCB.2011.2167966
10.1109/TEVC.2006.872133
10.1109/TEVC.2008.927706
10.1109/TSMCB.2009.2015956
10.1109/ICNN.1995.488968
10.1016/j.eswa.2010.02.042
10.1504/IJAISC.2013.053401
10.2478/s13537-013-0102-4
10.1016/j.plrev.2005.10.001
10.1109/TEVC.2010.2052054
10.1109/TEVC.2005.857610
10.1109/TEVC.2010.2087271
10.1080/0305215X.2011.652103
10.1109/TEVC.2009.2014613
10.1016/j.cma.2004.09.007
10.1080/0305215X.2011.624183
10.1016/j.ins.2011.04.024
10.1016/j.ejor.2006.06.043
10.1016/j.asoc.2007.05.007
10.1109/CEC.2005.1554902
10.1016/j.asoc.2010.04.024
10.1016/j.ins.2011.08.006
10.4236/am.2013.43064
10.1016/j.amc.2010.08.049
10.1109/TEVC.2004.826071
ContentType Journal Article
Copyright 2013 Elsevier B.V.
Copyright_xml – notice: 2013 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2013.12.005
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 37
ExternalDocumentID 10_1016_j_swevo_2013_12_005
S2210650213000813
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-21c41ff59369b1c55b0a9619c6e5db663ff746f85e9c0382b5dc5b3dbbe91e743
ISICitedReferencesCount 105
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000352743500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Tue Nov 18 22:43:16 EST 2025
Sat Nov 29 07:59:58 EST 2025
Fri Feb 23 02:26:28 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Function optimization
TLBO
Data clustering
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-21c41ff59369b1c55b0a9619c6e5db663ff746f85e9c0382b5dc5b3dbbe91e743
PageCount 10
ParticipantIDs crossref_primary_10_1016_j_swevo_2013_12_005
crossref_citationtrail_10_1016_j_swevo_2013_12_005
elsevier_sciencedirect_doi_10_1016_j_swevo_2013_12_005
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationTitle Swarm and evolutionary computation
PublicationYear 2014
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Rao, Patel (bib14) 2012; 44
Satapathy, Naik, Parvathi (bib22) 2013; 2
Rao, Savsani, Vakharia (bib12) 2011; 43
Lee, Geem (bib10) 2004; 194
Garcia-Martinez, Lozano, Herrera, Molina, Sanchez (bib41) 2008; 185
Mendes, Kennedy, Neves (bib42) 2004; 8
V. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
Clerc (bib4) 2006
Rao, Savsani, Balic (bib13) 2012; 44
Qin, Huang, Suganthan (bib37) 2009; 13
P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization. Nanyang Techical. Univ., Singapore, IIT Kanpur, Kanpur, India, Tech. Rep. KanGAL#2005, May 2005.
Zhan, Zhang, Li, Shi (bib28) 2011; 15
Alatas (bib32) 2010; 37
Dorigo, Stutzle (bib8) 2004
Goldberg (bib1) 1989
Ahrari, Atai (bib11) 2010; 10
Ratnaweera, Halgamuge, Watson (bib27) 2004; 8
Kang, Li, Ma (bib34) 2011; 12
Brest, Greiner, Boskovic, Mernik, Zumer (bib36) 2006; 10
D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
Satapathy, Naik, Parvathi (bib21) 2013; 4
Back (bib2) 1996
B. Basturk, D. Karaboga, An Artificial Bee Colony (ABC) algorithm for numeric function optimization, in: Proceedings of the IEEE Swarm Intelligence Symposium 2006, Indianapolis, Indiana, USA, May 12–14, 2006.
Satapathy, Naik (bib15) 2011
Mallipeddi, Suganthan, Pan, Tasgetiren (bib30) 2011; 11
Minhazul Islam, Das, Ghosh, Roy, Suganthan (bib38) 2012; 42
Zhu, Kwong (bib33) 2010; 217
Wang, Cai, Zhang (bib29) 2011; 15
Liang, Qin, Suganthan, Baskar (bib39) 2006; 10
Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in Proceedings of the IEEE CEC, Sep. 2005, pp. 1769–1776.
Satapathy, Naik, Parvathi (bib20) 2013; 3
Rao, Kalyankar (bib17) 2012; 27
Karaboga, Basturk (bib7) 2008; 8
Rao, Savsani, Vakharia (bib18) 2012; 183
Toğan (bib16) 2012; 34
Zhan, Zhang, Li, Chung (bib26) 2009; 39
Satapathy, Naik (bib23) 2013; 6
Blum (bib9) 2005; 2
Satapathy, Naik, Parvathi (bib19) 2013; 3
Gao, Liu (bib35) 2011; 111
Swagatam Das, Amit Konar, Uday K. Chakraborty, Two improved differential evolution schemes for faster global search, GECCO′05, June 25–29, 2005, Washington, DC, USA, 2005, ACM 1-59593-010-8/05/0006.
Zhang, Sanderson (bib31) 2009; 13
Rao (10.1016/j.swevo.2013.12.005_bib14) 2012; 44
Satapathy (10.1016/j.swevo.2013.12.005_bib23) 2013; 6
Karaboga (10.1016/j.swevo.2013.12.005_bib7) 2008; 8
Brest (10.1016/j.swevo.2013.12.005_bib36) 2006; 10
Minhazul Islam (10.1016/j.swevo.2013.12.005_bib38) 2012; 42
Toğan (10.1016/j.swevo.2013.12.005_bib16) 2012; 34
Liang (10.1016/j.swevo.2013.12.005_bib39) 2006; 10
Qin (10.1016/j.swevo.2013.12.005_bib37) 2009; 13
Goldberg (10.1016/j.swevo.2013.12.005_bib1) 1989
Satapathy (10.1016/j.swevo.2013.12.005_bib21) 2013; 4
10.1016/j.swevo.2013.12.005_bib5
10.1016/j.swevo.2013.12.005_bib3
Wang (10.1016/j.swevo.2013.12.005_bib29) 2011; 15
Lee (10.1016/j.swevo.2013.12.005_bib10) 2004; 194
Gao (10.1016/j.swevo.2013.12.005_bib35) 2011; 111
Blum (10.1016/j.swevo.2013.12.005_bib9) 2005; 2
Zhang (10.1016/j.swevo.2013.12.005_bib31) 2009; 13
Rao (10.1016/j.swevo.2013.12.005_bib17) 2012; 27
Rao (10.1016/j.swevo.2013.12.005_bib18) 2012; 183
Clerc (10.1016/j.swevo.2013.12.005_bib4) 2006
10.1016/j.swevo.2013.12.005_bib6
10.1016/j.swevo.2013.12.005_bib25
10.1016/j.swevo.2013.12.005_bib24
Satapathy (10.1016/j.swevo.2013.12.005_bib19) 2013; 3
Zhan (10.1016/j.swevo.2013.12.005_bib28) 2011; 15
Ahrari (10.1016/j.swevo.2013.12.005_bib11) 2010; 10
Rao (10.1016/j.swevo.2013.12.005_bib13) 2012; 44
Back (10.1016/j.swevo.2013.12.005_bib2) 1996
10.1016/j.swevo.2013.12.005_bib40
Alatas (10.1016/j.swevo.2013.12.005_bib32) 2010; 37
Garcia-Martinez (10.1016/j.swevo.2013.12.005_bib41) 2008; 185
Ratnaweera (10.1016/j.swevo.2013.12.005_bib27) 2004; 8
Dorigo (10.1016/j.swevo.2013.12.005_bib8) 2004
Satapathy (10.1016/j.swevo.2013.12.005_bib15) 2011
Satapathy (10.1016/j.swevo.2013.12.005_bib22) 2013; 2
Rao (10.1016/j.swevo.2013.12.005_bib12) 2011; 43
Kang (10.1016/j.swevo.2013.12.005_bib34) 2011; 12
Mallipeddi (10.1016/j.swevo.2013.12.005_bib30) 2011; 11
Zhu (10.1016/j.swevo.2013.12.005_bib33) 2010; 217
Zhan (10.1016/j.swevo.2013.12.005_bib26) 2009; 39
Mendes (10.1016/j.swevo.2013.12.005_bib42) 2004; 8
Satapathy (10.1016/j.swevo.2013.12.005_bib20) 2013; 3
References_xml – volume: 13
  start-page: 398
  year: 2009
  end-page: 417
  ident: bib37
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
– reference: Swagatam Das, Amit Konar, Uday K. Chakraborty, Two improved differential evolution schemes for faster global search, GECCO′05, June 25–29, 2005, Washington, DC, USA, 2005, ACM 1-59593-010-8/05/0006.
– volume: 15
  start-page: 832
  year: 2011
  end-page: 847
  ident: bib28
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
– volume: 8
  start-page: 240
  year: 2004
  end-page: 255
  ident: bib27
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
– year: 1996
  ident: bib2
  article-title: Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary Programming, Genetic Algorithms
– volume: 194
  start-page: 3902
  year: 2004
  end-page: 3933
  ident: bib10
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Comput. Methods Appl. Mech. Eng.
– start-page: 148
  year: 2011
  end-page: 156
  ident: bib15
  publication-title: Data Clustering using Teaching Learning based Optimization, SEMCCO 2011, Part-II, LNCS 7077
– volume: 11
  start-page: 1679
  year: 2011
  end-page: 1996
  ident: bib30
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl. Soft Comput.
– volume: 8
  start-page: 204
  year: 2004
  end-page: 210
  ident: bib42
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
– volume: 34
  start-page: 225
  year: 2012
  end-page: 232
  ident: bib16
  article-title: Design of planar steel frames using Teaching–Learning Based Optimization
  publication-title: Eng. Struct.
– volume: 10
  start-page: 281
  year: 2006
  end-page: 295
  ident: bib39
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evolut. Comput.
– year: 2004
  ident: bib8
  article-title: Ant Colony Optimization
– volume: 10
  start-page: 646
  year: 2006
  end-page: 657
  ident: bib36
  article-title: Self adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
– reference: B. Basturk, D. Karaboga, An Artificial Bee Colony (ABC) algorithm for numeric function optimization, in: Proceedings of the IEEE Swarm Intelligence Symposium 2006, Indianapolis, Indiana, USA, May 12–14, 2006.
– volume: 2
  start-page: 1
  year: 2013
  end-page: 12
  ident: bib22
  article-title: A teaching–learning based optimization based on orthogonal design for solving global optimization problems
  publication-title: Springer Plus
– reference: Auger, N. Hansen, A restart CMA evolution strategy with increasing population size, in Proceedings of the IEEE CEC, Sep. 2005, pp. 1769–1776.
– reference: V. Kennedy, R. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks, 1995, pp. 1942–1948.
– year: 2006
  ident: bib4
  article-title: Particle Swarm Optimization
– volume: 27
  start-page: 978
  year: 2012
  end-page: 985
  ident: bib17
  article-title: Parameter optimization of machining processes using a new optimization algorithm
  publication-title: Mater. Manuf. Processes
– volume: 3
  start-page: 27
  year: 2013
  end-page: 42
  ident: bib20
  article-title: Rough set and teaching learning based optimization technique for optimal feature selection
  publication-title: Central Eur. J. Comput. Sci.
– volume: 217
  start-page: 3166
  year: 2010
  end-page: 3173
  ident: bib33
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
– volume: 111
  start-page: 871
  year: 2011
  end-page: 882
  ident: bib35
  article-title: Improved artificial bee colony algorithm for global optimization
  publication-title: Inf. Process. Lett.
– reference: D. Karaboga, An idea based on honey bee swarm for numerical optimization, Technical Report-TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
– volume: 185
  start-page: 1088
  year: 2008
  end-page: 1113
  ident: bib41
  article-title: Global and local real-coded genetic algorithms based on parent-centric crossover operators
  publication-title: Eur. J. Oper. Res.
– volume: 4
  start-page: 429
  year: 2013
  end-page: 439
  ident: bib21
  article-title: Weighted teaching–learning based optimization for global function optimization
  publication-title: Appl. Math.
– volume: 15
  start-page: 55
  year: 2011
  end-page: 66
  ident: bib29
  article-title: Differential evolution with composite trial vector generation strategies and control parameters
  publication-title: IEEE Trans. Evol. Comput.
– reference: P.N. Suganthan, N. Hansen, J.J. Liang, K. Deb, Y.-P. Chen, A. Auger, S. Tiwari, Problem definitions and evaluation criteria for the CEC2005 special session on real-parameter optimization. Nanyang Techical. Univ., Singapore, IIT Kanpur, Kanpur, India, Tech. Rep. KanGAL#2005, May 2005.
– volume: 3
  start-page: 244
  year: 2013
  end-page: 256
  ident: bib19
  article-title: Unsupervised feature selection using roughest and teaching-based optimization
  publication-title: Int. J. Artif. Intell. Soft Comput.
– volume: 13
  start-page: 945
  year: 2009
  end-page: 958
  ident: bib31
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
– volume: 42
  start-page: 482
  year: 2012
  end-page: 500
  ident: bib38
  article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B
– volume: 43
  start-page: 303
  year: 2011
  end-page: 315
  ident: bib12
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
– volume: 44
  start-page: 965
  year: 2012
  end-page: 983
  ident: bib14
  article-title: Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms
  publication-title: Eng. Optim.
– volume: 39
  start-page: 1362
  year: 2009
  end-page: 1381
  ident: bib26
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans.Syst. Man Cybern. Part B: Cybern.
– volume: 8
  start-page: 687
  year: 2008
  end-page: 697
  ident: bib7
  article-title: On the performance of Artificial Bee Colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
– volume: 37
  start-page: 5682
  year: 2010
  end-page: 5687
  ident: bib32
  article-title: Chaotic bee colony algorithms for global numerical optimization
  publication-title: Expert Syst. Appl.
– volume: 6
  start-page: 60
  year: 2013
  end-page: 72
  ident: bib23
  article-title: A modified teaching learning based optimization (
  publication-title: Recent Pat. Comput. Sci.
– volume: 10
  start-page: 1132
  year: 2010
  end-page: 1140
  ident: bib11
  article-title: Grenade explosion method—a novel tool for optimization of multimodal functions
  publication-title: Appl. Soft Comput.
– volume: 12
  start-page: 3508
  year: 2011
  end-page: 3531
  ident: bib34
  article-title: Artificial bee colony algorithm for accurate global optimization of numerical functions
  publication-title: Inf. Sci.
– year: 1989
  ident: bib1
  article-title: Genetic Algorithms in Search Optimization and Machine Learning
– volume: 2
  start-page: 353
  year: 2005
  end-page: 373
  ident: bib9
  article-title: Ant colony optimization: introduction and recent trends
  publication-title: Phys. Life Rev.
– volume: 183
  start-page: 1
  year: 2012
  end-page: 15
  ident: bib18
  article-title: Teaching–Learning-Based Optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf. Sci.
– volume: 44
  start-page: 1447
  year: 2012
  end-page: 1462
  ident: bib13
  article-title: Teaching–learning based optimization algorithm for constrained and unconstrained real parameter optimization problems
  publication-title: Eng. Optim.
– volume: 34
  start-page: 225
  year: 2012
  ident: 10.1016/j.swevo.2013.12.005_bib16
  article-title: Design of planar steel frames using Teaching–Learning Based Optimization
  publication-title: Eng. Struct.
  doi: 10.1016/j.engstruct.2011.08.035
– volume: 6
  start-page: 60
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2013.12.005_bib23
  article-title: A modified teaching learning based optimization (mTLBO) for global search
  publication-title: Recent Pat. Comput. Sci.
  doi: 10.2174/2213275911306010008
– volume: 27
  start-page: 978
  issue: 9
  year: 2012
  ident: 10.1016/j.swevo.2013.12.005_bib17
  article-title: Parameter optimization of machining processes using a new optimization algorithm
  publication-title: Mater. Manuf. Processes
  doi: 10.1080/10426914.2011.602792
– volume: 8
  start-page: 204
  year: 2004
  ident: 10.1016/j.swevo.2013.12.005_bib42
  article-title: The fully informed particle swarm: simpler, maybe better
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826074
– ident: 10.1016/j.swevo.2013.12.005_bib6
– volume: 10
  start-page: 1132
  issue: 4
  year: 2010
  ident: 10.1016/j.swevo.2013.12.005_bib11
  article-title: Grenade explosion method—a novel tool for optimization of multimodal functions
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.11.032
– volume: 43
  start-page: 303
  year: 2011
  ident: 10.1016/j.swevo.2013.12.005_bib12
  article-title: Teaching–learning-based optimization: a novel method for constrained mechanical design optimization problems
  publication-title: Comput.-Aided Des.
  doi: 10.1016/j.cad.2010.12.015
– volume: 111
  start-page: 871
  year: 2011
  ident: 10.1016/j.swevo.2013.12.005_bib35
  article-title: Improved artificial bee colony algorithm for global optimization
  publication-title: Inf. Process. Lett.
  doi: 10.1016/j.ipl.2011.06.002
– year: 1996
  ident: 10.1016/j.swevo.2013.12.005_bib2
– volume: 42
  start-page: 482
  issue: 2
  year: 2012
  ident: 10.1016/j.swevo.2013.12.005_bib38
  article-title: An adaptive differential evolution algorithm with novel mutation and crossover strategies for global numerical optimization
  publication-title: IEEE Trans. Syst., Man, Cybern., Part B
  doi: 10.1109/TSMCB.2011.2167966
– ident: 10.1016/j.swevo.2013.12.005_bib24
– volume: 10
  start-page: 646
  issue: 6
  year: 2006
  ident: 10.1016/j.swevo.2013.12.005_bib36
  article-title: Self adapting control parameters in differential evolution: a comparative study on numerical benchmark problems
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2006.872133
– volume: 13
  start-page: 398
  issue: 2
  year: 2009
  ident: 10.1016/j.swevo.2013.12.005_bib37
  article-title: Differential evolution algorithm with strategy adaptation for global numerical optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2008.927706
– volume: 39
  start-page: 1362
  year: 2009
  ident: 10.1016/j.swevo.2013.12.005_bib26
  article-title: Adaptive particle swarm optimization
  publication-title: IEEE Trans.Syst. Man Cybern. Part B: Cybern.
  doi: 10.1109/TSMCB.2009.2015956
– ident: 10.1016/j.swevo.2013.12.005_bib3
  doi: 10.1109/ICNN.1995.488968
– volume: 37
  start-page: 5682
  year: 2010
  ident: 10.1016/j.swevo.2013.12.005_bib32
  article-title: Chaotic bee colony algorithms for global numerical optimization
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2010.02.042
– volume: 3
  start-page: 244
  issue: 3
  year: 2013
  ident: 10.1016/j.swevo.2013.12.005_bib19
  article-title: Unsupervised feature selection using roughest and teaching-based optimization
  publication-title: Int. J. Artif. Intell. Soft Comput.
  doi: 10.1504/IJAISC.2013.053401
– volume: 3
  start-page: 27
  issue: 1
  year: 2013
  ident: 10.1016/j.swevo.2013.12.005_bib20
  article-title: Rough set and teaching learning based optimization technique for optimal feature selection
  publication-title: Central Eur. J. Comput. Sci.
  doi: 10.2478/s13537-013-0102-4
– volume: 2
  start-page: 353
  year: 2005
  ident: 10.1016/j.swevo.2013.12.005_bib9
  article-title: Ant colony optimization: introduction and recent trends
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2005.10.001
– volume: 15
  start-page: 832
  issue: 6
  year: 2011
  ident: 10.1016/j.swevo.2013.12.005_bib28
  article-title: Orthogonal learning particle swarm optimization
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2052054
– volume: 10
  start-page: 281
  issue: 3
  year: 2006
  ident: 10.1016/j.swevo.2013.12.005_bib39
  article-title: Comprehensive learning particle swarm optimizer for global optimization of multimodal functions
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2005.857610
– volume: 15
  start-page: 55
  issue: 1
  year: 2011
  ident: 10.1016/j.swevo.2013.12.005_bib29
  article-title: Differential evolution with composite trial vector generation strategies and control parameters
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2010.2087271
– volume: 44
  start-page: 1447
  issue: 12
  year: 2012
  ident: 10.1016/j.swevo.2013.12.005_bib13
  article-title: Teaching–learning based optimization algorithm for constrained and unconstrained real parameter optimization problems
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.652103
– volume: 13
  start-page: 945
  issue: 5
  year: 2009
  ident: 10.1016/j.swevo.2013.12.005_bib31
  article-title: JADE: adaptive differential evolution with optional external archive
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2009.2014613
– volume: 194
  start-page: 3902
  year: 2004
  ident: 10.1016/j.swevo.2013.12.005_bib10
  article-title: A new meta-heuristic algorithm for continuous engineering optimization: harmony search theory and practice
  publication-title: Comput. Methods Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.09.007
– volume: 44
  start-page: 965
  year: 2012
  ident: 10.1016/j.swevo.2013.12.005_bib14
  article-title: Multi-objective optimization of combined Brayton and inverse Brayton cycles using advanced optimization algorithms
  publication-title: Eng. Optim.
  doi: 10.1080/0305215X.2011.624183
– volume: 12
  start-page: 3508
  year: 2011
  ident: 10.1016/j.swevo.2013.12.005_bib34
  article-title: Artificial bee colony algorithm for accurate global optimization of numerical functions
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.04.024
– volume: 185
  start-page: 1088
  issue: 3
  year: 2008
  ident: 10.1016/j.swevo.2013.12.005_bib41
  article-title: Global and local real-coded genetic algorithms based on parent-centric crossover operators
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.06.043
– ident: 10.1016/j.swevo.2013.12.005_bib5
– volume: 8
  start-page: 687
  issue: 1
  year: 2008
  ident: 10.1016/j.swevo.2013.12.005_bib7
  article-title: On the performance of Artificial Bee Colony (ABC) algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2007.05.007
– start-page: 148
  year: 2011
  ident: 10.1016/j.swevo.2013.12.005_bib15
– ident: 10.1016/j.swevo.2013.12.005_bib40
  doi: 10.1109/CEC.2005.1554902
– ident: 10.1016/j.swevo.2013.12.005_bib25
– volume: 2
  start-page: 1
  issue: 130
  year: 2013
  ident: 10.1016/j.swevo.2013.12.005_bib22
  article-title: A teaching–learning based optimization based on orthogonal design for solving global optimization problems
  publication-title: Springer Plus
– volume: 11
  start-page: 1679
  issue: 2
  year: 2011
  ident: 10.1016/j.swevo.2013.12.005_bib30
  article-title: Differential evolution algorithm with ensemble of parameters and mutation strategies
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2010.04.024
– year: 2006
  ident: 10.1016/j.swevo.2013.12.005_bib4
– volume: 183
  start-page: 1
  issue: 1
  year: 2012
  ident: 10.1016/j.swevo.2013.12.005_bib18
  article-title: Teaching–Learning-Based Optimization: an optimization method for continuous non-linear large scale problems
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2011.08.006
– volume: 4
  start-page: 429
  year: 2013
  ident: 10.1016/j.swevo.2013.12.005_bib21
  article-title: Weighted teaching–learning based optimization for global function optimization
  publication-title: Appl. Math.
  doi: 10.4236/am.2013.43064
– year: 2004
  ident: 10.1016/j.swevo.2013.12.005_bib8
– volume: 217
  start-page: 3166
  year: 2010
  ident: 10.1016/j.swevo.2013.12.005_bib33
  article-title: Gbest-guided artificial bee colony algorithm for numerical function optimization
  publication-title: Appl. Math. Comput.
  doi: 10.1016/j.amc.2010.08.049
– year: 1989
  ident: 10.1016/j.swevo.2013.12.005_bib1
– volume: 8
  start-page: 240
  year: 2004
  ident: 10.1016/j.swevo.2013.12.005_bib27
  article-title: Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2004.826071
SSID ssj0000602559
Score 2.334406
Snippet Teaching–Learning-Based Optimization (TLBO) is recently being used as a new, reliable, accurate and robust optimization technique for global optimization over...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 28
SubjectTerms Data clustering
Function optimization
TLBO
Title Modified Teaching–Learning-Based Optimization algorithm for global numerical optimization—A comparative study
URI https://dx.doi.org/10.1016/j.swevo.2013.12.005
Volume 16
WOSCitedRecordID wos000352743500003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3LbtQwFLWGlgUb3qgtD3nBrgTlnXg5oCJAMCDNgGYX2Y7dpkwzbebRbpD6D_CF_RKuX5mMBlWAxCYaRXGc-J65PnbOvReh5zLMUiYo8zjxYy_Ocu4RnnJP-CyKuSTS17FVXz9kg0E-HpPPvd53FwuznGR1nV9ckNP_amo4B8ZWobN_Ye72pnACfoPR4Qhmh-MfGf7jtKykIpYjK5R0eobI5lI99F7B1FXufwJvcWLDMPfp5HDaVPOjE607tGlC6oX5ngN8tXOtu1_ctwp2kzt8lajWct3hOW1MAQ6xtG-sJHpc15FYEwAM6Zyq0shGd7ZoxOxIhz2UTTtpDGj1zQgwKzuT2K2KIF5Jqsz-2UYMjXJzISw6PeCJ6z55zanmnenZpIjZcPxmD-L45ewcXkkp9iK9y-snq3muVR8OVZeqR_UpDyhRdANth1lCwK9v998djN-3m3R-qpdcqkChe0qXuUprBDd6-z276TCW0V102y41cN9A5B7qifo-uuPKeGDr1R-gM4cY7BBzdfljHSu4ixXcYgUDVrDBCm6xgrtYubr82ccdlGCNkofoy5uD0eu3nq3E4XGgOHMvDHgcSKmrP7KAJwnzKYGlN09FUjIgrVJmcSrzRBDuR3nIkpInLCoZEyQQQFIfoa16WosdhIEehpIGfkYFizkleULKMitFkEU5eJN4F4VuBAtu09SraimTwukRjws97IUa9iIICxj2XfSibXRqsrRcf3nqTFNYomkIZAFwuq7h3r82fIxurf4QT9DWvFmIp-gmX86rWfPMwu4XSaSrJw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Modified+Teaching%E2%80%93Learning-Based+Optimization+algorithm+for+global+numerical+optimization%E2%80%94A+comparative+study&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Satapathy%2C+Suresh+Chandra&rft.au=Naik%2C+Anima&rft.date=2014-06-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=16&rft.spage=28&rft.epage=37&rft_id=info:doi/10.1016%2Fj.swevo.2013.12.005&rft.externalDocID=S2210650213000813
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon