Online Learning from data streams via decentralized and asynchronous SGD

Online Learning (OL) is a sub-field of Machine Learning (ML) which focuses on solving time-sensitive problems through iterative learning from data streams. This emerging field is characterized by the challenge of concept drifts, where the underlying distribution of the incoming data values evolves o...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Future generation computer systems Ročník 175; s. 108052
Hlavní autori: Tosi, Mauro Dalle Lucca, Theobald, Martin
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Elsevier B.V 01.02.2026
Predmet:
ISSN:0167-739X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Online Learning (OL) is a sub-field of Machine Learning (ML) which focuses on solving time-sensitive problems through iterative learning from data streams. This emerging field is characterized by the challenge of concept drifts, where the underlying distribution of the incoming data values evolves over time. Traditional OL algorithms, while efficient and less resource-intensive than conventional ML methods, often fall short in solving non-linear, high-dimensional problems. This prevalent gap has recently led to the integration of Artificial Neural Networks (ANN) into OL settings. These models support real-time inference. However, because they rely on offline training, their performance often degrades during or shortly after concept drifts. In this paper, we extend TensAIR, an online stream-processing engine that we specifically designed for the distributed training of ANN models. Our extensions allow TensAIR to automatically identify concept drifts using the OPTWIN drift detector algorithm, triggering the retraining of the ANN models as soon as drifts are detected. Additionally, we propose a novel decentralized and asynchronous stochastic gradient descent (DASGD) algorithm, which is central to TensAIR’s performance improvements over existing methods, and we formally prove its convergence under the specified conditions. We assessed TensAIR both in single-server and HPC settings, evaluating its distributed training performance over various multi-CPU and multi-GPU scenarios. As result, we show TensAIR to converge within the best known theoretical bounds while achieving up to 78× higher sustainable throughput than state-of-the-art baselines. Based on our results, we expect to inspire further research and applications exploiting the distributed training of ANN models in HPC platforms for a wide range of OL settings.
AbstractList Online Learning (OL) is a sub-field of Machine Learning (ML) which focuses on solving time-sensitive problems through iterative learning from data streams. This emerging field is characterized by the challenge of concept drifts, where the underlying distribution of the incoming data values evolves over time. Traditional OL algorithms, while efficient and less resource-intensive than conventional ML methods, often fall short in solving non-linear, high-dimensional problems. This prevalent gap has recently led to the integration of Artificial Neural Networks (ANN) into OL settings. These models support real-time inference. However, because they rely on offline training, their performance often degrades during or shortly after concept drifts. In this paper, we extend TensAIR, an online stream-processing engine that we specifically designed for the distributed training of ANN models. Our extensions allow TensAIR to automatically identify concept drifts using the OPTWIN drift detector algorithm, triggering the retraining of the ANN models as soon as drifts are detected. Additionally, we propose a novel decentralized and asynchronous stochastic gradient descent (DASGD) algorithm, which is central to TensAIR’s performance improvements over existing methods, and we formally prove its convergence under the specified conditions. We assessed TensAIR both in single-server and HPC settings, evaluating its distributed training performance over various multi-CPU and multi-GPU scenarios. As result, we show TensAIR to converge within the best known theoretical bounds while achieving up to 78× higher sustainable throughput than state-of-the-art baselines. Based on our results, we expect to inspire further research and applications exploiting the distributed training of ANN models in HPC platforms for a wide range of OL settings.
ArticleNumber 108052
Author Theobald, Martin
Tosi, Mauro Dalle Lucca
Author_xml – sequence: 1
  givenname: Mauro Dalle Lucca
  orcidid: 0000-0002-0218-2413
  surname: Tosi
  fullname: Tosi, Mauro Dalle Lucca
  email: mauro.dalle-lucca-tosi@list.lu
  organization: Human Centered AI, Data & Software Unit, Luxembourg Institute of Science and Technology, Esch-sur-Alzette, Luxembourg
– sequence: 2
  givenname: Martin
  surname: Theobald
  fullname: Theobald, Martin
  email: martin.theobald@uni.lu
  organization: Department of Computer Science, University of Luxembourg, Esch-sur-Alzette, Luxembourg
BookMark eNp9kFFLwzAUhfMwwW36D3zIH-hMmrapL4JM3YTCHlTwLSQ3N5rRpZK0g_nr7ajPPlwO3MM5HL4FmYUuICE3nK0449XtfuWGfoi4yllejq-alfmMzEdLZlLcfVySRUp7xhiXgs_JdhdaH5A2qGPw4ZO62B2o1b2mqY-oD4kevaYWAUMfdet_0FIdxkunAF-xC92Q6Ovm8YpcON0mvP7TJXl_fnpbb7Nmt3lZPzQZCCb6jFcoS2E45haKsjJYWckAgUEl0Bmba-lYbUwtQPLCFELb0gCvhTMlA-7EkhRTL8QupYhOfUd_0PGkOFNnAmqvJgLqTEBNBMbY_RTDcdvRY1QJPAZA6yNCr2zn_y_4BaSMa98
Cites_doi 10.1109/TAC.2020.2981035
10.1109/JSTSP.2011.2118740
10.1016/j.jpdc.2022.04.022
10.1016/j.jpdc.2020.11.005
10.1145/3320060
10.1109/Allerton49937.2022.9929409
10.1145/3647750.3647762
10.1145/3363554
10.1109/ICDEW61823.2024.00049
10.1109/SBAC-PAD49847.2020.00018
10.1007/s11042-021-11007-7
10.1093/beheco/ark016
10.1023/A:1010933404324
10.1186/s40537-019-0206-3
10.1109/MSP.2017.2765695
10.1016/j.tics.2020.09.004
10.1186/s40537-014-0007-7
10.1016/j.neucom.2021.04.112
10.1287/opre.2020.612
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.future.2025.108052
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_future_2025_108052
S0167739X25003474
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29H
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9DU
9JN
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABDPE
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACLOT
ACNNM
ACRLP
ACRPL
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AFJKZ
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIIUN
AIKHN
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
IHE
J1W
KOM
LG9
M41
MO0
MS~
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
ROL
RPZ
SBC
SDF
SDG
SES
SEW
SPC
SPCBC
SSV
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
~HD
AAYXX
CITATION
ID FETCH-LOGICAL-c303t-16e753b1e2dc456be6d70cec0c63efbd2a7f08bb83c714b43ad5bc183fb50c1f3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001554673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-739X
IngestDate Sat Nov 29 06:57:47 EST 2025
Sat Nov 29 17:08:20 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Online Learning
Data streams
Concept drifts
Asynchronous & decentralized SGD
Artificial neural networks
Language English
License This is an open access article under the CC BY license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-16e753b1e2dc456be6d70cec0c63efbd2a7f08bb83c714b43ad5bc183fb50c1f3
ORCID 0000-0002-0218-2413
OpenAccessLink https://dx.doi.org/10.1016/j.future.2025.108052
ParticipantIDs crossref_primary_10_1016_j_future_2025_108052
elsevier_sciencedirect_doi_10_1016_j_future_2025_108052
PublicationCentury 2000
PublicationDate February 2026
2026-02-00
PublicationDateYYYYMMDD 2026-02-01
PublicationDate_xml – month: 02
  year: 2026
  text: February 2026
PublicationDecade 2020
PublicationTitle Future generation computer systems
PublicationYear 2026
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References (b66) 2022
Zhang, Tan, Li (b21) 2018
Mahbobi, Tiemann (b56) 2015
(b13) 2022
Mishchenko, Bach, Even, Woodworth (b36) 2022; 35
M.T. Toghani, C.A. Uribe, Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation, in: 2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2022, pp. 1–8.
Ben-Nun, Hoefler (b33) 2019; 52
Cohen, Daniely, Drori, Koren, Schain (b37) 2021; 34
Najafabadi, Villanustre, Khoshgoftaar, Seliya, Wald, Muharemagic (b12) 2015; 2
Eedala (b67) 2023
Lu, Liu, Dong, Gu, Gama, Zhang (b9) 2018; 31
Wang, Lu, Wang, Zhang (b22) 2022; 81
Varrette, Cartiaux, Peter, Kieffer, Valette, Olloh (b61) 2022
Duchi, Hazan, Singer (b27) 2011; 12
Dalle Lucca Tosi (b52) 2024
Verma (b57) 2025; 10
Venugopal, Theobald, Tassetti, Chaychi, Tawakuli (b20) 2022
Carbone, Katsifodimos, Ewen, Markl, Haridi, Tzoumas (b18) 2015; 36
Recht, Re, Wright, Niu (b34) 2011; 24
Hariri, Fredericks, Bowers (b2) 2019; 6
Paladini, Bernasconi de Luca, Carminati, Polino, Trovò, Zanero (b4) 2023
Thompson, Ge, Manso (b3) 2022
Ouyang, Dong, Xu, Xiao (b29) 2021; 149
Simonyan, Zisserman (b64) 2015
Chen, Liu, Hong (b5) 2023
Webb (b10) 2010
.
Kingma, Ba (b26) 2014
V.E. Venugopal, M. Theobald, S. Chaychi, A. Tawakuli, AIR: A light-weight yet high-performance dataflow engine based on asynchronous iterative routing, in: 2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing, SBAC-PAD, 2020, pp. 51–58.
Ram, Nedić, Veeravalli (b47) 2009
Le, Yang (b65) 2015; 7
Wu, Yuan, Ling, Yin, Sayed (b44) 2017; 4
Lian, Zhang, Zhang, Liu (b48) 2018
Even, Hendrikx, Massoulié (b45) 2024
Srivastava, Nedic (b46) 2011; 5
Krizhevsky, Hinton (b63) 2009
A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, S. Stich, A unified theory of decentralized SGD with changing topology and local updates, in: International Conference on Machine Learning, 2020, pp. 5381–5393.
Jiang, Zhang, Gu, Zhu (b50) 2021; 34
Arjevani, Shamir, Srebro (b38) 2020
Assran, Rabbat (b43) 2020; 66
M. Bornstein, T. Rabbani, E.Z. Wang, A. Bedi, F. Huang, SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication, in: The Eleventh International Conference on Learning Representations, 2023.
Goodfellow, Bengio, Courville (b8) 2016
Mahbobi, Tiemann (b54) 2016
Ruxton (b53) 2006; 17
Basterrech, Kasprzak, Platoš, Woźniak (b7) 2023
Xie, Koyejo, Gupta (b39) 2019
Bifet, Gavalda (b55) 2007
Dean, Corrado, Monga, Chen, Devin, Mao, Ranzato, Senior, Tucker, Yang (b59) 2012; 25
Assran, Loizou, Ballas, Rabbat (b49) 2019
Koloskova, Stich, Jaggi (b35) 2022
Kreps, Narkhede, Rao (b17) 2011; vol. 11
Hadsell, Rao, Rusu, Pascanu (b24) 2020; 24
Hoi, Sahoo, Lu, Zhao (b1) 2021; 459
Tosi, Venugopal, Theobald (b60) 2022
(b14) 2022
Nguyen, Ly, Ho, Al-Ansari, Le, Tran, Prakash, Pham (b23) 2021; 2021
Tantisripreecha, Soonthomphisaj (b6) 2018
Lian, Zhang, Zhang, Hsieh, Zhang, Liu (b31) 2017; 30
J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba, Federated learning with buffered asynchronous aggregation, in: International Conference on Artificial Intelligence and Statistics, 2022, pp. 3581–3607.
M.D.L. Tosi, V.E. Venugopal, M. Theobald, TensAIR: Real-Time Training of Neural Networks from Data-streams, in: Proceedings of the 2024 8th International Conference on Machine Learning and Soft Computing, 2024, pp. 73–82.
Agarwal, Duchi (b58) 2011; 24
LeCun, Bottou, Orr, Müller (b25) 2002
Cheng, Wang, Zhou, Zhang (b28) 2018; 35
Breiman (b11) 2001; 45
M.D.L. Tosi, M. Theobald, OPTWIN: Drift identification with optimal sub-windows, in: 2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW 2024), 2024, pp. 331–337
Mayer, Jacobsen (b30) 2020; 53
Wu, Liu, Magnusson, Johansson (b42) 2023
(b62) 2022
Cohen (10.1016/j.future.2025.108052_b37) 2021; 34
Mayer (10.1016/j.future.2025.108052_b30) 2020; 53
Hadsell (10.1016/j.future.2025.108052_b24) 2020; 24
(10.1016/j.future.2025.108052_b66) 2022
Simonyan (10.1016/j.future.2025.108052_b64) 2015
10.1016/j.future.2025.108052_b40
10.1016/j.future.2025.108052_b41
Krizhevsky (10.1016/j.future.2025.108052_b63) 2009
Verma (10.1016/j.future.2025.108052_b57) 2025; 10
(10.1016/j.future.2025.108052_b62) 2022
Tantisripreecha (10.1016/j.future.2025.108052_b6) 2018
Kingma (10.1016/j.future.2025.108052_b26) 2014
Paladini (10.1016/j.future.2025.108052_b4) 2023
Hariri (10.1016/j.future.2025.108052_b2) 2019; 6
Mahbobi (10.1016/j.future.2025.108052_b56) 2015
Dean (10.1016/j.future.2025.108052_b59) 2012; 25
10.1016/j.future.2025.108052_b15
Thompson (10.1016/j.future.2025.108052_b3) 2022
10.1016/j.future.2025.108052_b16
Wu (10.1016/j.future.2025.108052_b42) 2023
10.1016/j.future.2025.108052_b51
Tosi (10.1016/j.future.2025.108052_b60) 2022
Breiman (10.1016/j.future.2025.108052_b11) 2001; 45
Jiang (10.1016/j.future.2025.108052_b50) 2021; 34
Lian (10.1016/j.future.2025.108052_b48) 2018
Cheng (10.1016/j.future.2025.108052_b28) 2018; 35
Nguyen (10.1016/j.future.2025.108052_b23) 2021; 2021
Ram (10.1016/j.future.2025.108052_b47) 2009
Hoi (10.1016/j.future.2025.108052_b1) 2021; 459
Eedala (10.1016/j.future.2025.108052_b67) 2023
Basterrech (10.1016/j.future.2025.108052_b7) 2023
Ouyang (10.1016/j.future.2025.108052_b29) 2021; 149
Lian (10.1016/j.future.2025.108052_b31) 2017; 30
Ben-Nun (10.1016/j.future.2025.108052_b33) 2019; 52
Najafabadi (10.1016/j.future.2025.108052_b12) 2015; 2
Srivastava (10.1016/j.future.2025.108052_b46) 2011; 5
(10.1016/j.future.2025.108052_b14) 2022
Kreps (10.1016/j.future.2025.108052_b17) 2011; vol. 11
Mahbobi (10.1016/j.future.2025.108052_b54) 2016
10.1016/j.future.2025.108052_b19
Wu (10.1016/j.future.2025.108052_b44) 2017; 4
Lu (10.1016/j.future.2025.108052_b9) 2018; 31
Duchi (10.1016/j.future.2025.108052_b27) 2011; 12
Assran (10.1016/j.future.2025.108052_b49) 2019
Varrette (10.1016/j.future.2025.108052_b61) 2022
Chen (10.1016/j.future.2025.108052_b5) 2023
Assran (10.1016/j.future.2025.108052_b43) 2020; 66
10.1016/j.future.2025.108052_b32
Xie (10.1016/j.future.2025.108052_b39) 2019
Webb (10.1016/j.future.2025.108052_b10) 2010
Even (10.1016/j.future.2025.108052_b45) 2024
Recht (10.1016/j.future.2025.108052_b34) 2011; 24
Venugopal (10.1016/j.future.2025.108052_b20) 2022
Koloskova (10.1016/j.future.2025.108052_b35) 2022
Arjevani (10.1016/j.future.2025.108052_b38) 2020
Le (10.1016/j.future.2025.108052_b65) 2015; 7
Ruxton (10.1016/j.future.2025.108052_b53) 2006; 17
Wang (10.1016/j.future.2025.108052_b22) 2022; 81
Zhang (10.1016/j.future.2025.108052_b21) 2018
Dalle Lucca Tosi (10.1016/j.future.2025.108052_b52) 2024
Carbone (10.1016/j.future.2025.108052_b18) 2015; 36
Goodfellow (10.1016/j.future.2025.108052_b8) 2016
Mishchenko (10.1016/j.future.2025.108052_b36) 2022; 35
Bifet (10.1016/j.future.2025.108052_b55) 2007
(10.1016/j.future.2025.108052_b13) 2022
LeCun (10.1016/j.future.2025.108052_b25) 2002
Agarwal (10.1016/j.future.2025.108052_b58) 2011; 24
References_xml – year: 2016
  ident: b8
  article-title: Deep Learning
– reference: M. Bornstein, T. Rabbani, E.Z. Wang, A. Bedi, F. Huang, SWIFT: Rapid Decentralized Federated Learning via Wait-Free Model Communication, in: The Eleventh International Conference on Learning Representations, 2023.
– volume: 24
  year: 2011
  ident: b58
  article-title: Distributed delayed stochastic optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 17
  start-page: 688
  year: 2006
  end-page: 690
  ident: b53
  article-title: The unequal variance t-test is an underused alternative to student’s t-test and the Mann–Whitney U test
  publication-title: Behav. Ecol.
– volume: 7
  start-page: 3
  year: 2015
  ident: b65
  article-title: Tiny imagenet visual recognition challenge
  publication-title: CS 231N
– volume: 35
  start-page: 126
  year: 2018
  end-page: 136
  ident: b28
  article-title: Model compression and acceleration for deep neural networks: The principles, progress, and challenges
  publication-title: IEEE Signal Process. Mag.
– year: 2022
  ident: b13
  article-title: Deep learning on flink
– year: 2019
  ident: b39
  article-title: Asynchronous federated optimization
– year: 2022
  ident: b20
  article-title: Targeting a light-weight and multi-channel approach for distributed stream processing
  publication-title: J. Parallel Distrib. Comput.
– start-page: 111
  year: 2020
  end-page: 132
  ident: b38
  article-title: A tight convergence analysis for stochastic gradient descent with delayed updates
  publication-title: Algorithmic Learning Theory
– volume: 5
  start-page: 772
  year: 2011
  end-page: 790
  ident: b46
  article-title: Distributed asynchronous constrained stochastic optimization
  publication-title: IEEE J. Sel. Top. Signal Process.
– start-page: 443
  year: 2007
  end-page: 448
  ident: b55
  article-title: Learning from time-changing data with adaptive windowing
  publication-title: Proceedings of the 2007 SIAM International Conference on Data Mining
– volume: vol. 11
  start-page: 1
  year: 2011
  end-page: 7
  ident: b17
  article-title: Kafka: A distributed messaging system for log processing
  publication-title: Proceedings of the NetDB
– year: 2009
  ident: b63
  article-title: Learning multiple layers of features from tiny images
– volume: 6
  start-page: 1
  year: 2019
  end-page: 16
  ident: b2
  article-title: Uncertainty in big data analytics: survey, opportunities, and challenges
  publication-title: J. Big Data
– start-page: 55
  year: 2016
  end-page: 63
  ident: b54
  article-title: Introductory business statistics with interactive spreadsheets-1st Canadian edition
– volume: 66
  start-page: 168
  year: 2020
  end-page: 183
  ident: b43
  article-title: Asynchronous gradient push
  publication-title: IEEE Trans. Autom. Control
– start-page: 713
  year: 2010
  end-page: 714
  ident: b10
  article-title: Naïve Bayes
  publication-title: Encyclopedia of Machine Learning
– year: 2015
  ident: b56
  article-title: Regression basics
  publication-title: Introductory Business Statistics with Interactive Spreadsheets-1st Canadian Edition
– reference: M.T. Toghani, C.A. Uribe, Unbounded Gradients in Federated Learning with Buffered Asynchronous Aggregation, in: 2022 58th Annual Allerton Conference on Communication, Control, and Computing (Allerton), 2022, pp. 1–8.
– volume: 81
  start-page: 41611
  year: 2022
  end-page: 41660
  ident: b22
  article-title: A review on extreme learning machine
  publication-title: Multimedia Tools Appl.
– start-page: 314
  year: 2022
  end-page: 315
  ident: b60
  article-title: Convergence-time analysis of asynchronous distributed artificial neural networks
  publication-title: 5th Joint International Conference on Data Science & Management of Data
– reference: M.D.L. Tosi, V.E. Venugopal, M. Theobald, TensAIR: Real-Time Training of Neural Networks from Data-streams, in: Proceedings of the 2024 8th International Conference on Machine Learning and Soft Computing, 2024, pp. 73–82.
– start-page: 1
  year: 2023
  end-page: 10
  ident: b7
  article-title: A continual learning system with self domain shift adaptation for fake news detection
  publication-title: 2023 IEEE 10th International Conference on Data Science and Advanced Analytics
– start-page: 9
  year: 2002
  end-page: 50
  ident: b25
  article-title: Efficient backprop
  publication-title: Neural Networks: Tricks of the Trade
– volume: 12
  year: 2011
  ident: b27
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: b61
  article-title: Management of an academic HPC & research computing facility: The ULHPC experience 2.0
  publication-title: Proc. of the 6th ACM High Performance Computing and Cluster Technologies Conf.
– volume: 10
  start-page: 34
  year: 2025
  end-page: 46
  ident: b57
  article-title: A comprehensive framework for residual analysis in regression and machine learning
  publication-title: J. Inf. Syst. Eng. Manag.
– year: 2022
  ident: b3
  article-title: The importance of (exponentially more) computing power
– volume: 30
  year: 2017
  ident: b31
  article-title: Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 52
  start-page: 1
  year: 2019
  end-page: 43
  ident: b33
  article-title: Demystifying parallel and distributed deep learning: An in-depth concurrency analysis
  publication-title: ACM Comput. Surv.
– reference: J. Nguyen, K. Malik, H. Zhan, A. Yousefpour, M. Rabbat, M. Malek, D. Huba, Federated learning with buffered asynchronous aggregation, in: International Conference on Artificial Intelligence and Statistics, 2022, pp. 3581–3607.
– volume: 2021
  start-page: 1
  year: 2021
  end-page: 15
  ident: b23
  article-title: Influence of data splitting on performance of machine learning models in prediction of shear strength of soil
  publication-title: Math. Probl. Eng.
– volume: 36
  year: 2015
  ident: b18
  article-title: Apache Flink: Stream and batch processing in a single engine
  publication-title: Bull. the IEEE Comput. Soc. Tech. Comm. Data Eng.
– year: 2024
  ident: b45
  article-title: Asynchronous speedup in decentralized optimization
  publication-title: IEEE Trans. Autom. Control
– year: 2022
  ident: b62
  article-title: Convolutional neural network (CNN): Tensorflow core
– year: 2014
  ident: b26
  article-title: Adam: A method for stochastic optimization
– volume: 2
  start-page: 1
  year: 2015
  end-page: 21
  ident: b12
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
– volume: 24
  year: 2011
  ident: b34
  article-title: Hogwild!: A lock-free approach to parallelizing stochastic gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 293
  year: 2017
  end-page: 307
  ident: b44
  article-title: Decentralized consensus optimization with asynchrony and delays
  publication-title: IEEE Trans. Signal Inf. Process. over Netw.
– volume: 24
  start-page: 1028
  year: 2020
  end-page: 1040
  ident: b24
  article-title: Embracing change: Continual learning in deep neural networks
  publication-title: Trends Cogn. Sci.
– start-page: 1082
  year: 2023
  end-page: 1087
  ident: b42
  article-title: Delay-agnostic asynchronous distributed optimization
  publication-title: 2023 62nd IEEE Conference on Decision and Control
– start-page: 344
  year: 2019
  end-page: 353
  ident: b49
  article-title: Stochastic gradient push for distributed deep learning
  publication-title: International Conference on Machine Learning
– year: 2023
  ident: b5
  article-title: An online learning approach to dynamic pricing and capacity sizing in service systems
  publication-title: Oper. Res.
– volume: 31
  start-page: 2346
  year: 2018
  end-page: 2363
  ident: b9
  article-title: Learning under concept drift: A review
  publication-title: IEEE Trans. Knowl. Data Eng.
– year: 2022
  ident: b35
  article-title: Sharper convergence guarantees for asynchronous SGD for distributed and federated learning
  publication-title: Advances in Neural Information Processing Systems
– volume: 34
  start-page: 20185
  year: 2021
  end-page: 20196
  ident: b50
  article-title: Asynchronous decentralized online learning
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 3043
  year: 2018
  end-page: 3052
  ident: b48
  article-title: Asynchronous decentralized parallel stochastic gradient descent
  publication-title: International Conference on Machine Learning
– year: 2015
  ident: b64
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, May 7-9, 2015, Conference Track Proceedings
– volume: 25
  year: 2012
  ident: b59
  article-title: Large scale distributed deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 45
  year: 2018
  end-page: 50
  ident: b21
  article-title: A survey of online sequential extreme learning machine
  publication-title: 2018 5th International Conference on Control, Decision and Information Technologies
– year: 2023
  ident: b67
  article-title: Flight delay data — kaggle.com
– volume: 45
  start-page: 5
  year: 2001
  end-page: 32
  ident: b11
  article-title: Random forests
  publication-title: Mach. Learn.
– reference: A. Koloskova, N. Loizou, S. Boreiri, M. Jaggi, S. Stich, A unified theory of decentralized SGD with changing topology and local updates, in: International Conference on Machine Learning, 2020, pp. 5381–5393.
– volume: 53
  start-page: 1
  year: 2020
  end-page: 37
  ident: b30
  article-title: Scalable deep learning on distributed infrastructures: Challenges, techniques, and tools
  publication-title: ACM Comput. Surv.
– reference: M.D.L. Tosi, M. Theobald, OPTWIN: Drift identification with optimal sub-windows, in: 2024 IEEE 40th International Conference on Data Engineering Workshops (ICDEW 2024), 2024, pp. 331–337,
– start-page: 275
  year: 2023
  end-page: 292
  ident: b4
  article-title: Advancing fraud detection systems through online learning
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
– year: 2022
  ident: b14
  article-title: Robust machine learning on streaming data using kafka and Tensorflow-IO
– start-page: 3581
  year: 2009
  end-page: 3586
  ident: b47
  article-title: Asynchronous gossip algorithms for stochastic optimization
  publication-title: Proceedings of the 48h IEEE Conference on Decision and Control (CDC) Held Jointly with 2009 28th Chinese Control Conference
– year: 2024
  ident: b52
  article-title: Online Learning Using Distributed Neural Networks
– year: 2022
  ident: b66
  article-title: TensorFlow
– reference: .
– volume: 34
  start-page: 9024
  year: 2021
  end-page: 9035
  ident: b37
  article-title: Asynchronous stochastic optimization robust to arbitrary delays
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 135
  year: 2018
  end-page: 139
  ident: b6
  article-title: Stock market movement prediction using LDA-online learning model
  publication-title: 2018 19th IEEE/ACIS International Conference on Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing
– volume: 149
  start-page: 52
  year: 2021
  end-page: 65
  ident: b29
  article-title: Communication optimization strategies for distributed deep neural network training: A survey
  publication-title: J. Parallel Distrib. Comput.
– volume: 459
  start-page: 249
  year: 2021
  end-page: 289
  ident: b1
  article-title: Online learning: A comprehensive survey
  publication-title: Neurocomputing
– reference: V.E. Venugopal, M. Theobald, S. Chaychi, A. Tawakuli, AIR: A light-weight yet high-performance dataflow engine based on asynchronous iterative routing, in: 2020 IEEE 32nd International Symposium on Computer Architecture and High Performance Computing, SBAC-PAD, 2020, pp. 51–58.
– volume: 35
  start-page: 420
  year: 2022
  end-page: 433
  ident: b36
  article-title: Asynchronous SGD beats minibatch SGD under arbitrary delays
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 66
  start-page: 168
  issue: 1
  year: 2020
  ident: 10.1016/j.future.2025.108052_b43
  article-title: Asynchronous gradient push
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/TAC.2020.2981035
– start-page: 3581
  year: 2009
  ident: 10.1016/j.future.2025.108052_b47
  article-title: Asynchronous gossip algorithms for stochastic optimization
– year: 2016
  ident: 10.1016/j.future.2025.108052_b8
– year: 2015
  ident: 10.1016/j.future.2025.108052_b64
  article-title: Very deep convolutional networks for large-scale image recognition
– volume: 24
  year: 2011
  ident: 10.1016/j.future.2025.108052_b58
  article-title: Distributed delayed stochastic optimization
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.future.2025.108052_b40
– year: 2022
  ident: 10.1016/j.future.2025.108052_b66
– start-page: 3043
  year: 2018
  ident: 10.1016/j.future.2025.108052_b48
  article-title: Asynchronous decentralized parallel stochastic gradient descent
– volume: 12
  issue: 7
  year: 2011
  ident: 10.1016/j.future.2025.108052_b27
  article-title: Adaptive subgradient methods for online learning and stochastic optimization
  publication-title: J. Mach. Learn. Res.
– year: 2022
  ident: 10.1016/j.future.2025.108052_b61
  article-title: Management of an academic HPC & research computing facility: The ULHPC experience 2.0
– start-page: 344
  year: 2019
  ident: 10.1016/j.future.2025.108052_b49
  article-title: Stochastic gradient push for distributed deep learning
– volume: 24
  year: 2011
  ident: 10.1016/j.future.2025.108052_b34
  article-title: Hogwild!: A lock-free approach to parallelizing stochastic gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: 10.1016/j.future.2025.108052_b45
  article-title: Asynchronous speedup in decentralized optimization
  publication-title: IEEE Trans. Autom. Control
– volume: 5
  start-page: 772
  issue: 4
  year: 2011
  ident: 10.1016/j.future.2025.108052_b46
  article-title: Distributed asynchronous constrained stochastic optimization
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2011.2118740
– year: 2022
  ident: 10.1016/j.future.2025.108052_b13
– volume: 2021
  start-page: 1
  year: 2021
  ident: 10.1016/j.future.2025.108052_b23
  article-title: Influence of data splitting on performance of machine learning models in prediction of shear strength of soil
  publication-title: Math. Probl. Eng.
– year: 2022
  ident: 10.1016/j.future.2025.108052_b20
  article-title: Targeting a light-weight and multi-channel approach for distributed stream processing
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2022.04.022
– start-page: 45
  year: 2018
  ident: 10.1016/j.future.2025.108052_b21
  article-title: A survey of online sequential extreme learning machine
– year: 2022
  ident: 10.1016/j.future.2025.108052_b3
– year: 2009
  ident: 10.1016/j.future.2025.108052_b63
– volume: 149
  start-page: 52
  year: 2021
  ident: 10.1016/j.future.2025.108052_b29
  article-title: Communication optimization strategies for distributed deep neural network training: A survey
  publication-title: J. Parallel Distrib. Comput.
  doi: 10.1016/j.jpdc.2020.11.005
– volume: 35
  start-page: 420
  year: 2022
  ident: 10.1016/j.future.2025.108052_b36
  article-title: Asynchronous SGD beats minibatch SGD under arbitrary delays
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2024
  ident: 10.1016/j.future.2025.108052_b52
– start-page: 1
  year: 2023
  ident: 10.1016/j.future.2025.108052_b7
  article-title: A continual learning system with self domain shift adaptation for fake news detection
– volume: 52
  start-page: 1
  issue: 4
  year: 2019
  ident: 10.1016/j.future.2025.108052_b33
  article-title: Demystifying parallel and distributed deep learning: An in-depth concurrency analysis
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3320060
– ident: 10.1016/j.future.2025.108052_b41
  doi: 10.1109/Allerton49937.2022.9929409
– year: 2022
  ident: 10.1016/j.future.2025.108052_b14
– ident: 10.1016/j.future.2025.108052_b15
  doi: 10.1145/3647750.3647762
– volume: 53
  start-page: 1
  issue: 1
  year: 2020
  ident: 10.1016/j.future.2025.108052_b30
  article-title: Scalable deep learning on distributed infrastructures: Challenges, techniques, and tools
  publication-title: ACM Comput. Surv.
  doi: 10.1145/3363554
– ident: 10.1016/j.future.2025.108052_b16
  doi: 10.1109/ICDEW61823.2024.00049
– volume: vol. 11
  start-page: 1
  year: 2011
  ident: 10.1016/j.future.2025.108052_b17
  article-title: Kafka: A distributed messaging system for log processing
– year: 2022
  ident: 10.1016/j.future.2025.108052_b35
  article-title: Sharper convergence guarantees for asynchronous SGD for distributed and federated learning
– year: 2023
  ident: 10.1016/j.future.2025.108052_b67
– start-page: 275
  year: 2023
  ident: 10.1016/j.future.2025.108052_b4
  article-title: Advancing fraud detection systems through online learning
– volume: 7
  start-page: 3
  issue: 7
  year: 2015
  ident: 10.1016/j.future.2025.108052_b65
  article-title: Tiny imagenet visual recognition challenge
  publication-title: CS 231N
– volume: 31
  start-page: 2346
  issue: 12
  year: 2018
  ident: 10.1016/j.future.2025.108052_b9
  article-title: Learning under concept drift: A review
  publication-title: IEEE Trans. Knowl. Data Eng.
– start-page: 111
  year: 2020
  ident: 10.1016/j.future.2025.108052_b38
  article-title: A tight convergence analysis for stochastic gradient descent with delayed updates
– volume: 34
  start-page: 20185
  year: 2021
  ident: 10.1016/j.future.2025.108052_b50
  article-title: Asynchronous decentralized online learning
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 25
  year: 2012
  ident: 10.1016/j.future.2025.108052_b59
  article-title: Large scale distributed deep networks
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 10.1016/j.future.2025.108052_b19
  doi: 10.1109/SBAC-PAD49847.2020.00018
– volume: 30
  year: 2017
  ident: 10.1016/j.future.2025.108052_b31
  article-title: Can decentralized algorithms outperform centralized algorithms? a case study for decentralized parallel stochastic gradient descent
  publication-title: Adv. Neural Inf. Process. Syst.
– year: 2022
  ident: 10.1016/j.future.2025.108052_b62
– volume: 81
  start-page: 41611
  issue: 29
  year: 2022
  ident: 10.1016/j.future.2025.108052_b22
  article-title: A review on extreme learning machine
  publication-title: Multimedia Tools Appl.
  doi: 10.1007/s11042-021-11007-7
– volume: 17
  start-page: 688
  issue: 4
  year: 2006
  ident: 10.1016/j.future.2025.108052_b53
  article-title: The unequal variance t-test is an underused alternative to student’s t-test and the Mann–Whitney U test
  publication-title: Behav. Ecol.
  doi: 10.1093/beheco/ark016
– ident: 10.1016/j.future.2025.108052_b32
– volume: 45
  start-page: 5
  year: 2001
  ident: 10.1016/j.future.2025.108052_b11
  article-title: Random forests
  publication-title: Mach. Learn.
  doi: 10.1023/A:1010933404324
– volume: 10
  start-page: 34
  issue: 31s
  year: 2025
  ident: 10.1016/j.future.2025.108052_b57
  article-title: A comprehensive framework for residual analysis in regression and machine learning
  publication-title: J. Inf. Syst. Eng. Manag.
– volume: 6
  start-page: 1
  issue: 1
  year: 2019
  ident: 10.1016/j.future.2025.108052_b2
  article-title: Uncertainty in big data analytics: survey, opportunities, and challenges
  publication-title: J. Big Data
  doi: 10.1186/s40537-019-0206-3
– start-page: 443
  year: 2007
  ident: 10.1016/j.future.2025.108052_b55
  article-title: Learning from time-changing data with adaptive windowing
– year: 2015
  ident: 10.1016/j.future.2025.108052_b56
  article-title: Regression basics
– ident: 10.1016/j.future.2025.108052_b51
– volume: 34
  start-page: 9024
  year: 2021
  ident: 10.1016/j.future.2025.108052_b37
  article-title: Asynchronous stochastic optimization robust to arbitrary delays
  publication-title: Adv. Neural Inf. Process. Syst.
– start-page: 1082
  year: 2023
  ident: 10.1016/j.future.2025.108052_b42
  article-title: Delay-agnostic asynchronous distributed optimization
– volume: 35
  start-page: 126
  issue: 1
  year: 2018
  ident: 10.1016/j.future.2025.108052_b28
  article-title: Model compression and acceleration for deep neural networks: The principles, progress, and challenges
  publication-title: IEEE Signal Process. Mag.
  doi: 10.1109/MSP.2017.2765695
– start-page: 135
  year: 2018
  ident: 10.1016/j.future.2025.108052_b6
  article-title: Stock market movement prediction using LDA-online learning model
– start-page: 9
  year: 2002
  ident: 10.1016/j.future.2025.108052_b25
  article-title: Efficient backprop
– volume: 24
  start-page: 1028
  issue: 12
  year: 2020
  ident: 10.1016/j.future.2025.108052_b24
  article-title: Embracing change: Continual learning in deep neural networks
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2020.09.004
– year: 2014
  ident: 10.1016/j.future.2025.108052_b26
– year: 2019
  ident: 10.1016/j.future.2025.108052_b39
– start-page: 713
  year: 2010
  ident: 10.1016/j.future.2025.108052_b10
  article-title: Naïve Bayes
– volume: 2
  start-page: 1
  issue: 1
  year: 2015
  ident: 10.1016/j.future.2025.108052_b12
  article-title: Deep learning applications and challenges in big data analytics
  publication-title: J. Big Data
  doi: 10.1186/s40537-014-0007-7
– volume: 36
  issue: 4
  year: 2015
  ident: 10.1016/j.future.2025.108052_b18
  article-title: Apache Flink: Stream and batch processing in a single engine
  publication-title: Bull. the IEEE Comput. Soc. Tech. Comm. Data Eng.
– start-page: 55
  year: 2016
  ident: 10.1016/j.future.2025.108052_b54
– volume: 459
  start-page: 249
  year: 2021
  ident: 10.1016/j.future.2025.108052_b1
  article-title: Online learning: A comprehensive survey
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2021.04.112
– year: 2023
  ident: 10.1016/j.future.2025.108052_b5
  article-title: An online learning approach to dynamic pricing and capacity sizing in service systems
  publication-title: Oper. Res.
  doi: 10.1287/opre.2020.612
– volume: 4
  start-page: 293
  issue: 2
  year: 2017
  ident: 10.1016/j.future.2025.108052_b44
  article-title: Decentralized consensus optimization with asynchrony and delays
  publication-title: IEEE Trans. Signal Inf. Process. over Netw.
– start-page: 314
  year: 2022
  ident: 10.1016/j.future.2025.108052_b60
  article-title: Convergence-time analysis of asynchronous distributed artificial neural networks
SSID ssj0001731
Score 2.4573104
Snippet Online Learning (OL) is a sub-field of Machine Learning (ML) which focuses on solving time-sensitive problems through iterative learning from data streams....
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 108052
SubjectTerms Artificial neural networks
Asynchronous & decentralized SGD
Concept drifts
Data streams
Online Learning
Title Online Learning from data streams via decentralized and asynchronous SGD
URI https://dx.doi.org/10.1016/j.future.2025.108052
Volume 175
WOSCitedRecordID wos001554673400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0167-739X
  databaseCode: AIEXJ
  dateStart: 19950201
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0001731
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtZ3fS9xAEMeX9uxDX6xtFW1t2QffSkqS3WSzj-KP2lKk4BXuLWRnN3IiObkfov3rnc1s7s6eFBX6EkIge2E-y9zMMvMdxvZM7awGZSLMlm0kdS2iCrIqqlzhRF1rIYn0T3V6WgwG-leY2T5pxwmopilubvTVf0WNzxC2b519Au75ovgA7xE6XhE7Xh8FnsRDO-HUc2og8YWgbV-IF2C4HlZfrAtlmcM_zpJi6-S2AS-V64tiz74dLoetx63yiB-37MKOgTANIkhBzyPz_mgypB6g2XiEe-ryEj9lBouCIC8GYMJxNGkYLB88pPNa5e40bKUjhg4o0fEq0Y7HXXhYGo6y4q3p4ODiK8mnYLKeZm3NI2na_qWDfeaX9itj0BYLqeRLtpaqTBc9trb__WjwY_4HnKgwhjJ8Stcx2Zb1rf7WwxHJUpTR32DrIT3g-4T1LXvhmnfsTTd6gwdP_J6dEGXeUeaeMveUeaDMkTK_R5kjZb5MmSPlTfb7-Kh_cBKFoRgRYLQxjZLcYYZpEpdawODXuNyqGBzEkAtXG5tWqo4LYwoBKpFGispmBtBx1yaLIanFFus1o8ZtMy61zZM8s5g1Cqkd6CqDVLk0BymVSYodFnWGKa9I-6TsigIvSjJk6Q1ZkiF3mOqsV4b4jeKyEoH_880Pz37zI3u92Ju7rDcdz9wn9gqup8PJ-HPYGXcRuG-x
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Online+Learning+from+data+streams+via+decentralized+and+asynchronous+SGD&rft.jtitle=Future+generation+computer+systems&rft.au=Tosi%2C+Mauro+Dalle+Lucca&rft.au=Theobald%2C+Martin&rft.date=2026-02-01&rft.pub=Elsevier+B.V&rft.issn=0167-739X&rft.volume=175&rft_id=info:doi/10.1016%2Fj.future.2025.108052&rft.externalDocID=S0167739X25003474
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-739X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-739X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-739X&client=summon