A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification

This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are estimated by experienced experts. First, a mean-variance-entropy model for uncertain portfolio optimization problem is presented by taking in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Chaos, solitons and fractals Jg. 146; S. 110842
Hauptverfasser: Li, Bo, Zhang, Ranran
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier Ltd 01.05.2021
Schlagworte:
ISSN:0960-0779, 1873-2887
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are estimated by experienced experts. First, a mean-variance-entropy model for uncertain portfolio optimization problem is presented by taking into account four criteria viz., return, risk, liquidity and diversification degree of portfolio. In our model, the investment return is quantified by uncertain expected value, the investment risk is characterized by uncertain variance and entropy is used to measure the diversification degree of portfolio. Moreover, different from the previous bi-objective optimization model, our model achieves both the maximum return and the minimum risk in a single objective form by introducing a risk aversion factor and the dimensional influence caused by different units is eliminated by normalization method. Then, two auxiliary portfolio selection models are transformed into different equivalent deterministic models. Finally, a numerical simulation is given to verify the effectiveness and practicality of our model.
AbstractList This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are estimated by experienced experts. First, a mean-variance-entropy model for uncertain portfolio optimization problem is presented by taking into account four criteria viz., return, risk, liquidity and diversification degree of portfolio. In our model, the investment return is quantified by uncertain expected value, the investment risk is characterized by uncertain variance and entropy is used to measure the diversification degree of portfolio. Moreover, different from the previous bi-objective optimization model, our model achieves both the maximum return and the minimum risk in a single objective form by introducing a risk aversion factor and the dimensional influence caused by different units is eliminated by normalization method. Then, two auxiliary portfolio selection models are transformed into different equivalent deterministic models. Finally, a numerical simulation is given to verify the effectiveness and practicality of our model.
ArticleNumber 110842
Author Zhang, Ranran
Li, Bo
Author_xml – sequence: 1
  givenname: Bo
  orcidid: 0000-0002-7796-9261
  surname: Li
  fullname: Li, Bo
  email: libnust@163.com
– sequence: 2
  givenname: Ranran
  surname: Zhang
  fullname: Zhang, Ranran
BookMark eNqFkMtOAkEQRTtGEwH9Ajf9A4PVPcxr4YIQXwmJG113in6EIkM39jQQ_HoHcOVCV5VU6lTuPUN26YO3jN0JGAsQ5f1qrJcYurEEKcZCQD2RF2wg6irPZF1Xl2wATQkZVFVzzYZdtwIAAaUcMJpyb_d8bdFnO4yEXtvM-hTD5sDXwdiWuxD5tl_HhOT5JsTkQkuBh02iNX1houD5ntKSt_S5JUPpwNEbbmhnY0eO9Onkhl05bDt7-zNH7OPp8X32ks3fnl9n03mmc8hTJvKmbCaAhYTc1BILZ121KKERukK3kGgMLCYCUcvCAVrbY7WpimKCeb2o6nzEmvNfHUPXReuUpnRKkCJSqwSoozO1Uidn6uhMnZ31bP6L3URaYzz8Qz2cKdvX2pGNqtNke2OGotVJmUB_8t8rsov_
CitedBy_id crossref_primary_10_1007_s00500_024_09897_4
crossref_primary_10_2298_FIL2432517C
crossref_primary_10_1016_j_automatica_2022_110751
crossref_primary_10_1016_j_cam_2024_115859
crossref_primary_10_1142_S0218488525500163
crossref_primary_10_1007_s40010_024_00905_8
crossref_primary_10_1016_j_cam_2024_116442
crossref_primary_10_1016_j_knosys_2022_109683
crossref_primary_10_1016_j_renene_2025_123897
crossref_primary_10_1016_j_chaos_2021_111371
crossref_primary_10_3390_econometrics11010008
crossref_primary_10_1016_j_ins_2022_09_032
crossref_primary_10_1007_s10700_025_09451_3
crossref_primary_10_1007_s10700_025_09452_2
crossref_primary_10_1016_j_chaos_2022_113081
crossref_primary_10_58886_jfi_v20i1_3061
crossref_primary_10_1142_S021962202350058X
crossref_primary_10_1016_j_matcom_2024_05_013
crossref_primary_10_1016_j_ins_2025_122429
crossref_primary_10_1016_j_physd_2025_134571
crossref_primary_10_1063_5_0209904
crossref_primary_10_1007_s00500_025_10623_x
crossref_primary_10_1016_j_intfin_2023_101737
crossref_primary_10_5937_sjm19_48723
crossref_primary_10_1016_j_chaos_2022_112213
crossref_primary_10_1016_j_apm_2021_08_006
crossref_primary_10_1016_j_chaos_2023_113125
crossref_primary_10_3390_jrfm15010030
crossref_primary_10_1109_ACCESS_2021_3082529
crossref_primary_10_3233_JIFS_222041
crossref_primary_10_1109_ACCESS_2021_3121518
crossref_primary_10_1007_s12652_023_04638_1
crossref_primary_10_1007_s10115_024_02133_3
crossref_primary_10_1016_j_eswa_2022_118896
crossref_primary_10_1016_j_najef_2023_102028
crossref_primary_10_1080_1331677X_2021_1955222
crossref_primary_10_3390_math13111885
crossref_primary_10_1016_j_eswa_2023_122059
crossref_primary_10_3390_math12152424
crossref_primary_10_1007_s12652_024_04766_2
crossref_primary_10_3390_e23101266
crossref_primary_10_3390_math12131921
Cites_doi 10.3390/e19120657
10.1016/j.ins.2016.01.042
10.1186/2195-5468-1-16
10.1002/mma.1467
10.1016/j.fss.2014.07.018
10.1016/j.econmod.2012.09.032
10.1080/00207721.2019.1648706
10.2307/2329964
10.1016/j.eswa.2011.11.119
10.1007/s00500-020-04751-9
10.1016/j.ejor.2009.05.003
10.1287/mnsc.30.10.1143
10.1080/07474930801960394
10.1016/j.ejor.2005.05.020
10.1287/mnsc.43.10.1437
10.1016/j.apm.2017.12.016
10.1016/j.cam.2008.09.008
10.1109/TFUZZ.2018.2829463
10.1016/S0960-0779(03)00071-7
10.1016/j.fss.2006.10.026
10.1016/j.eswa.2017.10.056
10.1016/j.asoc.2011.10.017
10.1016/j.apm.2019.06.019
10.1287/mnsc.37.5.519
10.1016/j.physa.2019.04.151
10.1007/s10700-010-9094-x
10.1016/S0019-9958(65)90241-X
10.1016/S0377-2217(00)00298-8
10.1057/jors.2014.51
10.1007/s00500-014-1535-y
10.3390/e19020080
ContentType Journal Article
Copyright 2021 Elsevier Ltd
Copyright_xml – notice: 2021 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.chaos.2021.110842
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Mathematics
EISSN 1873-2887
ExternalDocumentID 10_1016_j_chaos_2021_110842
S0960077921001958
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACDAQ
ACFVG
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HLZ
HMV
HVGLF
HZ~
IHE
J1W
KOM
LG9
M38
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SPD
SPG
SSQ
SSZ
T5K
WUQ
XPP
ZY4
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c303t-1396940a5203d82a5fef7b6091c7afb2add0b41aac25f0aeec308d7554a38b783
ISICitedReferencesCount 49
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647561300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0960-0779
IngestDate Sat Nov 29 07:07:44 EST 2025
Tue Nov 18 21:06:27 EST 2025
Fri Feb 23 02:43:40 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Portfolio optimization
Liquidity
Return rate
Uncertain variable
Diversification
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c303t-1396940a5203d82a5fef7b6091c7afb2add0b41aac25f0aeec308d7554a38b783
ORCID 0000-0002-7796-9261
ParticipantIDs crossref_citationtrail_10_1016_j_chaos_2021_110842
crossref_primary_10_1016_j_chaos_2021_110842
elsevier_sciencedirect_doi_10_1016_j_chaos_2021_110842
PublicationCentury 2000
PublicationDate May 2021
2021-05-00
PublicationDateYYYYMMDD 2021-05-01
PublicationDate_xml – month: 05
  year: 2021
  text: May 2021
PublicationDecade 2020
PublicationTitle Chaos, solitons and fractals
PublicationYear 2021
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mehralizade, Amini, Gildeh, Ahmadzade (bib0037) 2020; 24
Qin, Kar, Zheng (bib0030) 2016; 20
Simaan (bib0006) 1997; 43
Chen, Li, Liu (bib0033) 2019; 27
Zhai, Bai (bib0040) 2017; 47
Dai, Wang (bib0008) 2019; 523
Jana, Roy, Mazumder (bib0012) 2009; 228
Zhou, Liu (bib0021) 2017; 19
Kapur, Kesavan (bib0011) 1992
Fang, Lai, Wang (bib0024) 2006; 175
Parra, Terol, Uria (bib0025) 2001; 133
Zhang, Huang, Zhang (bib0029) 2015; 66
Zadeh (bib0014) 1965; 8
Zhang, Zhang (bib0017) 2014; 255
Ammar, Khalifa (bib0020) 2003; 18
Lu, Zhang, Qiu, Gao (bib0035) 2019; 37
Huang (bib0043) 2011; 10
Markowitz (bib0001) 1952; 7
Bera, Park (bib0010) 2018; 27
Bhattacharyya, Chatterjee, Kar (bib0038) 2013; 1
Vercher, Bermúdez, Segura (bib0019) 2007; 158
Huang, Ying (bib0026) 2013; 30
Li, Zhu, Sun, Aw, Teo (bib0032) 2018; 56
Aksarayli, Pala (bib0009) 2018; 94
Witbooi, Schalkwyk, Muller (bib0007) 2011; 34
Mehlawat (bib0022) 2016; 345
Gao, Liu (bib0039) 2017; 19
Konno, Yamazaki (bib0002) 1990; 37
Huang (bib0028) 2012; 39
Liu (bib0041) 2009; 3
Liu, Gao (bib0016) 2006; 14
Liu (bib0027) 2007
Kapur (bib0013) 1989
Speranza (bib0004) 1993; 14
Li, Sun, Aw, Teo (bib0034) 2019; 76
Perold (bib0005) 1984; 30
Zhang (bib0031) 2016; 15
Huang, Di (bib0036) 2020; 51
Deng, Li (bib0015) 2012; 12
Hogan, Warren (bib0003) 1974; 9
Li, Qin, Kar (bib0018) 2010; 202
Fang, Rajasekera, Tsao (bib0023) 1997
Aksarayli (10.1016/j.chaos.2021.110842_bib0009) 2018; 94
Huang (10.1016/j.chaos.2021.110842_bib0036) 2020; 51
Huang (10.1016/j.chaos.2021.110842_bib0026) 2013; 30
Zhang (10.1016/j.chaos.2021.110842_bib0031) 2016; 15
Qin (10.1016/j.chaos.2021.110842_bib0030) 2016; 20
Zhai (10.1016/j.chaos.2021.110842_bib0040) 2017; 47
Liu (10.1016/j.chaos.2021.110842_bib0016) 2006; 14
Mehralizade (10.1016/j.chaos.2021.110842_bib0037) 2020; 24
Simaan (10.1016/j.chaos.2021.110842_bib0006) 1997; 43
Dai (10.1016/j.chaos.2021.110842_bib0008) 2019; 523
Hogan (10.1016/j.chaos.2021.110842_bib0003) 1974; 9
Zhang (10.1016/j.chaos.2021.110842_bib0017) 2014; 255
Witbooi (10.1016/j.chaos.2021.110842_bib0007) 2011; 34
Ammar (10.1016/j.chaos.2021.110842_bib0020) 2003; 18
Fang (10.1016/j.chaos.2021.110842_bib0024) 2006; 175
Bhattacharyya (10.1016/j.chaos.2021.110842_bib0038) 2013; 1
Huang (10.1016/j.chaos.2021.110842_bib0028) 2012; 39
Li (10.1016/j.chaos.2021.110842_bib0032) 2018; 56
Liu (10.1016/j.chaos.2021.110842_bib0041) 2009; 3
Speranza (10.1016/j.chaos.2021.110842_bib0004) 1993; 14
Bera (10.1016/j.chaos.2021.110842_bib0010) 2018; 27
Markowitz (10.1016/j.chaos.2021.110842_bib0001) 1952; 7
Vercher (10.1016/j.chaos.2021.110842_bib0019) 2007; 158
Zhou (10.1016/j.chaos.2021.110842_bib0021) 2017; 19
Fang (10.1016/j.chaos.2021.110842_bib0023) 1997
Huang (10.1016/j.chaos.2021.110842_bib0043) 2011; 10
Li (10.1016/j.chaos.2021.110842_bib0018) 2010; 202
Zhang (10.1016/j.chaos.2021.110842_bib0029) 2015; 66
Gao (10.1016/j.chaos.2021.110842_bib0039) 2017; 19
Konno (10.1016/j.chaos.2021.110842_bib0002) 1990; 37
Mehlawat (10.1016/j.chaos.2021.110842_bib0022) 2016; 345
Lu (10.1016/j.chaos.2021.110842_bib0035) 2019; 37
Li (10.1016/j.chaos.2021.110842_bib0034) 2019; 76
Zadeh (10.1016/j.chaos.2021.110842_bib0014) 1965; 8
Liu (10.1016/j.chaos.2021.110842_bib0027) 2007
Chen (10.1016/j.chaos.2021.110842_bib0033) 2019; 27
Jana (10.1016/j.chaos.2021.110842_bib0012) 2009; 228
Kapur (10.1016/j.chaos.2021.110842_bib0013) 1989
Kapur (10.1016/j.chaos.2021.110842_bib0011) 1992
Parra (10.1016/j.chaos.2021.110842_bib0025) 2001; 133
Deng (10.1016/j.chaos.2021.110842_bib0015) 2012; 12
Perold (10.1016/j.chaos.2021.110842_bib0005) 1984; 30
References_xml – volume: 10
  start-page: 71
  year: 2011
  end-page: 89
  ident: bib0043
  article-title: Mean-risk model for uncertain portfolio selection
  publication-title: Fuzzy Optim Decis Mak
– year: 2007
  ident: bib0027
  article-title: Uncertainty theory
– volume: 66
  start-page: 761
  year: 2015
  end-page: 770
  ident: bib0029
  article-title: A mean-risk index model for uncertain capital budgeting
  publication-title: J Oper Res Soc
– volume: 9
  start-page: 1
  year: 1974
  end-page: 11
  ident: bib0003
  article-title: Toward the development of an equilibrium capital-market model based on semivariance
  publication-title: J Financ Quant Anal
– volume: 158
  start-page: 769
  year: 2007
  end-page: 782
  ident: bib0019
  article-title: Fuzzy portfolio optimization under downside risk measures
  publication-title: Fuzzy Sets Syst
– year: 1989
  ident: bib0013
  article-title: Maximum entropy models in scienceand engineering
– volume: 14
  start-page: 107
  year: 1993
  end-page: 123
  ident: bib0004
  article-title: Linear programming models for portfolio optimization
  publication-title: Finance
– year: 1992
  ident: bib0011
  article-title: Entropy optimization principles with applications
– volume: 255
  start-page: 74
  year: 2014
  end-page: 91
  ident: bib0017
  article-title: Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints
  publication-title: Fuzzy Sets Syst
– volume: 37
  start-page: 8417
  year: 2019
  end-page: 8439
  ident: bib0035
  article-title: A multi-period regret minimization model for uncertain portfolio selection with bankruptcy constraint
  publication-title: J Intell Fuzzy Syst
– volume: 1
  start-page: 1
  year: 2013
  end-page: 17
  ident: bib0038
  article-title: Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs
  publication-title: J Uncertain Anal Appl
– volume: 27
  start-page: 484
  year: 2018
  end-page: 512
  ident: bib0010
  article-title: Optimal portfolio diversification using the maximum entropy principle
  publication-title: Econom Rev
– volume: 27
  start-page: 1023
  year: 2019
  end-page: 1036
  ident: bib0033
  article-title: A novel hybrid ICA-FA algorithm for multi-period uncertain portfolio optimization model based on multiple criteria
  publication-title: IEEE Trans Fuzzy Syst
– volume: 14
  start-page: 16
  year: 2006
  end-page: 21
  ident: bib0016
  article-title: Mean-WCVar fuzzy portfolio optimization model of risk property combination
  publication-title: Chin J Manag Sci
– volume: 3
  start-page: 3
  year: 2009
  end-page: 10
  ident: bib0041
  article-title: Some research problems in uncertainty theory
  publication-title: J Uncertain Syst
– volume: 47
  start-page: 1
  year: 2017
  end-page: 19
  ident: bib0040
  article-title: Mean-variance model for portfolio optimization with background risk based on uncertainty theory
  publication-title: Int J Gen Syst
– volume: 51
  start-page: 2079
  year: 2020
  end-page: 2090
  ident: bib0036
  article-title: Uncertain portfolio selection with mental accounts
  publication-title: Int J Syst Sci
– volume: 18
  start-page: 1045
  year: 2003
  end-page: 1054
  ident: bib0020
  article-title: Fuzzy portfolio optimization a quadratic programming approach
  publication-title: Chaos Solitons Fractals
– volume: 39
  start-page: 5887
  year: 2012
  end-page: 5893
  ident: bib0028
  article-title: Mean-variance models for portfolio selection subject to experts’ estimations
  publication-title: Expert Syst Appl
– volume: 76
  start-page: 274
  year: 2019
  end-page: 281
  ident: bib0034
  article-title: Uncertain portfolio optimization problem under a minimax risk measure
  publication-title: Appl Math Model
– volume: 37
  start-page: 519
  year: 1990
  end-page: 531
  ident: bib0002
  article-title: Mean absolute portfolio optimization model and its application to Tokyo stock market
  publication-title: Manag Sci
– volume: 228
  start-page: 188
  year: 2009
  end-page: 196
  ident: bib0012
  article-title: Multi-objective possibilistic model for portfolio selection with transaction cost
  publication-title: J Comput Appl Math
– volume: 34
  start-page: 1606
  year: 2011
  end-page: 1617
  ident: bib0007
  article-title: An optimal investment strategy in bank management
  publication-title: Math Method Appl Sci
– volume: 202
  start-page: 239
  year: 2010
  end-page: 247
  ident: bib0018
  article-title: Mean-variance-skewness model for portfolio selection with fuzzy returns
  publication-title: Eur J Oper Res
– volume: 15
  start-page: 1
  year: 2016
  end-page: 18
  ident: bib0031
  article-title: Multiperiod mean absolute deviation uncertain portfolio selection
  publication-title: Soft Comput
– volume: 133
  start-page: 287
  year: 2001
  end-page: 297
  ident: bib0025
  article-title: A fuzzy goal programming approach to portfolio selection
  publication-title: Eur J Oper Res
– year: 1997
  ident: bib0023
  article-title: Entropy optimization and mathematical programming
– volume: 523
  start-page: 1371
  year: 2019
  end-page: 1378
  ident: bib0008
  article-title: Sparse and robust mean-variance portfolio optimization problems
  publication-title: Phys A
– volume: 24
  start-page: 13331
  year: 2020
  end-page: 13345
  ident: bib0037
  article-title: Uncertain random portfolio selection based on risk curve
  publication-title: Soft Comput
– volume: 19
  start-page: 80
  year: 2017
  ident: bib0039
  article-title: A risk-free protection index model for portfolio selection with entropy constraint under an uncertainty framework
  publication-title: Entropy
– volume: 12
  start-page: 754
  year: 2012
  end-page: 758
  ident: bib0015
  article-title: A portfolio selection model with borrowing constraint based on possibility theory
  publication-title: Appl Soft Comput
– volume: 7
  start-page: 77
  year: 1952
  end-page: 91
  ident: bib0001
  article-title: Portfolio selection
  publication-title: J Finance
– volume: 30
  start-page: 1143
  year: 1984
  end-page: 1160
  ident: bib0005
  article-title: Large-scale portfolio optimization
  publication-title: Manag Sci
– volume: 19
  start-page: 657
  year: 2017
  ident: bib0021
  article-title: Properties of risk measures of generalized entropy in portfolio selection
  publication-title: Entropy
– volume: 8
  start-page: 338
  year: 1965
  end-page: 353
  ident: bib0014
  article-title: Fuzzy sets
  publication-title: Inf Control
– volume: 30
  start-page: 61
  year: 2013
  end-page: 66
  ident: bib0026
  article-title: Risk index based models for portfolio adjusting problem with returns subject to experts’ evaluations
  publication-title: Econ Model
– volume: 20
  start-page: 717
  year: 2016
  end-page: 725
  ident: bib0030
  article-title: Uncertain portfolio adjusting model using semiabsolute deviation
  publication-title: Soft Comput
– volume: 43
  start-page: 1437
  year: 1997
  end-page: 1446
  ident: bib0006
  article-title: Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model
  publication-title: Manag Sci
– volume: 345
  start-page: 9
  year: 2016
  end-page: 26
  ident: bib0022
  article-title: Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels
  publication-title: Inf Sci
– volume: 94
  start-page: 185
  year: 2018
  end-page: 192
  ident: bib0009
  article-title: A polynomial goal programming model for portfolio optimization based on entropy and higher moments
  publication-title: Expert Syst Appl
– volume: 175
  start-page: 879
  year: 2006
  end-page: 893
  ident: bib0024
  article-title: Portfolio rebalancing model with transaction costs based on fuzzy decision theory
  publication-title: Eur J Oper Res
– volume: 56
  start-page: 539
  year: 2018
  end-page: 550
  ident: bib0032
  article-title: Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint
  publication-title: Appl Math Model
– volume: 7
  start-page: 77
  issue: 1
  year: 1952
  ident: 10.1016/j.chaos.2021.110842_bib0001
  article-title: Portfolio selection
  publication-title: J Finance
– volume: 19
  start-page: 657
  issue: 12
  year: 2017
  ident: 10.1016/j.chaos.2021.110842_bib0021
  article-title: Properties of risk measures of generalized entropy in portfolio selection
  publication-title: Entropy
  doi: 10.3390/e19120657
– volume: 345
  start-page: 9
  year: 2016
  ident: 10.1016/j.chaos.2021.110842_bib0022
  article-title: Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels
  publication-title: Inf Sci
  doi: 10.1016/j.ins.2016.01.042
– volume: 1
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.chaos.2021.110842_bib0038
  article-title: Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs
  publication-title: J Uncertain Anal Appl
  doi: 10.1186/2195-5468-1-16
– volume: 34
  start-page: 1606
  issue: 13
  year: 2011
  ident: 10.1016/j.chaos.2021.110842_bib0007
  article-title: An optimal investment strategy in bank management
  publication-title: Math Method Appl Sci
  doi: 10.1002/mma.1467
– volume: 255
  start-page: 74
  issue: 2
  year: 2014
  ident: 10.1016/j.chaos.2021.110842_bib0017
  article-title: Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2014.07.018
– volume: 30
  start-page: 61
  issue: 30
  year: 2013
  ident: 10.1016/j.chaos.2021.110842_bib0026
  article-title: Risk index based models for portfolio adjusting problem with returns subject to experts’ evaluations
  publication-title: Econ Model
  doi: 10.1016/j.econmod.2012.09.032
– volume: 47
  start-page: 1
  issue: 4
  year: 2017
  ident: 10.1016/j.chaos.2021.110842_bib0040
  article-title: Mean-variance model for portfolio optimization with background risk based on uncertainty theory
  publication-title: Int J Gen Syst
– volume: 51
  start-page: 2079
  issue: 12
  year: 2020
  ident: 10.1016/j.chaos.2021.110842_bib0036
  article-title: Uncertain portfolio selection with mental accounts
  publication-title: Int J Syst Sci
  doi: 10.1080/00207721.2019.1648706
– volume: 9
  start-page: 1
  issue: 1
  year: 1974
  ident: 10.1016/j.chaos.2021.110842_bib0003
  article-title: Toward the development of an equilibrium capital-market model based on semivariance
  publication-title: J Financ Quant Anal
  doi: 10.2307/2329964
– volume: 39
  start-page: 5887
  issue: 5
  year: 2012
  ident: 10.1016/j.chaos.2021.110842_bib0028
  article-title: Mean-variance models for portfolio selection subject to experts’ estimations
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2011.11.119
– volume: 24
  start-page: 13331
  year: 2020
  ident: 10.1016/j.chaos.2021.110842_bib0037
  article-title: Uncertain random portfolio selection based on risk curve
  publication-title: Soft Comput
  doi: 10.1007/s00500-020-04751-9
– volume: 202
  start-page: 239
  issue: 1
  year: 2010
  ident: 10.1016/j.chaos.2021.110842_bib0018
  article-title: Mean-variance-skewness model for portfolio selection with fuzzy returns
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2009.05.003
– volume: 15
  start-page: 1
  issue: 1
  year: 2016
  ident: 10.1016/j.chaos.2021.110842_bib0031
  article-title: Multiperiod mean absolute deviation uncertain portfolio selection
  publication-title: Soft Comput
– volume: 30
  start-page: 1143
  issue: 10
  year: 1984
  ident: 10.1016/j.chaos.2021.110842_bib0005
  article-title: Large-scale portfolio optimization
  publication-title: Manag Sci
  doi: 10.1287/mnsc.30.10.1143
– volume: 27
  start-page: 484
  issue: 4-6
  year: 2018
  ident: 10.1016/j.chaos.2021.110842_bib0010
  article-title: Optimal portfolio diversification using the maximum entropy principle
  publication-title: Econom Rev
  doi: 10.1080/07474930801960394
– volume: 175
  start-page: 879
  issue: 2
  year: 2006
  ident: 10.1016/j.chaos.2021.110842_bib0024
  article-title: Portfolio rebalancing model with transaction costs based on fuzzy decision theory
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2005.05.020
– year: 2007
  ident: 10.1016/j.chaos.2021.110842_bib0027
– volume: 43
  start-page: 1437
  issue: 10
  year: 1997
  ident: 10.1016/j.chaos.2021.110842_bib0006
  article-title: Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model
  publication-title: Manag Sci
  doi: 10.1287/mnsc.43.10.1437
– volume: 14
  start-page: 107
  year: 1993
  ident: 10.1016/j.chaos.2021.110842_bib0004
  article-title: Linear programming models for portfolio optimization
  publication-title: Finance
– volume: 56
  start-page: 539
  year: 2018
  ident: 10.1016/j.chaos.2021.110842_bib0032
  article-title: Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2017.12.016
– volume: 228
  start-page: 188
  issue: 1
  year: 2009
  ident: 10.1016/j.chaos.2021.110842_bib0012
  article-title: Multi-objective possibilistic model for portfolio selection with transaction cost
  publication-title: J Comput Appl Math
  doi: 10.1016/j.cam.2008.09.008
– volume: 27
  start-page: 1023
  issue: 5
  year: 2019
  ident: 10.1016/j.chaos.2021.110842_bib0033
  article-title: A novel hybrid ICA-FA algorithm for multi-period uncertain portfolio optimization model based on multiple criteria
  publication-title: IEEE Trans Fuzzy Syst
  doi: 10.1109/TFUZZ.2018.2829463
– volume: 18
  start-page: 1045
  issue: 5
  year: 2003
  ident: 10.1016/j.chaos.2021.110842_bib0020
  article-title: Fuzzy portfolio optimization a quadratic programming approach
  publication-title: Chaos Solitons Fractals
  doi: 10.1016/S0960-0779(03)00071-7
– year: 1989
  ident: 10.1016/j.chaos.2021.110842_bib0013
– volume: 14
  start-page: 16
  issue: 6
  year: 2006
  ident: 10.1016/j.chaos.2021.110842_bib0016
  article-title: Mean-WCVar fuzzy portfolio optimization model of risk property combination
  publication-title: Chin J Manag Sci
– volume: 158
  start-page: 769
  issue: 7
  year: 2007
  ident: 10.1016/j.chaos.2021.110842_bib0019
  article-title: Fuzzy portfolio optimization under downside risk measures
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/j.fss.2006.10.026
– volume: 94
  start-page: 185
  year: 2018
  ident: 10.1016/j.chaos.2021.110842_bib0009
  article-title: A polynomial goal programming model for portfolio optimization based on entropy and higher moments
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2017.10.056
– volume: 12
  start-page: 754
  issue: 2
  year: 2012
  ident: 10.1016/j.chaos.2021.110842_bib0015
  article-title: A portfolio selection model with borrowing constraint based on possibility theory
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.10.017
– volume: 76
  start-page: 274
  year: 2019
  ident: 10.1016/j.chaos.2021.110842_bib0034
  article-title: Uncertain portfolio optimization problem under a minimax risk measure
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2019.06.019
– volume: 37
  start-page: 519
  issue: 5
  year: 1990
  ident: 10.1016/j.chaos.2021.110842_bib0002
  article-title: Mean absolute portfolio optimization model and its application to Tokyo stock market
  publication-title: Manag Sci
  doi: 10.1287/mnsc.37.5.519
– volume: 523
  start-page: 1371
  year: 2019
  ident: 10.1016/j.chaos.2021.110842_bib0008
  article-title: Sparse and robust mean-variance portfolio optimization problems
  publication-title: Phys A
  doi: 10.1016/j.physa.2019.04.151
– year: 1997
  ident: 10.1016/j.chaos.2021.110842_bib0023
– volume: 10
  start-page: 71
  issue: 1
  year: 2011
  ident: 10.1016/j.chaos.2021.110842_bib0043
  article-title: Mean-risk model for uncertain portfolio selection
  publication-title: Fuzzy Optim Decis Mak
  doi: 10.1007/s10700-010-9094-x
– volume: 37
  start-page: 8417
  issue: 6
  year: 2019
  ident: 10.1016/j.chaos.2021.110842_bib0035
  article-title: A multi-period regret minimization model for uncertain portfolio selection with bankruptcy constraint
  publication-title: J Intell Fuzzy Syst
– year: 1992
  ident: 10.1016/j.chaos.2021.110842_bib0011
– volume: 8
  start-page: 338
  year: 1965
  ident: 10.1016/j.chaos.2021.110842_bib0014
  article-title: Fuzzy sets
  publication-title: Inf Control
  doi: 10.1016/S0019-9958(65)90241-X
– volume: 133
  start-page: 287
  issue: 2
  year: 2001
  ident: 10.1016/j.chaos.2021.110842_bib0025
  article-title: A fuzzy goal programming approach to portfolio selection
  publication-title: Eur J Oper Res
  doi: 10.1016/S0377-2217(00)00298-8
– volume: 66
  start-page: 761
  issue: 5
  year: 2015
  ident: 10.1016/j.chaos.2021.110842_bib0029
  article-title: A mean-risk index model for uncertain capital budgeting
  publication-title: J Oper Res Soc
  doi: 10.1057/jors.2014.51
– volume: 3
  start-page: 3
  year: 2009
  ident: 10.1016/j.chaos.2021.110842_bib0041
  article-title: Some research problems in uncertainty theory
  publication-title: J Uncertain Syst
– volume: 20
  start-page: 717
  issue: 2
  year: 2016
  ident: 10.1016/j.chaos.2021.110842_bib0030
  article-title: Uncertain portfolio adjusting model using semiabsolute deviation
  publication-title: Soft Comput
  doi: 10.1007/s00500-014-1535-y
– volume: 19
  start-page: 80
  year: 2017
  ident: 10.1016/j.chaos.2021.110842_bib0039
  article-title: A risk-free protection index model for portfolio selection with entropy constraint under an uncertainty framework
  publication-title: Entropy
  doi: 10.3390/e19020080
SSID ssj0001062
Score 2.5256479
Snippet This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 110842
SubjectTerms Diversification
Liquidity
Portfolio optimization
Return rate
Uncertain variable
Title A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification
URI https://dx.doi.org/10.1016/j.chaos.2021.110842
Volume 146
WOSCitedRecordID wos000647561300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: ScienceDirect database
  customDbUrl:
  eissn: 1873-2887
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001062
  issn: 0960-0779
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLY22GEcpsE2wX7Jhx2YOleJ88PxsUNMGwKEEJN6ixzHFkEl6ZqC2H-_59hxO4qqcdglqqLYtfp9eX7v9fN7CH0qqAJalIxQFUGAInRKBJeapFxSVeqMicI2m2Cnp9l4zM-crLnt2gmwus7u7vj0v0IN9wBsc3T2EXD7SeEGfAbQ4Qqww_WfgB-ZLuGDayVqcguBsEGVmBRuM_1t-950ykLYzqwYYGAccN1MqmbQgPm4ducybYJ2Uv26qUrjqJv8emk1HNql-Zb92oNLYfV6rdHTGfmNGaDNESwx8W77cScd-NqsZKvPRT1zNHUZCBou9H59KjENSMBsUxhvVeNlu2gOG9gqWism22YProbSLHRo5h8unv67QPa9jcvLCXul2lXeTZKbSXI7yVO0SVnCwd5tjn4cjo_8Lg2hcPcPU7_2viJVp_1bWcvDXsuSJ3LxEr1wIQQeWei30RNV76CtE19_t91B285kt3jf1RX__ApVIwzMwA8yA3fMwMAM7JmBPTPwMjOwYQb2zMAANL7HjNfo57fDi4PvxHXaIBJcmDmBMCDlcSASGkRlRkWilWZFCr6kZEIXFDbBoIhDISRNdCCUgmHwgoMrKqKsYFn0Bm3UTa12EU4jAVGAKqKIhzETjGsZCl7KJCxjHetsD9H-l8ylK0NvuqFM8jUo7qEvftDUVmFZ_3jaQ5Q7R9I6iDmQbt3At4_7nnfo-eJ9eI825rMb9QE9k7fzqp19dIz7A9lnmOw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+mean-variance-entropy+model+for+uncertain+portfolio+optimization+with+liquidity+and+diversification&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Li%2C+Bo&rft.au=Zhang%2C+Ranran&rft.date=2021-05-01&rft.issn=0960-0779&rft.volume=146&rft.spage=110842&rft_id=info:doi/10.1016%2Fj.chaos.2021.110842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2021_110842
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon