A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem
In this paper, a knowledge-guided multi-objective fruit fly optimization algorithm (MOFOA) is proposed for the multi-skill resource-constrained project scheduling problem (MSRCPSP) with the criteria of minimizing the makespan and the total cost simultaneously. First, a solution is represented by two...
Uložené v:
| Vydané v: | Swarm and evolutionary computation Ročník 38; s. 54 - 63 |
|---|---|
| Hlavní autori: | , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.02.2018
|
| Predmet: | |
| ISSN: | 2210-6502 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | In this paper, a knowledge-guided multi-objective fruit fly optimization algorithm (MOFOA) is proposed for the multi-skill resource-constrained project scheduling problem (MSRCPSP) with the criteria of minimizing the makespan and the total cost simultaneously. First, a solution is represented by two lists, i.e. resource list and task list. Second, the minimum total cost rule is designed for the initialization according to the property of the problem. Third, the smell-based search is implemented via the neighborhood based search operators that are specially designed for the MSRCPSP, while the vision-based search adopts the technique for the order preference by similarity to an ideal solution (TOPSIS) and the non-dominated sorting collaboratively to complete the multi-objective evaluation. In addition, a knowledge-guided search procedure is introduced to enhance the exploration of the FOA. Finally, the design-of-experiment (DOE) method is used to investigate the effect of parameter setting, and numerical tests based on benchmark instances are carried out. The results compared to other algorithms demonstrate the effectiveness of the MOFOA with knowledge-guided search in solving the multi-objective MSRCPSP.
•Propose a knowledge-guided multi-objective FOA for MSRCPSP.•Minimize the makespan and the total cost simultaneously.•Use the TOPSIS and the non-dominated sorting collaboratively.•Enhance exploitation by knowledge-based local search.•Effectiveness is demonstrated by numerical tests and comparisons. |
|---|---|
| AbstractList | In this paper, a knowledge-guided multi-objective fruit fly optimization algorithm (MOFOA) is proposed for the multi-skill resource-constrained project scheduling problem (MSRCPSP) with the criteria of minimizing the makespan and the total cost simultaneously. First, a solution is represented by two lists, i.e. resource list and task list. Second, the minimum total cost rule is designed for the initialization according to the property of the problem. Third, the smell-based search is implemented via the neighborhood based search operators that are specially designed for the MSRCPSP, while the vision-based search adopts the technique for the order preference by similarity to an ideal solution (TOPSIS) and the non-dominated sorting collaboratively to complete the multi-objective evaluation. In addition, a knowledge-guided search procedure is introduced to enhance the exploration of the FOA. Finally, the design-of-experiment (DOE) method is used to investigate the effect of parameter setting, and numerical tests based on benchmark instances are carried out. The results compared to other algorithms demonstrate the effectiveness of the MOFOA with knowledge-guided search in solving the multi-objective MSRCPSP.
•Propose a knowledge-guided multi-objective FOA for MSRCPSP.•Minimize the makespan and the total cost simultaneously.•Use the TOPSIS and the non-dominated sorting collaboratively.•Enhance exploitation by knowledge-based local search.•Effectiveness is demonstrated by numerical tests and comparisons. |
| Author | Zheng, Xiao-long Wang, Ling |
| Author_xml | – sequence: 1 givenname: Ling surname: Wang fullname: Wang, Ling email: wangling@mail.tsinghua.edu.cn – sequence: 2 givenname: Xiao-long surname: Zheng fullname: Zheng, Xiao-long email: zhengxl07@qq.com |
| BookMark | eNqFkLtOxDAQRV2ABCz7BTT-gQQ7D2e3oECIl7QSDdRWYo-zE5x4ZTuLlh_gt0mAigKmGWmkczX3nJGjwQ1AyAVnKWdcXHZpeIO9SzPGq5SJlDF-RE6zjLNElCw7IcsQOjaNYFlZrk_JxzV9HdybBd1C0o6oQdN-tBET13SgIu6BGj9ipMYeqNtF7PG9jugGWtvWeYzbnhrnadzCDxhe0VrqIbjRK6DKDSH6GocpeefdHEqD2oIeLQ7tfGos9Ofk2NQ2wPJnL8jL3e3zzUOyebp_vLneJCpneUw4MMVFwxXXTZPrVd6oUpWmMABFJdY6M1WhmpU2JqsryEWlCljposryWhSa6XxB1t-5yrsQPBipMH71mX-0kjM5i5Sd_BIpZ5GSCTmJnNj8F7vz2Nf-8A919U3BVGuP4GVQCIMCjX5yIbXDP_lP1SCYIg |
| CitedBy_id | crossref_primary_10_1155_2021_5546758 crossref_primary_10_1080_00207543_2020_1775911 crossref_primary_10_1109_ACCESS_2024_3350440 crossref_primary_10_1007_s11424_018_7250_5 crossref_primary_10_1016_j_jclepro_2018_03_149 crossref_primary_10_3390_systems12100407 crossref_primary_10_1016_j_swevo_2022_101119 crossref_primary_10_1016_j_comcom_2025_108269 crossref_primary_10_1109_ACCESS_2019_2951370 crossref_primary_10_1007_s10462_023_10451_1 crossref_primary_10_1002_ett_4579 crossref_primary_10_1016_j_energy_2018_11_070 crossref_primary_10_1016_j_ins_2024_120400 crossref_primary_10_1007_s10489_020_01663_x crossref_primary_10_1108_AA_09_2018_0126 crossref_primary_10_3390_sym14020204 crossref_primary_10_1016_j_cie_2021_107897 crossref_primary_10_1016_j_knosys_2021_107099 crossref_primary_10_1109_ACCESS_2021_3063766 crossref_primary_10_1016_j_aei_2024_102401 crossref_primary_10_1016_j_swevo_2021_101008 crossref_primary_10_1016_j_autcon_2023_104958 crossref_primary_10_1061__ASCE_CO_1943_7862_0002192 crossref_primary_10_1155_2019_2320632 crossref_primary_10_3390_buildings15101706 crossref_primary_10_1016_j_cie_2020_107004 crossref_primary_10_2478_mspe_2024_0012 crossref_primary_10_1080_0305215X_2024_2376852 crossref_primary_10_1016_j_eswa_2024_126229 crossref_primary_10_1016_j_neucom_2018_07_008 crossref_primary_10_1016_j_asoc_2019_105805 crossref_primary_10_1016_j_eswa_2020_114479 crossref_primary_10_1016_j_jclepro_2020_123364 crossref_primary_10_1016_j_cie_2019_106183 crossref_primary_10_1016_j_swevo_2023_101417 crossref_primary_10_1016_j_eswa_2023_121895 crossref_primary_10_1007_s00500_021_06522_6 crossref_primary_10_1016_j_ejor_2021_05_004 crossref_primary_10_1109_ACCESS_2021_3070634 crossref_primary_10_1109_ACCESS_2019_2940104 crossref_primary_10_1155_2021_8571524 crossref_primary_10_3233_JIFS_221994 crossref_primary_10_1371_journal_pone_0255928 crossref_primary_10_1016_j_cie_2021_107237 crossref_primary_10_3233_JIFS_232128 crossref_primary_10_3390_math7060531 crossref_primary_10_1007_s12539_020_00371_x crossref_primary_10_1016_j_ins_2025_121985 crossref_primary_10_3233_JIFS_210196 crossref_primary_10_1016_j_cor_2023_106185 crossref_primary_10_1016_j_jestch_2024_101765 crossref_primary_10_1109_TCYB_2020_3026571 crossref_primary_10_3390_en15114063 crossref_primary_10_1016_j_knosys_2017_09_038 crossref_primary_10_1109_TEVC_2022_3199775 crossref_primary_10_3390_app14051921 crossref_primary_10_1007_s11590_020_01542_x crossref_primary_10_1007_s42524_020_0100_x crossref_primary_10_1108_ECAM_06_2019_0294 crossref_primary_10_1016_j_asoc_2022_109253 crossref_primary_10_1007_s00158_020_02589_1 crossref_primary_10_1016_j_cie_2025_111046 crossref_primary_10_1080_15623599_2023_2252255 crossref_primary_10_1080_09540091_2020_1742660 crossref_primary_10_1007_s00366_020_01174_w crossref_primary_10_1016_j_eswa_2021_115978 crossref_primary_10_1016_j_swevo_2020_100739 crossref_primary_10_1016_j_aei_2022_101756 crossref_primary_10_1007_s00366_021_01369_9 crossref_primary_10_1155_2019_4824837 crossref_primary_10_1155_2022_9181865 crossref_primary_10_1016_j_eswa_2019_112915 crossref_primary_10_1007_s00521_019_04149_1 crossref_primary_10_1016_j_asoc_2022_109764 crossref_primary_10_1109_JIOT_2020_2996762 crossref_primary_10_1007_s00500_017_2997_5 crossref_primary_10_1016_j_swevo_2021_100872 crossref_primary_10_1016_j_swevo_2019_01_002 crossref_primary_10_1108_JM2_07_2018_0098 crossref_primary_10_1007_s10489_022_03875_9 crossref_primary_10_1109_ACCESS_2022_3157640 crossref_primary_10_1016_j_cie_2019_07_032 crossref_primary_10_1007_s10951_025_00836_1 crossref_primary_10_1007_s12652_018_0771_x crossref_primary_10_1016_j_asoc_2024_111827 crossref_primary_10_1016_j_cie_2020_106981 crossref_primary_10_1016_j_swevo_2022_101055 crossref_primary_10_1016_j_swevo_2018_10_003 crossref_primary_10_1016_j_swevo_2024_101531 crossref_primary_10_1007_s11750_022_00633_5 crossref_primary_10_1177_1548512919875230 crossref_primary_10_1016_j_cie_2022_108147 crossref_primary_10_1007_s10479_023_05343_0 crossref_primary_10_1016_j_jenvman_2024_121986 crossref_primary_10_1080_00207543_2019_1695168 crossref_primary_10_1016_j_cie_2021_107316 crossref_primary_10_1016_j_ins_2020_08_118 crossref_primary_10_1007_s40815_020_00984_w crossref_primary_10_1016_j_compbiomed_2022_105356 crossref_primary_10_1016_j_eswa_2019_112976 crossref_primary_10_1007_s10489_021_02608_8 crossref_primary_10_1080_00207543_2024_2328131 crossref_primary_10_1016_j_swevo_2020_100676 crossref_primary_10_1016_j_cor_2025_107150 |
| Cites_doi | 10.1109/TSMC.2015.2507161 10.1016/j.asoc.2013.07.009 10.1109/TSMCC.2012.2196996 10.1007/s00170-012-4045-z 10.1126/science.1111280 10.1016/S0377-2217(98)00204-5 10.1007/s00500-014-1455-x 10.1016/j.cor.2011.07.010 10.1016/j.ijproman.2013.01.010 10.1051/ro:2007015 10.1016/j.swevo.2015.04.001 10.1007/s00500-013-1138-z 10.1109/TEVC.2007.892759 10.1016/j.ins.2016.03.023 10.1109/CEC.2013.6557691 10.2528/PIERB13030709 10.1016/j.knosys.2011.07.001 10.1016/j.knosys.2014.08.022 10.1287/mnsc.49.3.330.12737 10.1016/j.swevo.2016.01.004 10.1007/s10951-008-0079-3 10.1007/s00291-009-0169-4 10.4236/jsea.2010.312131 10.1109/TSE.2009.18 10.1109/4235.996017 10.1109/CEC.2014.6900484 10.1007/s00500-015-1866-3 10.1016/j.knosys.2013.12.011 10.1007/978-3-319-05443-8_26 |
| ContentType | Journal Article |
| Copyright | 2017 Elsevier B.V. |
| Copyright_xml | – notice: 2017 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.swevo.2017.06.001 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EndPage | 63 |
| ExternalDocumentID | 10_1016_j_swevo_2017_06_001 S2210650216304102 |
| GroupedDBID | --K --M .~1 0R~ 1~. 1~5 4.4 457 4G. 5VS 7-5 8P~ AAAKF AABVA AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATLK AAXUO AAYFN ABAOU ABBOA ABGRD ABMAC ABUCO ABXDB ABYKQ ACAZW ACDAQ ACGFS ACNNM ACRLP ACZNC ADBBV ADEZE ADMUD ADQTV ADTZH AEBSH AECPX AEKER AENEX AEQOU AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD APLSM ARUGR AXJTR BJAXD BKOJK BLXMC CBWCG EBS EFJIC EFLBG EJD FDB FEDTE FIRID FNPLU FYGXN GBLVA GBOLZ HAMUX HVGLF HZ~ J1W JJJVA KOM M41 MHUIS MO0 N9A O-L O9- OAUVE P-8 P-9 PC. Q38 RIG ROL SDF SES SPC SPCBC SSA SSB SSD SST SSV SSW SSZ T5K ~G- AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-1e0c16b1c1dbb3d83bc5c5f4fee4769d2f74cb8dff2a7e367c4e8d4723a64d0d3 |
| ISICitedReferencesCount | 112 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000423642900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2210-6502 |
| IngestDate | Tue Nov 18 21:31:41 EST 2025 Wed Nov 05 20:52:56 EST 2025 Fri Feb 23 02:47:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective optimization Fruit fly optimization algorithm Knowledge Multi-skill, resource constrained project scheduling problem |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-1e0c16b1c1dbb3d83bc5c5f4fee4769d2f74cb8dff2a7e367c4e8d4723a64d0d3 |
| PageCount | 10 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_swevo_2017_06_001 crossref_primary_10_1016_j_swevo_2017_06_001 elsevier_sciencedirect_doi_10_1016_j_swevo_2017_06_001 |
| PublicationCentury | 2000 |
| PublicationDate | February 2018 2018-02-00 |
| PublicationDateYYYYMMDD | 2018-02-01 |
| PublicationDate_xml | – month: 02 year: 2018 text: February 2018 |
| PublicationDecade | 2010 |
| PublicationTitle | Swarm and evolutionary computation |
| PublicationYear | 2018 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zheng, Wang, Wang (bib15) 2014; 57 Brucker, Drexl, Mohring, Neumann, Pesch (bib2) 1999; 112 Guo, Guo (bib18) 2005; 309 Al-Anzi, Al-Zamel, Allahverdi (bib3) 2010; 3 Nan, Harter (bib27) 2009; 35 Trivedi, Srinivasan, Biswas, Reindl (bib24) 2016; 354 Hwang, Yoon (bib19) 2012 Biswas, Das, Kundu (bib32) 2013; 13 Heimerl, Kolisch (bib9) 2010; 32 Pan (bib14) 2013; 26 Myszkowski, Skowroński, Olech, Oślizło (bib12) 2015; 19 Rao, Prakash, Chaitanya (bib5) 2015; 4 P.B. Myszkowski, M.E. Skowronski, L.P. Olech, Novel heuristic solutions for multi-skill resource-constrained project scheduling problem, in: Proceedings of the Federated Conference on Computer Science and Information Systems, 2013, pp.159–166. Sengupta, Das, Nasir (bib28) 2012; 42 S. Biswas, M.A. Eita, S. Das, et al, Evaluating the performance of group counseling optimizer on CEC 2014 problems for computational expensive optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2014, pp. 1076–1083. C. Montoya, O. Bellenguez-Morineau, E. Pinson, D. Rivreau, Integrated column generation and Lagrangian relaxation approach for the multi-skill project scheduling problem, in: Handbook on Project Management and Scheduling, Springer, 2015, pp. 565–586. Das, Mullick, Suganthan (bib30) 2016; 27 Montgomery (bib21) 2005 Biswas, Das, Kundu (bib31) 2014; 18 Biswas, Bose, Das (bib29) 2013; 52 Bellenguez, Néron (bib6) 2007; 41 Deb, Pratap, Agarwal, Meyarivan (bib20) 2002; 6 Mohring, Schulz, Stork, Uetz (bib1) 2003; 49 Kazemipoor, Tavakkoli-Moghaddam, Shahnazari-Shahrezaei (bib4) 2013; 64 Yang, Fu (bib26) 2014; 32 Li, Pan, Mao, Suganthan (bib16) 2014; 72 Zhang, Li (bib23) 2007; 11 Trivedi, Srinivasan, Biswas (bib25) 2015; 23 S. Biswas, S. Kundu, S. Das, et al, Teaching and learning best differential evoltuion with self adaptation for real parameter optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2013, pp. 1115–1122. Santos, Tereso (bib7) 2011 Yan, Wu, Zhou, Li (bib22) 2017; 47 Li, Womer (bib8) 2009; 12 Zheng, Wang, Zheng (bib13) 2017; 21 Fang, Wang (bib17) 2012; 39 Montgomery (10.1016/j.swevo.2017.06.001_bib21) 2005 Myszkowski (10.1016/j.swevo.2017.06.001_bib12) 2015; 19 Yan (10.1016/j.swevo.2017.06.001_bib22) 2017; 47 Hwang (10.1016/j.swevo.2017.06.001_bib19) 2012 Pan (10.1016/j.swevo.2017.06.001_bib14) 2013; 26 Trivedi (10.1016/j.swevo.2017.06.001_bib24) 2016; 354 Brucker (10.1016/j.swevo.2017.06.001_bib2) 1999; 112 Biswas (10.1016/j.swevo.2017.06.001_bib32) 2013; 13 Das (10.1016/j.swevo.2017.06.001_bib30) 2016; 27 Li (10.1016/j.swevo.2017.06.001_bib8) 2009; 12 Mohring (10.1016/j.swevo.2017.06.001_bib1) 2003; 49 Al-Anzi (10.1016/j.swevo.2017.06.001_bib3) 2010; 3 Zhang (10.1016/j.swevo.2017.06.001_bib23) 2007; 11 10.1016/j.swevo.2017.06.001_bib34 Biswas (10.1016/j.swevo.2017.06.001_bib29) 2013; 52 10.1016/j.swevo.2017.06.001_bib10 10.1016/j.swevo.2017.06.001_bib11 10.1016/j.swevo.2017.06.001_bib33 Zheng (10.1016/j.swevo.2017.06.001_bib13) 2017; 21 Kazemipoor (10.1016/j.swevo.2017.06.001_bib4) 2013; 64 Zheng (10.1016/j.swevo.2017.06.001_bib15) 2014; 57 Yang (10.1016/j.swevo.2017.06.001_bib26) 2014; 32 Rao (10.1016/j.swevo.2017.06.001_bib5) 2015; 4 Li (10.1016/j.swevo.2017.06.001_bib16) 2014; 72 Heimerl (10.1016/j.swevo.2017.06.001_bib9) 2010; 32 Deb (10.1016/j.swevo.2017.06.001_bib20) 2002; 6 Trivedi (10.1016/j.swevo.2017.06.001_bib25) 2015; 23 Guo (10.1016/j.swevo.2017.06.001_bib18) 2005; 309 Santos (10.1016/j.swevo.2017.06.001_bib7) 2011 Biswas (10.1016/j.swevo.2017.06.001_bib31) 2014; 18 Sengupta (10.1016/j.swevo.2017.06.001_bib28) 2012; 42 Bellenguez (10.1016/j.swevo.2017.06.001_bib6) 2007; 41 Nan (10.1016/j.swevo.2017.06.001_bib27) 2009; 35 Fang (10.1016/j.swevo.2017.06.001_bib17) 2012; 39 |
| References_xml | – year: 2012 ident: bib19 article-title: Multiple Attribute Decision Making: Methods and Applications a State-of-the-art Survey – volume: 18 start-page: 1199 year: 2014 end-page: 1212 ident: bib31 article-title: Utilizing time-linkage property in DOPs: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments publication-title: Soft Comput. – volume: 4 start-page: 1509 year: 2015 end-page: 1512 ident: bib5 article-title: Resource constrained project scheduling problems-a review article publication-title: Int. J. Sci. Res. – volume: 42 start-page: 1093 year: 2012 end-page: 1102 ident: bib28 article-title: An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) – volume: 27 start-page: 1 year: 2016 end-page: 30 ident: bib30 article-title: Recent advances in differential evolution–an updated survey publication-title: Swarm Evolut. Comput. – volume: 13 start-page: 4676 year: 2013 end-page: 4694 ident: bib32 article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization publication-title: Appl. Soft Comput. – year: 2005 ident: bib21 article-title: Design and Analysis of Experiments – start-page: 239 year: 2011 end-page: 248 ident: bib7 article-title: On the Multi-mode, Multi-skill Resource Constrained Project Scheduling Problem-a Software Application, Soft Computing in Industrial Applications – reference: C. Montoya, O. Bellenguez-Morineau, E. Pinson, D. Rivreau, Integrated column generation and Lagrangian relaxation approach for the multi-skill project scheduling problem, in: Handbook on Project Management and Scheduling, Springer, 2015, pp. 565–586. – volume: 49 start-page: 330 year: 2003 end-page: 350 ident: bib1 article-title: Solving project scheduling problems by minimum cut computations publication-title: Manag. Sci. – volume: 52 start-page: 185 year: 2013 end-page: 205 ident: bib29 article-title: Decomposition-based evolutionary multi-objective optimization approach to the design of concentric circular antenna arrays publication-title: Prog. Electromagn. Res. B – volume: 32 start-page: 166 year: 2014 end-page: 177 ident: bib26 article-title: Critical chain and evidence reasoning applied to multi-project resource schedule in automobile R&D process publication-title: Int. J. Proj. Manag. – volume: 64 start-page: 1099 year: 2013 end-page: 1111 ident: bib4 article-title: A differential evolution algorithm to solve multi-skilled project portfolio scheduling problems publication-title: Int. J. Adv. Manuf. Technol. – volume: 3 start-page: 1125 year: 2010 end-page: 1130 ident: bib3 article-title: Weighted multi-skill resources project scheduling publication-title: J. Softw. Eng. Appl. – volume: 72 start-page: 28 year: 2014 end-page: 36 ident: bib16 article-title: Solving the steelmaking casting problem using an effective fruit fly optimization algorithm publication-title: Knowl.-Based Syst. – volume: 309 start-page: 307 year: 2005 end-page: 310 ident: bib18 article-title: Cross modal interactions between olfactory and visual learning in Drosophila publication-title: Science – volume: 21 start-page: 1537 year: 2017 end-page: 1548 ident: bib13 article-title: Teaching–learning-based optimization algorithm for multi-skill resource constrained project scheduling problem publication-title: Soft Comput. – volume: 57 start-page: 95 year: 2014 end-page: 103 ident: bib15 article-title: A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem publication-title: Knowl.-Based Syst. – volume: 112 start-page: 3 year: 1999 end-page: 41 ident: bib2 article-title: Resource-constrained project scheduling: notation, classification, models, and methods publication-title: Eur. J. Oper. Res. – reference: P.B. Myszkowski, M.E. Skowronski, L.P. Olech, Novel heuristic solutions for multi-skill resource-constrained project scheduling problem, in: Proceedings of the Federated Conference on Computer Science and Information Systems, 2013, pp.159–166. – volume: 19 start-page: 3599 year: 2015 end-page: 3619 ident: bib12 article-title: Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem publication-title: Soft Comput. – volume: 47 start-page: 517 year: 2017 end-page: 530 ident: bib22 article-title: Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib20 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. – volume: 32 start-page: 343 year: 2010 end-page: 368 ident: bib9 article-title: Scheduling and staffing multiple projects with a multi-skilled workforce publication-title: OR Spectr. – volume: 39 start-page: 890 year: 2012 end-page: 901 ident: bib17 article-title: An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem publication-title: Comput. Oper. Res. – volume: 35 start-page: 624 year: 2009 end-page: 637 ident: bib27 article-title: Impact of budget and schedule pressure on software development cycle time and effort publication-title: IEEE Trans. Softw. Eng. – volume: 12 start-page: 281 year: 2009 end-page: 298 ident: bib8 article-title: Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm publication-title: J. Sched. – volume: 11 start-page: 712 year: 2007 end-page: 731 ident: bib23 article-title: MOEA/D: a multi-objective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evolut. Comput. – volume: 354 start-page: 275 year: 2016 end-page: 300 ident: bib24 article-title: A genetic algorithm–differential evolution based hybrid framework: case study on unit commitment scheduling problem publication-title: Inf. Sci. – volume: 26 start-page: 69 year: 2013 end-page: 74 ident: bib14 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowl.-Based Syst. – reference: S. Biswas, S. Kundu, S. Das, et al, Teaching and learning best differential evoltuion with self adaptation for real parameter optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2013, pp. 1115–1122. – reference: S. Biswas, M.A. Eita, S. Das, et al, Evaluating the performance of group counseling optimizer on CEC 2014 problems for computational expensive optimization, in: Proceedings of IEEE Congress on Evolutionary Computation, 2014, pp. 1076–1083. – volume: 23 start-page: 50 year: 2015 end-page: 64 ident: bib25 article-title: Hybridizing genetic algorithm with differential evolution for solving the unit commitment scheduling problem publication-title: Swarm Evolut. Comput. – volume: 41 start-page: 155 year: 2007 end-page: 170 ident: bib6 article-title: A branch-and-bound method for solving multi-skill project scheduling problem publication-title: RAIRO-Oper. Res. – volume: 47 start-page: 517 issue: 3 year: 2017 ident: 10.1016/j.swevo.2017.06.001_bib22 article-title: Pareto-optimization for scheduling of crude oil operations in refinery via genetic algorithm publication-title: IEEE Trans. Syst. Man Cybern.: Syst. doi: 10.1109/TSMC.2015.2507161 – volume: 13 start-page: 4676 issue: 12 year: 2013 ident: 10.1016/j.swevo.2017.06.001_bib32 article-title: Synergizing fitness learning with proximity-based food source selection in artificial bee colony algorithm for numerical optimization publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2013.07.009 – start-page: 239 year: 2011 ident: 10.1016/j.swevo.2017.06.001_bib7 – volume: 42 start-page: 1093 issue: 6 year: 2012 ident: 10.1016/j.swevo.2017.06.001_bib28 article-title: An evolutionary multiobjective sleep-scheduling scheme for differentiated coverage in wireless sensor networks publication-title: IEEE Trans. Syst. Man Cybern. C (Appl. Rev.) doi: 10.1109/TSMCC.2012.2196996 – volume: 64 start-page: 1099 issue: 5–8 year: 2013 ident: 10.1016/j.swevo.2017.06.001_bib4 article-title: A differential evolution algorithm to solve multi-skilled project portfolio scheduling problems publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-012-4045-z – volume: 309 start-page: 307 issue: 5732 year: 2005 ident: 10.1016/j.swevo.2017.06.001_bib18 article-title: Cross modal interactions between olfactory and visual learning in Drosophila publication-title: Science doi: 10.1126/science.1111280 – volume: 112 start-page: 3 issue: 1 year: 1999 ident: 10.1016/j.swevo.2017.06.001_bib2 article-title: Resource-constrained project scheduling: notation, classification, models, and methods publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(98)00204-5 – volume: 19 start-page: 3599 year: 2015 ident: 10.1016/j.swevo.2017.06.001_bib12 article-title: Hybrid ant colony optimization in solving multi-skill resource-constrained project scheduling problem publication-title: Soft Comput. doi: 10.1007/s00500-014-1455-x – volume: 39 start-page: 890 issue: 5 year: 2012 ident: 10.1016/j.swevo.2017.06.001_bib17 article-title: An effective shuffled frog-leaping algorithm for resource-constrained project scheduling problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2011.07.010 – year: 2005 ident: 10.1016/j.swevo.2017.06.001_bib21 – volume: 4 start-page: 1509 issue: 3 year: 2015 ident: 10.1016/j.swevo.2017.06.001_bib5 article-title: Resource constrained project scheduling problems-a review article publication-title: Int. J. Sci. Res. – volume: 32 start-page: 166 issue: 1 year: 2014 ident: 10.1016/j.swevo.2017.06.001_bib26 article-title: Critical chain and evidence reasoning applied to multi-project resource schedule in automobile R&D process publication-title: Int. J. Proj. Manag. doi: 10.1016/j.ijproman.2013.01.010 – volume: 41 start-page: 155 issue: 2 year: 2007 ident: 10.1016/j.swevo.2017.06.001_bib6 article-title: A branch-and-bound method for solving multi-skill project scheduling problem publication-title: RAIRO-Oper. Res. doi: 10.1051/ro:2007015 – volume: 23 start-page: 50 year: 2015 ident: 10.1016/j.swevo.2017.06.001_bib25 article-title: Hybridizing genetic algorithm with differential evolution for solving the unit commitment scheduling problem publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2015.04.001 – ident: 10.1016/j.swevo.2017.06.001_bib11 – volume: 18 start-page: 1199 issue: 6 year: 2014 ident: 10.1016/j.swevo.2017.06.001_bib31 article-title: Utilizing time-linkage property in DOPs: an information sharing based artificial bee colony algorithm for tracking multiple optima in uncertain environments publication-title: Soft Comput. doi: 10.1007/s00500-013-1138-z – volume: 11 start-page: 712 issue: 6 year: 2007 ident: 10.1016/j.swevo.2017.06.001_bib23 article-title: MOEA/D: a multi-objective evolutionary algorithm based on decomposition publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/TEVC.2007.892759 – volume: 354 start-page: 275 year: 2016 ident: 10.1016/j.swevo.2017.06.001_bib24 article-title: A genetic algorithm–differential evolution based hybrid framework: case study on unit commitment scheduling problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.03.023 – ident: 10.1016/j.swevo.2017.06.001_bib33 doi: 10.1109/CEC.2013.6557691 – volume: 52 start-page: 185 year: 2013 ident: 10.1016/j.swevo.2017.06.001_bib29 article-title: Decomposition-based evolutionary multi-objective optimization approach to the design of concentric circular antenna arrays publication-title: Prog. Electromagn. Res. B doi: 10.2528/PIERB13030709 – volume: 26 start-page: 69 year: 2013 ident: 10.1016/j.swevo.2017.06.001_bib14 article-title: A new fruit fly optimization algorithm: taking the financial distress model as an example publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2011.07.001 – volume: 72 start-page: 28 year: 2014 ident: 10.1016/j.swevo.2017.06.001_bib16 article-title: Solving the steelmaking casting problem using an effective fruit fly optimization algorithm publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.08.022 – volume: 49 start-page: 330 issue: 3 year: 2003 ident: 10.1016/j.swevo.2017.06.001_bib1 article-title: Solving project scheduling problems by minimum cut computations publication-title: Manag. Sci. doi: 10.1287/mnsc.49.3.330.12737 – volume: 27 start-page: 1 year: 2016 ident: 10.1016/j.swevo.2017.06.001_bib30 article-title: Recent advances in differential evolution–an updated survey publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2016.01.004 – volume: 12 start-page: 281 year: 2009 ident: 10.1016/j.swevo.2017.06.001_bib8 article-title: Scheduling projects with multi-skilled personnel by a hybrid MILP/CP benders decomposition algorithm publication-title: J. Sched. doi: 10.1007/s10951-008-0079-3 – volume: 32 start-page: 343 year: 2010 ident: 10.1016/j.swevo.2017.06.001_bib9 article-title: Scheduling and staffing multiple projects with a multi-skilled workforce publication-title: OR Spectr. doi: 10.1007/s00291-009-0169-4 – volume: 3 start-page: 1125 year: 2010 ident: 10.1016/j.swevo.2017.06.001_bib3 article-title: Weighted multi-skill resources project scheduling publication-title: J. Softw. Eng. Appl. doi: 10.4236/jsea.2010.312131 – volume: 35 start-page: 624 issue: 5 year: 2009 ident: 10.1016/j.swevo.2017.06.001_bib27 article-title: Impact of budget and schedule pressure on software development cycle time and effort publication-title: IEEE Trans. Softw. Eng. doi: 10.1109/TSE.2009.18 – volume: 6 start-page: 182 year: 2002 ident: 10.1016/j.swevo.2017.06.001_bib20 article-title: A fast and elitist multi-objective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.996017 – ident: 10.1016/j.swevo.2017.06.001_bib34 doi: 10.1109/CEC.2014.6900484 – volume: 21 start-page: 1537 issue: 6 year: 2017 ident: 10.1016/j.swevo.2017.06.001_bib13 article-title: Teaching–learning-based optimization algorithm for multi-skill resource constrained project scheduling problem publication-title: Soft Comput. doi: 10.1007/s00500-015-1866-3 – year: 2012 ident: 10.1016/j.swevo.2017.06.001_bib19 – volume: 57 start-page: 95 year: 2014 ident: 10.1016/j.swevo.2017.06.001_bib15 article-title: A novel fruit fly optimization algorithm for the semiconductor final testing scheduling problem publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2013.12.011 – ident: 10.1016/j.swevo.2017.06.001_bib10 doi: 10.1007/978-3-319-05443-8_26 |
| SSID | ssj0000602559 |
| Score | 2.4947395 |
| Snippet | In this paper, a knowledge-guided multi-objective fruit fly optimization algorithm (MOFOA) is proposed for the multi-skill resource-constrained project... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 54 |
| SubjectTerms | Fruit fly optimization algorithm Knowledge Multi-objective optimization Multi-skill, resource constrained project scheduling problem |
| Title | A knowledge-guided multi-objective fruit fly optimization algorithm for the multi-skill resource constrained project scheduling problem |
| URI | https://dx.doi.org/10.1016/j.swevo.2017.06.001 |
| Volume | 38 |
| WOSCitedRecordID | wos000423642900005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 2210-6502 databaseCode: AIEXJ dateStart: 20110301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0000602559 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5FLQcuvBHlpT1wM6782PhxjFARIFQhtYjcrPU-ioNrV46Ttoee-dvMvhy3QRUgcbGiTSZrZ76dnZ18M4PQGyKTklBYSDIR1CeUx34eCO7TVBKZMV6KkOpmE-nhYTaf518mkyuXC7Ou06bJLi7ys_-qahgDZavU2b9Q9_ClMACvQelwBbXD9Y8UP_OGOJl_sqo4eJSaNei35cJYN092q6r3ZH3ptWAxTm0qpkfrk7ar-u-nA_fQCC5_VLUq_28C_YqovtSdJYQqMaADOR6ckWHPsqntukXN2Os9OqedacUh1vbZFVmP6Y4S16gA32z4-rPbUXVMW5jBeUVbv27tOzZUEWaO3eziZ1s5NMrMRXDo9MFPvGaTTcUXa1RNlWm7PRtzuGX4TQxisb88hwdRjL103_zNtNnnBvbhkZpSzQi-aEBCVYp0N0qnOdj13dnHg_mnIUgXJPrIpRoUurt0las0R3Brtt97NyOP5fgBumePGnhmIPIQTUTzCN13bTywteqP0c8ZvokYfAMxWCMGA2LwGDF4QAwGxGBADB4hBjvE4BFisEUM3iAGW8Q8QV_fHxy_--Db_hw-A8en90MRsDApQxbysox5FpdsyqawxoUgaZLzSKaElRmXMqKpiJOUEZFxkkYxTQgPePwU7TRtI54hPFWlCWOW00xIEjFWJonIqSzjHMRpxPZQ5H7Xgtni9eq-68KxFBeFVkahlFEYruYeejsInZnaLbd_PHEKK6z7adzKAkB2m-DzfxV8ge5ulslLtNN3K_EK3WHrvlp2ry0YfwH23beJ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+knowledge-guided+multi-objective+fruit+fly+optimization+algorithm+for+the+multi-skill+resource+constrained+project+scheduling+problem&rft.jtitle=Swarm+and+evolutionary+computation&rft.au=Wang%2C+Ling&rft.au=Zheng%2C+Xiao-long&rft.date=2018-02-01&rft.pub=Elsevier+B.V&rft.issn=2210-6502&rft.volume=38&rft.spage=54&rft.epage=63&rft_id=info:doi/10.1016%2Fj.swevo.2017.06.001&rft.externalDocID=S2210650216304102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2210-6502&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2210-6502&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2210-6502&client=summon |