A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem

In this paper, a knowledge-guided multi-objective fruit fly optimization algorithm (MOFOA) is proposed for the multi-skill resource-constrained project scheduling problem (MSRCPSP) with the criteria of minimizing the makespan and the total cost simultaneously. First, a solution is represented by two...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Swarm and evolutionary computation Ročník 38; s. 54 - 63
Hlavní autori: Wang, Ling, Zheng, Xiao-long
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2018
Predmet:
ISSN:2210-6502
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In this paper, a knowledge-guided multi-objective fruit fly optimization algorithm (MOFOA) is proposed for the multi-skill resource-constrained project scheduling problem (MSRCPSP) with the criteria of minimizing the makespan and the total cost simultaneously. First, a solution is represented by two lists, i.e. resource list and task list. Second, the minimum total cost rule is designed for the initialization according to the property of the problem. Third, the smell-based search is implemented via the neighborhood based search operators that are specially designed for the MSRCPSP, while the vision-based search adopts the technique for the order preference by similarity to an ideal solution (TOPSIS) and the non-dominated sorting collaboratively to complete the multi-objective evaluation. In addition, a knowledge-guided search procedure is introduced to enhance the exploration of the FOA. Finally, the design-of-experiment (DOE) method is used to investigate the effect of parameter setting, and numerical tests based on benchmark instances are carried out. The results compared to other algorithms demonstrate the effectiveness of the MOFOA with knowledge-guided search in solving the multi-objective MSRCPSP. •Propose a knowledge-guided multi-objective FOA for MSRCPSP.•Minimize the makespan and the total cost simultaneously.•Use the TOPSIS and the non-dominated sorting collaboratively.•Enhance exploitation by knowledge-based local search.•Effectiveness is demonstrated by numerical tests and comparisons.
AbstractList In this paper, a knowledge-guided multi-objective fruit fly optimization algorithm (MOFOA) is proposed for the multi-skill resource-constrained project scheduling problem (MSRCPSP) with the criteria of minimizing the makespan and the total cost simultaneously. First, a solution is represented by two lists, i.e. resource list and task list. Second, the minimum total cost rule is designed for the initialization according to the property of the problem. Third, the smell-based search is implemented via the neighborhood based search operators that are specially designed for the MSRCPSP, while the vision-based search adopts the technique for the order preference by similarity to an ideal solution (TOPSIS) and the non-dominated sorting collaboratively to complete the multi-objective evaluation. In addition, a knowledge-guided search procedure is introduced to enhance the exploration of the FOA. Finally, the design-of-experiment (DOE) method is used to investigate the effect of parameter setting, and numerical tests based on benchmark instances are carried out. The results compared to other algorithms demonstrate the effectiveness of the MOFOA with knowledge-guided search in solving the multi-objective MSRCPSP. •Propose a knowledge-guided multi-objective FOA for MSRCPSP.•Minimize the makespan and the total cost simultaneously.•Use the TOPSIS and the non-dominated sorting collaboratively.•Enhance exploitation by knowledge-based local search.•Effectiveness is demonstrated by numerical tests and comparisons.
Author Zheng, Xiao-long
Wang, Ling
Author_xml – sequence: 1
  givenname: Ling
  surname: Wang
  fullname: Wang, Ling
  email: wangling@mail.tsinghua.edu.cn
– sequence: 2
  givenname: Xiao-long
  surname: Zheng
  fullname: Zheng, Xiao-long
  email: zhengxl07@qq.com
BookMark eNqFkLtOxDAQRV2ABCz7BTT-gQQ7D2e3oECIl7QSDdRWYo-zE5x4ZTuLlh_gt0mAigKmGWmkczX3nJGjwQ1AyAVnKWdcXHZpeIO9SzPGq5SJlDF-RE6zjLNElCw7IcsQOjaNYFlZrk_JxzV9HdybBd1C0o6oQdN-tBET13SgIu6BGj9ipMYeqNtF7PG9jugGWtvWeYzbnhrnadzCDxhe0VrqIbjRK6DKDSH6GocpeefdHEqD2oIeLQ7tfGos9Ofk2NQ2wPJnL8jL3e3zzUOyebp_vLneJCpneUw4MMVFwxXXTZPrVd6oUpWmMABFJdY6M1WhmpU2JqsryEWlCljposryWhSa6XxB1t-5yrsQPBipMH71mX-0kjM5i5Sd_BIpZ5GSCTmJnNj8F7vz2Nf-8A919U3BVGuP4GVQCIMCjX5yIbXDP_lP1SCYIg
CitedBy_id crossref_primary_10_1155_2021_5546758
crossref_primary_10_1080_00207543_2020_1775911
crossref_primary_10_1109_ACCESS_2024_3350440
crossref_primary_10_1007_s11424_018_7250_5
crossref_primary_10_1016_j_jclepro_2018_03_149
crossref_primary_10_3390_systems12100407
crossref_primary_10_1016_j_swevo_2022_101119
crossref_primary_10_1016_j_comcom_2025_108269
crossref_primary_10_1109_ACCESS_2019_2951370
crossref_primary_10_1007_s10462_023_10451_1
crossref_primary_10_1002_ett_4579
crossref_primary_10_1016_j_energy_2018_11_070
crossref_primary_10_1016_j_ins_2024_120400
crossref_primary_10_1007_s10489_020_01663_x
crossref_primary_10_1108_AA_09_2018_0126
crossref_primary_10_3390_sym14020204
crossref_primary_10_1016_j_cie_2021_107897
crossref_primary_10_1016_j_knosys_2021_107099
crossref_primary_10_1109_ACCESS_2021_3063766
crossref_primary_10_1016_j_aei_2024_102401
crossref_primary_10_1016_j_swevo_2021_101008
crossref_primary_10_1016_j_autcon_2023_104958
crossref_primary_10_1061__ASCE_CO_1943_7862_0002192
crossref_primary_10_1155_2019_2320632
crossref_primary_10_3390_buildings15101706
crossref_primary_10_1016_j_cie_2020_107004
crossref_primary_10_2478_mspe_2024_0012
crossref_primary_10_1080_0305215X_2024_2376852
crossref_primary_10_1016_j_eswa_2024_126229
crossref_primary_10_1016_j_neucom_2018_07_008
crossref_primary_10_1016_j_asoc_2019_105805
crossref_primary_10_1016_j_eswa_2020_114479
crossref_primary_10_1016_j_jclepro_2020_123364
crossref_primary_10_1016_j_cie_2019_106183
crossref_primary_10_1016_j_swevo_2023_101417
crossref_primary_10_1016_j_eswa_2023_121895
crossref_primary_10_1007_s00500_021_06522_6
crossref_primary_10_1016_j_ejor_2021_05_004
crossref_primary_10_1109_ACCESS_2021_3070634
crossref_primary_10_1109_ACCESS_2019_2940104
crossref_primary_10_1155_2021_8571524
crossref_primary_10_3233_JIFS_221994
crossref_primary_10_1371_journal_pone_0255928
crossref_primary_10_1016_j_cie_2021_107237
crossref_primary_10_3233_JIFS_232128
crossref_primary_10_3390_math7060531
crossref_primary_10_1007_s12539_020_00371_x
crossref_primary_10_1016_j_ins_2025_121985
crossref_primary_10_3233_JIFS_210196
crossref_primary_10_1016_j_cor_2023_106185
crossref_primary_10_1016_j_jestch_2024_101765
crossref_primary_10_1109_TCYB_2020_3026571
crossref_primary_10_3390_en15114063
crossref_primary_10_1016_j_knosys_2017_09_038
crossref_primary_10_1109_TEVC_2022_3199775
crossref_primary_10_3390_app14051921
crossref_primary_10_1007_s11590_020_01542_x
crossref_primary_10_1007_s42524_020_0100_x
crossref_primary_10_1108_ECAM_06_2019_0294
crossref_primary_10_1016_j_asoc_2022_109253
crossref_primary_10_1007_s00158_020_02589_1
crossref_primary_10_1016_j_cie_2025_111046
crossref_primary_10_1080_15623599_2023_2252255
crossref_primary_10_1080_09540091_2020_1742660
crossref_primary_10_1007_s00366_020_01174_w
crossref_primary_10_1016_j_eswa_2021_115978
crossref_primary_10_1016_j_swevo_2020_100739
crossref_primary_10_1016_j_aei_2022_101756
crossref_primary_10_1007_s00366_021_01369_9
crossref_primary_10_1155_2019_4824837
crossref_primary_10_1155_2022_9181865
crossref_primary_10_1016_j_eswa_2019_112915
crossref_primary_10_1007_s00521_019_04149_1
crossref_primary_10_1016_j_asoc_2022_109764
crossref_primary_10_1109_JIOT_2020_2996762
crossref_primary_10_1007_s00500_017_2997_5
crossref_primary_10_1016_j_swevo_2021_100872
crossref_primary_10_1016_j_swevo_2019_01_002
crossref_primary_10_1108_JM2_07_2018_0098
crossref_primary_10_1007_s10489_022_03875_9
crossref_primary_10_1109_ACCESS_2022_3157640
crossref_primary_10_1016_j_cie_2019_07_032
crossref_primary_10_1007_s10951_025_00836_1
crossref_primary_10_1007_s12652_018_0771_x
crossref_primary_10_1016_j_asoc_2024_111827
crossref_primary_10_1016_j_cie_2020_106981
crossref_primary_10_1016_j_swevo_2022_101055
crossref_primary_10_1016_j_swevo_2018_10_003
crossref_primary_10_1016_j_swevo_2024_101531
crossref_primary_10_1007_s11750_022_00633_5
crossref_primary_10_1177_1548512919875230
crossref_primary_10_1016_j_cie_2022_108147
crossref_primary_10_1007_s10479_023_05343_0
crossref_primary_10_1016_j_jenvman_2024_121986
crossref_primary_10_1080_00207543_2019_1695168
crossref_primary_10_1016_j_cie_2021_107316
crossref_primary_10_1016_j_ins_2020_08_118
crossref_primary_10_1007_s40815_020_00984_w
crossref_primary_10_1016_j_compbiomed_2022_105356
crossref_primary_10_1016_j_eswa_2019_112976
crossref_primary_10_1007_s10489_021_02608_8
crossref_primary_10_1080_00207543_2024_2328131
crossref_primary_10_1016_j_swevo_2020_100676
crossref_primary_10_1016_j_cor_2025_107150
Cites_doi 10.1109/TSMC.2015.2507161
10.1016/j.asoc.2013.07.009
10.1109/TSMCC.2012.2196996
10.1007/s00170-012-4045-z
10.1126/science.1111280
10.1016/S0377-2217(98)00204-5
10.1007/s00500-014-1455-x
10.1016/j.cor.2011.07.010
10.1016/j.ijproman.2013.01.010
10.1051/ro:2007015
10.1016/j.swevo.2015.04.001
10.1007/s00500-013-1138-z
10.1109/TEVC.2007.892759
10.1016/j.ins.2016.03.023
10.1109/CEC.2013.6557691
10.2528/PIERB13030709
10.1016/j.knosys.2011.07.001
10.1016/j.knosys.2014.08.022
10.1287/mnsc.49.3.330.12737
10.1016/j.swevo.2016.01.004
10.1007/s10951-008-0079-3
10.1007/s00291-009-0169-4
10.4236/jsea.2010.312131
10.1109/TSE.2009.18
10.1109/4235.996017
10.1109/CEC.2014.6900484
10.1007/s00500-015-1866-3
10.1016/j.knosys.2013.12.011
10.1007/978-3-319-05443-8_26
ContentType Journal Article
Copyright 2017 Elsevier B.V.
Copyright_xml – notice: 2017 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.swevo.2017.06.001
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EndPage 63
ExternalDocumentID 10_1016_j_swevo_2017_06_001
S2210650216304102
GroupedDBID --K
--M
.~1
0R~
1~.
1~5
4.4
457
4G.
5VS
7-5
8P~
AAAKF
AABVA
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATLK
AAXUO
AAYFN
ABAOU
ABBOA
ABGRD
ABMAC
ABUCO
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
ADQTV
ADTZH
AEBSH
AECPX
AEKER
AENEX
AEQOU
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
APLSM
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CBWCG
EBS
EFJIC
EFLBG
EJD
FDB
FEDTE
FIRID
FNPLU
FYGXN
GBLVA
GBOLZ
HAMUX
HVGLF
HZ~
J1W
JJJVA
KOM
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
P-8
P-9
PC.
Q38
RIG
ROL
SDF
SES
SPC
SPCBC
SSA
SSB
SSD
SST
SSV
SSW
SSZ
T5K
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-1e0c16b1c1dbb3d83bc5c5f4fee4769d2f74cb8dff2a7e367c4e8d4723a64d0d3
ISICitedReferencesCount 112
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423642900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2210-6502
IngestDate Tue Nov 18 21:31:41 EST 2025
Wed Nov 05 20:52:56 EST 2025
Fri Feb 23 02:47:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Multi-objective optimization
Fruit fly optimization algorithm
Knowledge
Multi-skill, resource constrained project scheduling problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-1e0c16b1c1dbb3d83bc5c5f4fee4769d2f74cb8dff2a7e367c4e8d4723a64d0d3
PageCount 10
ParticipantIDs crossref_citationtrail_10_1016_j_swevo_2017_06_001
crossref_primary_10_1016_j_swevo_2017_06_001
elsevier_sciencedirect_doi_10_1016_j_swevo_2017_06_001
PublicationCentury 2000
PublicationDate February 2018
2018-02-00
PublicationDateYYYYMMDD 2018-02-01
PublicationDate_xml – month: 02
  year: 2018
  text: February 2018
PublicationDecade 2010
PublicationTitle Swarm and evolutionary computation
PublicationYear 2018
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Zheng, Wang, Wang (bib15) 2014; 57
Brucker, Drexl, Mohring, Neumann, Pesch (bib2) 1999; 112
Guo, Guo (bib18) 2005; 309
Al-Anzi, Al-Zamel, Allahverdi (bib3) 2010; 3
Nan, Harter (bib27) 2009; 35
Trivedi, Srinivasan, Biswas, Reindl (bib24) 2016; 354
Hwang, Yoon (bib19) 2012
Biswas, Das, Kundu (bib32) 2013; 13
Heimerl, Kolisch (bib9) 2010; 32
Pan (bib14) 2013; 26
Myszkowski, Skowroński, Olech, Oślizło (bib12) 2015; 19
Rao, Prakash, Chaitanya (bib5) 2015; 4
P.B. Myszkowski, M.E. Skowronski, L.P. Olech, Novel heuristic solutions for multi-skill resource-constrained project scheduling problem, in: Proceedings of the Federated Conference on Computer Science and Information Systems, 2013, pp.159–166.
Sengupta, Das, Nasir (bib28) 2012; 42
S. Biswas, M.A. Eita, S. Das, et al, Evaluating the performance of group counseling optimizer on CEC 2014 problems for computational expensive optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2014, pp. 1076–1083.
C. Montoya, O. Bellenguez-Morineau, E. Pinson, D. Rivreau, Integrated column generation and Lagrangian relaxation approach for the multi-skill project scheduling problem, in: Handbook on Project Management and Scheduling, Springer, 2015, pp. 565–586.
Das, Mullick, Suganthan (bib30) 2016; 27
Montgomery (bib21) 2005
Biswas, Das, Kundu (bib31) 2014; 18
Biswas, Bose, Das (bib29) 2013; 52
Bellenguez, Néron (bib6) 2007; 41
Deb, Pratap, Agarwal, Meyarivan (bib20) 2002; 6
Mohring, Schulz, Stork, Uetz (bib1) 2003; 49
Kazemipoor, Tavakkoli-Moghaddam, Shahnazari-Shahrezaei (bib4) 2013; 64
Yang, Fu (bib26) 2014; 32
Li, Pan, Mao, Suganthan (bib16) 2014; 72
Zhang, Li (bib23) 2007; 11
Trivedi, Srinivasan, Biswas (bib25) 2015; 23
S. Biswas, S. Kundu, S. Das, et al, Teaching and learning best differential evoltuion with self adaptation for real parameter optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2013, pp. 1115–1122.
Santos, Tereso (bib7) 2011
Yan, Wu, Zhou, Li (bib22) 2017; 47
Li, Womer (bib8) 2009; 12
Zheng, Wang, Zheng (bib13) 2017; 21
Fang, Wang (bib17) 2012; 39
Montgomery (10.1016/j.swevo.2017.06.001_bib21) 2005
Myszkowski (10.1016/j.swevo.2017.06.001_bib12) 2015; 19
Yan (10.1016/j.swevo.2017.06.001_bib22) 2017; 47
Hwang (10.1016/j.swevo.2017.06.001_bib19) 2012
Pan (10.1016/j.swevo.2017.06.001_bib14) 2013; 26
Trivedi (10.1016/j.swevo.2017.06.001_bib24) 2016; 354
Brucker (10.1016/j.swevo.2017.06.001_bib2) 1999; 112
Biswas (10.1016/j.swevo.2017.06.001_bib32) 2013; 13
Das (10.1016/j.swevo.2017.06.001_bib30) 2016; 27
Li (10.1016/j.swevo.2017.06.001_bib8) 2009; 12
Mohring (10.1016/j.swevo.2017.06.001_bib1) 2003; 49
Al-Anzi (10.1016/j.swevo.2017.06.001_bib3) 2010; 3
Zhang (10.1016/j.swevo.2017.06.001_bib23) 2007; 11
10.1016/j.swevo.2017.06.001_bib34
Biswas (10.1016/j.swevo.2017.06.001_bib29) 2013; 52
10.1016/j.swevo.2017.06.001_bib10
10.1016/j.swevo.2017.06.001_bib11
10.1016/j.swevo.2017.06.001_bib33
Zheng (10.1016/j.swevo.2017.06.001_bib13) 2017; 21
Kazemipoor (10.1016/j.swevo.2017.06.001_bib4) 2013; 64
Zheng (10.1016/j.swevo.2017.06.001_bib15) 2014; 57
Yang (10.1016/j.swevo.2017.06.001_bib26) 2014; 32
Rao (10.1016/j.swevo.2017.06.001_bib5) 2015; 4
Li (10.1016/j.swevo.2017.06.001_bib16) 2014; 72
Heimerl (10.1016/j.swevo.2017.06.001_bib9) 2010; 32
Deb (10.1016/j.swevo.2017.06.001_bib20) 2002; 6
Trivedi (10.1016/j.swevo.2017.06.001_bib25) 2015; 23
Guo (10.1016/j.swevo.2017.06.001_bib18) 2005; 309
Santos (10.1016/j.swevo.2017.06.001_bib7) 2011
Biswas (10.1016/j.swevo.2017.06.001_bib31) 2014; 18
Sengupta (10.1016/j.swevo.2017.06.001_bib28) 2012; 42
Bellenguez (10.1016/j.swevo.2017.06.001_bib6) 2007; 41
Nan (10.1016/j.swevo.2017.06.001_bib27) 2009; 35
Fang (10.1016/j.swevo.2017.06.001_bib17) 2012; 39
References_xml – year: 2012
  ident: bib19
  article-title: Multiple Attribute Decision Making: Methods and Applications a State-of-the-art Survey
– volume: 18
  start-page: 1199
  year: 2014
  end-page: 1212
  ident: bib31
  article-title: Utilizing time-linkage property in DOPs: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments
  publication-title: Soft Comput.
– volume: 4
  start-page: 1509
  year: 2015
  end-page: 1512
  ident: bib5
  article-title: Resource constrained project scheduling problems-a review article
  publication-title: Int. J. Sci. Res.
– volume: 42
  start-page: 1093
  year: 2012
  end-page: 1102
  ident: bib28
  article-title: An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks
  publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.)
– volume: 27
  start-page: 1
  year: 2016
  end-page: 30
  ident: bib30
  article-title: Recent advances in differential evolution–an updated survey
  publication-title: Swarm Evolut. Comput.
– volume: 13
  start-page: 4676
  year: 2013
  end-page: 4694
  ident: bib32
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
– year: 2005
  ident: bib21
  article-title: Design and Analysis of Experiments
– start-page: 239
  year: 2011
  end-page: 248
  ident: bib7
  article-title: On the Multi-mode, Multi-skill Resource Constrained Project Scheduling Problem-a Software Application, Soft Computing in Industrial Applications
– reference: C. Montoya, O. Bellenguez-Morineau, E. Pinson, D. Rivreau, Integrated column generation and Lagrangian relaxation approach for the multi-skill project scheduling problem, in: Handbook on Project Management and Scheduling, Springer, 2015, pp. 565–586.
– volume: 49
  start-page: 330
  year: 2003
  end-page: 350
  ident: bib1
  article-title: Solving project scheduling problems by minimum cut computations
  publication-title: Manag. Sci.
– volume: 52
  start-page: 185
  year: 2013
  end-page: 205
  ident: bib29
  article-title: Decomposition-based evolutionary multi-objective optimization approach to the design of concentric circular antenna arrays
  publication-title: Prog. Electromagn. Res. B
– volume: 32
  start-page: 166
  year: 2014
  end-page: 177
  ident: bib26
  article-title: Critical chain and evidence reasoning applied to multi-project resource schedule in automobile R&D process
  publication-title: Int. J. Proj. Manag.
– volume: 64
  start-page: 1099
  year: 2013
  end-page: 1111
  ident: bib4
  article-title: A differential evolution algorithm to solve multi-skilled project portfolio scheduling problems
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 3
  start-page: 1125
  year: 2010
  end-page: 1130
  ident: bib3
  article-title: Weighted multi-skill resources project scheduling
  publication-title: J. Softw. Eng. Appl.
– volume: 72
  start-page: 28
  year: 2014
  end-page: 36
  ident: bib16
  article-title: Solving the steelmaking casting problem using an effective fruit fly optimization algorithm
  publication-title: Knowl.-Based Syst.
– volume: 309
  start-page: 307
  year: 2005
  end-page: 310
  ident: bib18
  article-title: Cross modal interactions between olfactory and visual learning in Drosophila
  publication-title: Science
– volume: 21
  start-page: 1537
  year: 2017
  end-page: 1548
  ident: bib13
  article-title: Teaching–learning-based optimization algorithm for multi-skill resource constrained project scheduling problem
  publication-title: Soft Comput.
– volume: 57
  start-page: 95
  year: 2014
  end-page: 103
  ident: bib15
  article-title: A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem
  publication-title: Knowl.-Based Syst.
– volume: 112
  start-page: 3
  year: 1999
  end-page: 41
  ident: bib2
  article-title: Resource-constrained project scheduling: notation, classification, models, and methods
  publication-title: Eur. J. Oper. Res.
– reference: P.B. Myszkowski, M.E. Skowronski, L.P. Olech, Novel heuristic solutions for multi-skill resource-constrained project scheduling problem, in: Proceedings of the Federated Conference on Computer Science and Information Systems, 2013, pp.159–166.
– volume: 19
  start-page: 3599
  year: 2015
  end-page: 3619
  ident: bib12
  article-title: Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem
  publication-title: Soft Comput.
– volume: 47
  start-page: 517
  year: 2017
  end-page: 530
  ident: bib22
  article-title: Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 6
  start-page: 182
  year: 2002
  end-page: 197
  ident: bib20
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 32
  start-page: 343
  year: 2010
  end-page: 368
  ident: bib9
  article-title: Scheduling and staffing multiple projects with a multi-skilled workforce
  publication-title: OR Spectr.
– volume: 39
  start-page: 890
  year: 2012
  end-page: 901
  ident: bib17
  article-title: An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem
  publication-title: Comput. Oper. Res.
– volume: 35
  start-page: 624
  year: 2009
  end-page: 637
  ident: bib27
  article-title: Impact of budget and schedule pressure on software development cycle time and effort
  publication-title: IEEE Trans. Softw. Eng.
– volume: 12
  start-page: 281
  year: 2009
  end-page: 298
  ident: bib8
  article-title: Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm
  publication-title: J. Sched.
– volume: 11
  start-page: 712
  year: 2007
  end-page: 731
  ident: bib23
  article-title: MOEA/D: a multi-objective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evolut. Comput.
– volume: 354
  start-page: 275
  year: 2016
  end-page: 300
  ident: bib24
  article-title: A genetic algorithm–differential evolution based hybrid framework: case study on unit commitment scheduling problem
  publication-title: Inf. Sci.
– volume: 26
  start-page: 69
  year: 2013
  end-page: 74
  ident: bib14
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
– reference: S. Biswas, S. Kundu, S. Das, et al, Teaching and learning best differential evoltuion with self adaptation for real parameter optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2013, pp. 1115–1122.
– reference: S. Biswas, M.A. Eita, S. Das, et al, Evaluating the performance of group counseling optimizer on CEC 2014 problems for computational expensive optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2014, pp. 1076–1083.
– volume: 23
  start-page: 50
  year: 2015
  end-page: 64
  ident: bib25
  article-title: Hybridizing genetic algorithm with differential evolution for solving the unit commitment scheduling problem
  publication-title: Swarm Evolut. Comput.
– volume: 41
  start-page: 155
  year: 2007
  end-page: 170
  ident: bib6
  article-title: A branch-and-bound method for solving multi-skill project scheduling problem
  publication-title: RAIRO-Oper. Res.
– volume: 47
  start-page: 517
  issue: 3
  year: 2017
  ident: 10.1016/j.swevo.2017.06.001_bib22
  article-title: Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
  doi: 10.1109/TSMC.2015.2507161
– volume: 13
  start-page: 4676
  issue: 12
  year: 2013
  ident: 10.1016/j.swevo.2017.06.001_bib32
  article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2013.07.009
– start-page: 239
  year: 2011
  ident: 10.1016/j.swevo.2017.06.001_bib7
– volume: 42
  start-page: 1093
  issue: 6
  year: 2012
  ident: 10.1016/j.swevo.2017.06.001_bib28
  article-title: An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks
  publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.)
  doi: 10.1109/TSMCC.2012.2196996
– volume: 64
  start-page: 1099
  issue: 5–8
  year: 2013
  ident: 10.1016/j.swevo.2017.06.001_bib4
  article-title: A differential evolution algorithm to solve multi-skilled project portfolio scheduling problems
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-012-4045-z
– volume: 309
  start-page: 307
  issue: 5732
  year: 2005
  ident: 10.1016/j.swevo.2017.06.001_bib18
  article-title: Cross modal interactions between olfactory and visual learning in Drosophila
  publication-title: Science
  doi: 10.1126/science.1111280
– volume: 112
  start-page: 3
  issue: 1
  year: 1999
  ident: 10.1016/j.swevo.2017.06.001_bib2
  article-title: Resource-constrained project scheduling: notation, classification, models, and methods
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/S0377-2217(98)00204-5
– volume: 19
  start-page: 3599
  year: 2015
  ident: 10.1016/j.swevo.2017.06.001_bib12
  article-title: Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1455-x
– volume: 39
  start-page: 890
  issue: 5
  year: 2012
  ident: 10.1016/j.swevo.2017.06.001_bib17
  article-title: An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2011.07.010
– year: 2005
  ident: 10.1016/j.swevo.2017.06.001_bib21
– volume: 4
  start-page: 1509
  issue: 3
  year: 2015
  ident: 10.1016/j.swevo.2017.06.001_bib5
  article-title: Resource constrained project scheduling problems-a review article
  publication-title: Int. J. Sci. Res.
– volume: 32
  start-page: 166
  issue: 1
  year: 2014
  ident: 10.1016/j.swevo.2017.06.001_bib26
  article-title: Critical chain and evidence reasoning applied to multi-project resource schedule in automobile R&D process
  publication-title: Int. J. Proj. Manag.
  doi: 10.1016/j.ijproman.2013.01.010
– volume: 41
  start-page: 155
  issue: 2
  year: 2007
  ident: 10.1016/j.swevo.2017.06.001_bib6
  article-title: A branch-and-bound method for solving multi-skill project scheduling problem
  publication-title: RAIRO-Oper. Res.
  doi: 10.1051/ro:2007015
– volume: 23
  start-page: 50
  year: 2015
  ident: 10.1016/j.swevo.2017.06.001_bib25
  article-title: Hybridizing genetic algorithm with differential evolution for solving the unit commitment scheduling problem
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2015.04.001
– ident: 10.1016/j.swevo.2017.06.001_bib11
– volume: 18
  start-page: 1199
  issue: 6
  year: 2014
  ident: 10.1016/j.swevo.2017.06.001_bib31
  article-title: Utilizing time-linkage property in DOPs: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments
  publication-title: Soft Comput.
  doi: 10.1007/s00500-013-1138-z
– volume: 11
  start-page: 712
  issue: 6
  year: 2007
  ident: 10.1016/j.swevo.2017.06.001_bib23
  article-title: MOEA/D: a multi-objective evolutionary algorithm based on decomposition
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/TEVC.2007.892759
– volume: 354
  start-page: 275
  year: 2016
  ident: 10.1016/j.swevo.2017.06.001_bib24
  article-title: A genetic algorithm–differential evolution based hybrid framework: case study on unit commitment scheduling problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.03.023
– ident: 10.1016/j.swevo.2017.06.001_bib33
  doi: 10.1109/CEC.2013.6557691
– volume: 52
  start-page: 185
  year: 2013
  ident: 10.1016/j.swevo.2017.06.001_bib29
  article-title: Decomposition-based evolutionary multi-objective optimization approach to the design of concentric circular antenna arrays
  publication-title: Prog. Electromagn. Res. B
  doi: 10.2528/PIERB13030709
– volume: 26
  start-page: 69
  year: 2013
  ident: 10.1016/j.swevo.2017.06.001_bib14
  article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2011.07.001
– volume: 72
  start-page: 28
  year: 2014
  ident: 10.1016/j.swevo.2017.06.001_bib16
  article-title: Solving the steelmaking casting problem using an effective fruit fly optimization algorithm
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.08.022
– volume: 49
  start-page: 330
  issue: 3
  year: 2003
  ident: 10.1016/j.swevo.2017.06.001_bib1
  article-title: Solving project scheduling problems by minimum cut computations
  publication-title: Manag. Sci.
  doi: 10.1287/mnsc.49.3.330.12737
– volume: 27
  start-page: 1
  year: 2016
  ident: 10.1016/j.swevo.2017.06.001_bib30
  article-title: Recent advances in differential evolution–an updated survey
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2016.01.004
– volume: 12
  start-page: 281
  year: 2009
  ident: 10.1016/j.swevo.2017.06.001_bib8
  article-title: Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm
  publication-title: J. Sched.
  doi: 10.1007/s10951-008-0079-3
– volume: 32
  start-page: 343
  year: 2010
  ident: 10.1016/j.swevo.2017.06.001_bib9
  article-title: Scheduling and staffing multiple projects with a multi-skilled workforce
  publication-title: OR Spectr.
  doi: 10.1007/s00291-009-0169-4
– volume: 3
  start-page: 1125
  year: 2010
  ident: 10.1016/j.swevo.2017.06.001_bib3
  article-title: Weighted multi-skill resources project scheduling
  publication-title: J. Softw. Eng. Appl.
  doi: 10.4236/jsea.2010.312131
– volume: 35
  start-page: 624
  issue: 5
  year: 2009
  ident: 10.1016/j.swevo.2017.06.001_bib27
  article-title: Impact of budget and schedule pressure on software development cycle time and effort
  publication-title: IEEE Trans. Softw. Eng.
  doi: 10.1109/TSE.2009.18
– volume: 6
  start-page: 182
  year: 2002
  ident: 10.1016/j.swevo.2017.06.001_bib20
  article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II
  publication-title: IEEE Trans. Evolut. Comput.
  doi: 10.1109/4235.996017
– ident: 10.1016/j.swevo.2017.06.001_bib34
  doi: 10.1109/CEC.2014.6900484
– volume: 21
  start-page: 1537
  issue: 6
  year: 2017
  ident: 10.1016/j.swevo.2017.06.001_bib13
  article-title: Teaching–learning-based optimization algorithm for multi-skill resource constrained project scheduling problem
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-1866-3
– year: 2012
  ident: 10.1016/j.swevo.2017.06.001_bib19
– volume: 57
  start-page: 95
  year: 2014
  ident: 10.1016/j.swevo.2017.06.001_bib15
  article-title: A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2013.12.011
– ident: 10.1016/j.swevo.2017.06.001_bib10
  doi: 10.1007/978-3-319-05443-8_26
SSID ssj0000602559
Score 2.4947395
Snippet In this paper, a knowledge-guided multi-objective fruit fly optimization algorithm (MOFOA) is proposed for the multi-skill resource-constrained project...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 54
SubjectTerms Fruit fly optimization algorithm
Knowledge
Multi-objective optimization
Multi-skill, resource constrained project scheduling problem
Title A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem
URI https://dx.doi.org/10.1016/j.swevo.2017.06.001
Volume 38
WOSCitedRecordID wos000423642900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 2210-6502
  databaseCode: AIEXJ
  dateStart: 20110301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0000602559
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQcuvBHlpT1wM6782PhxjFARIFQhtYjcrPU-ioNrV46Ttoee-dvMvhy3QRUgcbGiTSZrZ76dnZ18M4PQGyKTklBYSDIR1CeUx34eCO7TVBKZMV6KkOpmE-nhYTaf518mkyuXC7Ou06bJLi7ys_-qahgDZavU2b9Q9_ClMACvQelwBbXD9Y8UP_OGOJl_sqo4eJSaNei35cJYN092q6r3ZH3ptWAxTm0qpkfrk7ar-u-nA_fQCC5_VLUq_28C_YqovtSdJYQqMaADOR6ckWHPsqntukXN2Os9OqedacUh1vbZFVmP6Y4S16gA32z4-rPbUXVMW5jBeUVbv27tOzZUEWaO3eziZ1s5NMrMRXDo9MFPvGaTTcUXa1RNlWm7PRtzuGX4TQxisb88hwdRjL103_zNtNnnBvbhkZpSzQi-aEBCVYp0N0qnOdj13dnHg_mnIUgXJPrIpRoUurt0las0R3Brtt97NyOP5fgBumePGnhmIPIQTUTzCN13bTywteqP0c8ZvokYfAMxWCMGA2LwGDF4QAwGxGBADB4hBjvE4BFisEUM3iAGW8Q8QV_fHxy_--Db_hw-A8en90MRsDApQxbysox5FpdsyqawxoUgaZLzSKaElRmXMqKpiJOUEZFxkkYxTQgPePwU7TRtI54hPFWlCWOW00xIEjFWJonIqSzjHMRpxPZQ5H7Xgtni9eq-68KxFBeFVkahlFEYruYeejsInZnaLbd_PHEKK6z7adzKAkB2m-DzfxV8ge5ulslLtNN3K_EK3WHrvlp2ry0YfwH23beJ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+knowledge-guided+multi-objective+fruit+fly+optimization+algorithm+for+the+multi-skill+resource+constrained+project+scheduling+problem&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Ling&rft.au=Zheng%2C+Xiao-long&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=38&rft.spage=54&rft.epage=63&rft_id=info:doi/10.1016%2Fj.swevo.2017.06.001&rft.externalDocID=S2210650216304102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon