A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification
This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are estimated by experienced experts. First, a mean-variance-entropy model for uncertain portfolio optimization problem is presented by taking in...
Gespeichert in:
| Veröffentlicht in: | Chaos, solitons and fractals Jg. 146; S. 110842 |
|---|---|
| Hauptverfasser: | , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Elsevier Ltd
01.05.2021
|
| Schlagworte: | |
| ISSN: | 0960-0779, 1873-2887 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are estimated by experienced experts. First, a mean-variance-entropy model for uncertain portfolio optimization problem is presented by taking into account four criteria viz., return, risk, liquidity and diversification degree of portfolio. In our model, the investment return is quantified by uncertain expected value, the investment risk is characterized by uncertain variance and entropy is used to measure the diversification degree of portfolio. Moreover, different from the previous bi-objective optimization model, our model achieves both the maximum return and the minimum risk in a single objective form by introducing a risk aversion factor and the dimensional influence caused by different units is eliminated by normalization method. Then, two auxiliary portfolio selection models are transformed into different equivalent deterministic models. Finally, a numerical simulation is given to verify the effectiveness and practicality of our model. |
|---|---|
| AbstractList | This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are estimated by experienced experts. First, a mean-variance-entropy model for uncertain portfolio optimization problem is presented by taking into account four criteria viz., return, risk, liquidity and diversification degree of portfolio. In our model, the investment return is quantified by uncertain expected value, the investment risk is characterized by uncertain variance and entropy is used to measure the diversification degree of portfolio. Moreover, different from the previous bi-objective optimization model, our model achieves both the maximum return and the minimum risk in a single objective form by introducing a risk aversion factor and the dimensional influence caused by different units is eliminated by normalization method. Then, two auxiliary portfolio selection models are transformed into different equivalent deterministic models. Finally, a numerical simulation is given to verify the effectiveness and practicality of our model. |
| ArticleNumber | 110842 |
| Author | Zhang, Ranran Li, Bo |
| Author_xml | – sequence: 1 givenname: Bo orcidid: 0000-0002-7796-9261 surname: Li fullname: Li, Bo email: libnust@163.com – sequence: 2 givenname: Ranran surname: Zhang fullname: Zhang, Ranran |
| BookMark | eNqFkMtOAkEQRTtGEwH9Ajf9A4PVPcxr4YIQXwmJG113in6EIkM39jQQ_HoHcOVCV5VU6lTuPUN26YO3jN0JGAsQ5f1qrJcYurEEKcZCQD2RF2wg6irPZF1Xl2wATQkZVFVzzYZdtwIAAaUcMJpyb_d8bdFnO4yEXtvM-hTD5sDXwdiWuxD5tl_HhOT5JsTkQkuBh02iNX1houD5ntKSt_S5JUPpwNEbbmhnY0eO9Onkhl05bDt7-zNH7OPp8X32ks3fnl9n03mmc8hTJvKmbCaAhYTc1BILZ121KKERukK3kGgMLCYCUcvCAVrbY7WpimKCeb2o6nzEmvNfHUPXReuUpnRKkCJSqwSoozO1Uidn6uhMnZ31bP6L3URaYzz8Qz2cKdvX2pGNqtNke2OGotVJmUB_8t8rsov_ |
| CitedBy_id | crossref_primary_10_1007_s00500_024_09897_4 crossref_primary_10_2298_FIL2432517C crossref_primary_10_1016_j_automatica_2022_110751 crossref_primary_10_1016_j_cam_2024_115859 crossref_primary_10_1142_S0218488525500163 crossref_primary_10_1007_s40010_024_00905_8 crossref_primary_10_1016_j_cam_2024_116442 crossref_primary_10_1016_j_knosys_2022_109683 crossref_primary_10_1016_j_renene_2025_123897 crossref_primary_10_1016_j_chaos_2021_111371 crossref_primary_10_3390_econometrics11010008 crossref_primary_10_1016_j_ins_2022_09_032 crossref_primary_10_1007_s10700_025_09451_3 crossref_primary_10_1007_s10700_025_09452_2 crossref_primary_10_1016_j_chaos_2022_113081 crossref_primary_10_58886_jfi_v20i1_3061 crossref_primary_10_1142_S021962202350058X crossref_primary_10_1016_j_matcom_2024_05_013 crossref_primary_10_1016_j_ins_2025_122429 crossref_primary_10_1016_j_physd_2025_134571 crossref_primary_10_1063_5_0209904 crossref_primary_10_1007_s00500_025_10623_x crossref_primary_10_1016_j_intfin_2023_101737 crossref_primary_10_5937_sjm19_48723 crossref_primary_10_1016_j_chaos_2022_112213 crossref_primary_10_1016_j_apm_2021_08_006 crossref_primary_10_1016_j_chaos_2023_113125 crossref_primary_10_3390_jrfm15010030 crossref_primary_10_1109_ACCESS_2021_3082529 crossref_primary_10_3233_JIFS_222041 crossref_primary_10_1109_ACCESS_2021_3121518 crossref_primary_10_1007_s12652_023_04638_1 crossref_primary_10_1007_s10115_024_02133_3 crossref_primary_10_1016_j_eswa_2022_118896 crossref_primary_10_1016_j_najef_2023_102028 crossref_primary_10_1080_1331677X_2021_1955222 crossref_primary_10_3390_math13111885 crossref_primary_10_1016_j_eswa_2023_122059 crossref_primary_10_3390_math12152424 crossref_primary_10_1007_s12652_024_04766_2 crossref_primary_10_3390_e23101266 crossref_primary_10_3390_math12131921 |
| Cites_doi | 10.3390/e19120657 10.1016/j.ins.2016.01.042 10.1186/2195-5468-1-16 10.1002/mma.1467 10.1016/j.fss.2014.07.018 10.1016/j.econmod.2012.09.032 10.1080/00207721.2019.1648706 10.2307/2329964 10.1016/j.eswa.2011.11.119 10.1007/s00500-020-04751-9 10.1016/j.ejor.2009.05.003 10.1287/mnsc.30.10.1143 10.1080/07474930801960394 10.1016/j.ejor.2005.05.020 10.1287/mnsc.43.10.1437 10.1016/j.apm.2017.12.016 10.1016/j.cam.2008.09.008 10.1109/TFUZZ.2018.2829463 10.1016/S0960-0779(03)00071-7 10.1016/j.fss.2006.10.026 10.1016/j.eswa.2017.10.056 10.1016/j.asoc.2011.10.017 10.1016/j.apm.2019.06.019 10.1287/mnsc.37.5.519 10.1016/j.physa.2019.04.151 10.1007/s10700-010-9094-x 10.1016/S0019-9958(65)90241-X 10.1016/S0377-2217(00)00298-8 10.1057/jors.2014.51 10.1007/s00500-014-1535-y 10.3390/e19020080 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier Ltd |
| Copyright_xml | – notice: 2021 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.chaos.2021.110842 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Sciences (General) Mathematics |
| EISSN | 1873-2887 |
| ExternalDocumentID | 10_1016_j_chaos_2021_110842 S0960077921001958 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABMAC ABNEU ABTAH ABXDB ABYKQ ACDAQ ACFVG ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HLZ HMV HVGLF HZ~ IHE J1W KOM LG9 M38 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SPC SPCBC SPD SPG SSQ SSZ T5K WUQ XPP ZY4 ~G- 9DU AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
| ID | FETCH-LOGICAL-c303t-1396940a5203d82a5fef7b6091c7afb2add0b41aac25f0aeec308d7554a38b783 |
| ISICitedReferencesCount | 49 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000647561300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0960-0779 |
| IngestDate | Sat Nov 29 07:07:44 EST 2025 Tue Nov 18 21:06:27 EST 2025 Fri Feb 23 02:43:40 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Portfolio optimization Liquidity Return rate Uncertain variable Diversification |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c303t-1396940a5203d82a5fef7b6091c7afb2add0b41aac25f0aeec308d7554a38b783 |
| ORCID | 0000-0002-7796-9261 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_chaos_2021_110842 crossref_primary_10_1016_j_chaos_2021_110842 elsevier_sciencedirect_doi_10_1016_j_chaos_2021_110842 |
| PublicationCentury | 2000 |
| PublicationDate | May 2021 2021-05-00 |
| PublicationDateYYYYMMDD | 2021-05-01 |
| PublicationDate_xml | – month: 05 year: 2021 text: May 2021 |
| PublicationDecade | 2020 |
| PublicationTitle | Chaos, solitons and fractals |
| PublicationYear | 2021 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mehralizade, Amini, Gildeh, Ahmadzade (bib0037) 2020; 24 Qin, Kar, Zheng (bib0030) 2016; 20 Simaan (bib0006) 1997; 43 Chen, Li, Liu (bib0033) 2019; 27 Zhai, Bai (bib0040) 2017; 47 Dai, Wang (bib0008) 2019; 523 Jana, Roy, Mazumder (bib0012) 2009; 228 Zhou, Liu (bib0021) 2017; 19 Kapur, Kesavan (bib0011) 1992 Fang, Lai, Wang (bib0024) 2006; 175 Parra, Terol, Uria (bib0025) 2001; 133 Zhang, Huang, Zhang (bib0029) 2015; 66 Zadeh (bib0014) 1965; 8 Zhang, Zhang (bib0017) 2014; 255 Ammar, Khalifa (bib0020) 2003; 18 Lu, Zhang, Qiu, Gao (bib0035) 2019; 37 Huang (bib0043) 2011; 10 Markowitz (bib0001) 1952; 7 Bera, Park (bib0010) 2018; 27 Bhattacharyya, Chatterjee, Kar (bib0038) 2013; 1 Vercher, Bermúdez, Segura (bib0019) 2007; 158 Huang, Ying (bib0026) 2013; 30 Li, Zhu, Sun, Aw, Teo (bib0032) 2018; 56 Aksarayli, Pala (bib0009) 2018; 94 Witbooi, Schalkwyk, Muller (bib0007) 2011; 34 Mehlawat (bib0022) 2016; 345 Gao, Liu (bib0039) 2017; 19 Konno, Yamazaki (bib0002) 1990; 37 Huang (bib0028) 2012; 39 Liu (bib0041) 2009; 3 Liu, Gao (bib0016) 2006; 14 Liu (bib0027) 2007 Kapur (bib0013) 1989 Speranza (bib0004) 1993; 14 Li, Sun, Aw, Teo (bib0034) 2019; 76 Perold (bib0005) 1984; 30 Zhang (bib0031) 2016; 15 Huang, Di (bib0036) 2020; 51 Deng, Li (bib0015) 2012; 12 Hogan, Warren (bib0003) 1974; 9 Li, Qin, Kar (bib0018) 2010; 202 Fang, Rajasekera, Tsao (bib0023) 1997 Aksarayli (10.1016/j.chaos.2021.110842_bib0009) 2018; 94 Huang (10.1016/j.chaos.2021.110842_bib0036) 2020; 51 Huang (10.1016/j.chaos.2021.110842_bib0026) 2013; 30 Zhang (10.1016/j.chaos.2021.110842_bib0031) 2016; 15 Qin (10.1016/j.chaos.2021.110842_bib0030) 2016; 20 Zhai (10.1016/j.chaos.2021.110842_bib0040) 2017; 47 Liu (10.1016/j.chaos.2021.110842_bib0016) 2006; 14 Mehralizade (10.1016/j.chaos.2021.110842_bib0037) 2020; 24 Simaan (10.1016/j.chaos.2021.110842_bib0006) 1997; 43 Dai (10.1016/j.chaos.2021.110842_bib0008) 2019; 523 Hogan (10.1016/j.chaos.2021.110842_bib0003) 1974; 9 Zhang (10.1016/j.chaos.2021.110842_bib0017) 2014; 255 Witbooi (10.1016/j.chaos.2021.110842_bib0007) 2011; 34 Ammar (10.1016/j.chaos.2021.110842_bib0020) 2003; 18 Fang (10.1016/j.chaos.2021.110842_bib0024) 2006; 175 Bhattacharyya (10.1016/j.chaos.2021.110842_bib0038) 2013; 1 Huang (10.1016/j.chaos.2021.110842_bib0028) 2012; 39 Li (10.1016/j.chaos.2021.110842_bib0032) 2018; 56 Liu (10.1016/j.chaos.2021.110842_bib0041) 2009; 3 Speranza (10.1016/j.chaos.2021.110842_bib0004) 1993; 14 Bera (10.1016/j.chaos.2021.110842_bib0010) 2018; 27 Markowitz (10.1016/j.chaos.2021.110842_bib0001) 1952; 7 Vercher (10.1016/j.chaos.2021.110842_bib0019) 2007; 158 Zhou (10.1016/j.chaos.2021.110842_bib0021) 2017; 19 Fang (10.1016/j.chaos.2021.110842_bib0023) 1997 Huang (10.1016/j.chaos.2021.110842_bib0043) 2011; 10 Li (10.1016/j.chaos.2021.110842_bib0018) 2010; 202 Zhang (10.1016/j.chaos.2021.110842_bib0029) 2015; 66 Gao (10.1016/j.chaos.2021.110842_bib0039) 2017; 19 Konno (10.1016/j.chaos.2021.110842_bib0002) 1990; 37 Mehlawat (10.1016/j.chaos.2021.110842_bib0022) 2016; 345 Lu (10.1016/j.chaos.2021.110842_bib0035) 2019; 37 Li (10.1016/j.chaos.2021.110842_bib0034) 2019; 76 Zadeh (10.1016/j.chaos.2021.110842_bib0014) 1965; 8 Liu (10.1016/j.chaos.2021.110842_bib0027) 2007 Chen (10.1016/j.chaos.2021.110842_bib0033) 2019; 27 Jana (10.1016/j.chaos.2021.110842_bib0012) 2009; 228 Kapur (10.1016/j.chaos.2021.110842_bib0013) 1989 Kapur (10.1016/j.chaos.2021.110842_bib0011) 1992 Parra (10.1016/j.chaos.2021.110842_bib0025) 2001; 133 Deng (10.1016/j.chaos.2021.110842_bib0015) 2012; 12 Perold (10.1016/j.chaos.2021.110842_bib0005) 1984; 30 |
| References_xml | – volume: 10 start-page: 71 year: 2011 end-page: 89 ident: bib0043 article-title: Mean-risk model for uncertain portfolio selection publication-title: Fuzzy Optim Decis Mak – year: 2007 ident: bib0027 article-title: Uncertainty theory – volume: 66 start-page: 761 year: 2015 end-page: 770 ident: bib0029 article-title: A mean-risk index model for uncertain capital budgeting publication-title: J Oper Res Soc – volume: 9 start-page: 1 year: 1974 end-page: 11 ident: bib0003 article-title: Toward the development of an equilibrium capital-market model based on semivariance publication-title: J Financ Quant Anal – volume: 158 start-page: 769 year: 2007 end-page: 782 ident: bib0019 article-title: Fuzzy portfolio optimization under downside risk measures publication-title: Fuzzy Sets Syst – year: 1989 ident: bib0013 article-title: Maximum entropy models in scienceand engineering – volume: 14 start-page: 107 year: 1993 end-page: 123 ident: bib0004 article-title: Linear programming models for portfolio optimization publication-title: Finance – year: 1992 ident: bib0011 article-title: Entropy optimization principles with applications – volume: 255 start-page: 74 year: 2014 end-page: 91 ident: bib0017 article-title: Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints publication-title: Fuzzy Sets Syst – volume: 37 start-page: 8417 year: 2019 end-page: 8439 ident: bib0035 article-title: A multi-period regret minimization model for uncertain portfolio selection with bankruptcy constraint publication-title: J Intell Fuzzy Syst – volume: 1 start-page: 1 year: 2013 end-page: 17 ident: bib0038 article-title: Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs publication-title: J Uncertain Anal Appl – volume: 27 start-page: 484 year: 2018 end-page: 512 ident: bib0010 article-title: Optimal portfolio diversification using the maximum entropy principle publication-title: Econom Rev – volume: 27 start-page: 1023 year: 2019 end-page: 1036 ident: bib0033 article-title: A novel hybrid ICA-FA algorithm for multi-period uncertain portfolio optimization model based on multiple criteria publication-title: IEEE Trans Fuzzy Syst – volume: 14 start-page: 16 year: 2006 end-page: 21 ident: bib0016 article-title: Mean-WCVar fuzzy portfolio optimization model of risk property combination publication-title: Chin J Manag Sci – volume: 3 start-page: 3 year: 2009 end-page: 10 ident: bib0041 article-title: Some research problems in uncertainty theory publication-title: J Uncertain Syst – volume: 47 start-page: 1 year: 2017 end-page: 19 ident: bib0040 article-title: Mean-variance model for portfolio optimization with background risk based on uncertainty theory publication-title: Int J Gen Syst – volume: 51 start-page: 2079 year: 2020 end-page: 2090 ident: bib0036 article-title: Uncertain portfolio selection with mental accounts publication-title: Int J Syst Sci – volume: 18 start-page: 1045 year: 2003 end-page: 1054 ident: bib0020 article-title: Fuzzy portfolio optimization a quadratic programming approach publication-title: Chaos Solitons Fractals – volume: 39 start-page: 5887 year: 2012 end-page: 5893 ident: bib0028 article-title: Mean-variance models for portfolio selection subject to experts’ estimations publication-title: Expert Syst Appl – volume: 76 start-page: 274 year: 2019 end-page: 281 ident: bib0034 article-title: Uncertain portfolio optimization problem under a minimax risk measure publication-title: Appl Math Model – volume: 37 start-page: 519 year: 1990 end-page: 531 ident: bib0002 article-title: Mean absolute portfolio optimization model and its application to Tokyo stock market publication-title: Manag Sci – volume: 228 start-page: 188 year: 2009 end-page: 196 ident: bib0012 article-title: Multi-objective possibilistic model for portfolio selection with transaction cost publication-title: J Comput Appl Math – volume: 34 start-page: 1606 year: 2011 end-page: 1617 ident: bib0007 article-title: An optimal investment strategy in bank management publication-title: Math Method Appl Sci – volume: 202 start-page: 239 year: 2010 end-page: 247 ident: bib0018 article-title: Mean-variance-skewness model for portfolio selection with fuzzy returns publication-title: Eur J Oper Res – volume: 15 start-page: 1 year: 2016 end-page: 18 ident: bib0031 article-title: Multiperiod mean absolute deviation uncertain portfolio selection publication-title: Soft Comput – volume: 133 start-page: 287 year: 2001 end-page: 297 ident: bib0025 article-title: A fuzzy goal programming approach to portfolio selection publication-title: Eur J Oper Res – year: 1997 ident: bib0023 article-title: Entropy optimization and mathematical programming – volume: 523 start-page: 1371 year: 2019 end-page: 1378 ident: bib0008 article-title: Sparse and robust mean-variance portfolio optimization problems publication-title: Phys A – volume: 24 start-page: 13331 year: 2020 end-page: 13345 ident: bib0037 article-title: Uncertain random portfolio selection based on risk curve publication-title: Soft Comput – volume: 19 start-page: 80 year: 2017 ident: bib0039 article-title: A risk-free protection index model for portfolio selection with entropy constraint under an uncertainty framework publication-title: Entropy – volume: 12 start-page: 754 year: 2012 end-page: 758 ident: bib0015 article-title: A portfolio selection model with borrowing constraint based on possibility theory publication-title: Appl Soft Comput – volume: 7 start-page: 77 year: 1952 end-page: 91 ident: bib0001 article-title: Portfolio selection publication-title: J Finance – volume: 30 start-page: 1143 year: 1984 end-page: 1160 ident: bib0005 article-title: Large-scale portfolio optimization publication-title: Manag Sci – volume: 19 start-page: 657 year: 2017 ident: bib0021 article-title: Properties of risk measures of generalized entropy in portfolio selection publication-title: Entropy – volume: 8 start-page: 338 year: 1965 end-page: 353 ident: bib0014 article-title: Fuzzy sets publication-title: Inf Control – volume: 30 start-page: 61 year: 2013 end-page: 66 ident: bib0026 article-title: Risk index based models for portfolio adjusting problem with returns subject to experts’ evaluations publication-title: Econ Model – volume: 20 start-page: 717 year: 2016 end-page: 725 ident: bib0030 article-title: Uncertain portfolio adjusting model using semiabsolute deviation publication-title: Soft Comput – volume: 43 start-page: 1437 year: 1997 end-page: 1446 ident: bib0006 article-title: Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model publication-title: Manag Sci – volume: 345 start-page: 9 year: 2016 end-page: 26 ident: bib0022 article-title: Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels publication-title: Inf Sci – volume: 94 start-page: 185 year: 2018 end-page: 192 ident: bib0009 article-title: A polynomial goal programming model for portfolio optimization based on entropy and higher moments publication-title: Expert Syst Appl – volume: 175 start-page: 879 year: 2006 end-page: 893 ident: bib0024 article-title: Portfolio rebalancing model with transaction costs based on fuzzy decision theory publication-title: Eur J Oper Res – volume: 56 start-page: 539 year: 2018 end-page: 550 ident: bib0032 article-title: Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint publication-title: Appl Math Model – volume: 7 start-page: 77 issue: 1 year: 1952 ident: 10.1016/j.chaos.2021.110842_bib0001 article-title: Portfolio selection publication-title: J Finance – volume: 19 start-page: 657 issue: 12 year: 2017 ident: 10.1016/j.chaos.2021.110842_bib0021 article-title: Properties of risk measures of generalized entropy in portfolio selection publication-title: Entropy doi: 10.3390/e19120657 – volume: 345 start-page: 9 year: 2016 ident: 10.1016/j.chaos.2021.110842_bib0022 article-title: Credibilistic mean-entropy models for multi-period portfolio selection with multi-choice aspiration levels publication-title: Inf Sci doi: 10.1016/j.ins.2016.01.042 – volume: 1 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.chaos.2021.110842_bib0038 article-title: Uncertainty theory based multiple objective mean-entropy-skewness stock portfolio selection model with transaction costs publication-title: J Uncertain Anal Appl doi: 10.1186/2195-5468-1-16 – volume: 34 start-page: 1606 issue: 13 year: 2011 ident: 10.1016/j.chaos.2021.110842_bib0007 article-title: An optimal investment strategy in bank management publication-title: Math Method Appl Sci doi: 10.1002/mma.1467 – volume: 255 start-page: 74 issue: 2 year: 2014 ident: 10.1016/j.chaos.2021.110842_bib0017 article-title: Multiperiod mean absolute deviation fuzzy portfolio selection model with risk control and cardinality constraints publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2014.07.018 – volume: 30 start-page: 61 issue: 30 year: 2013 ident: 10.1016/j.chaos.2021.110842_bib0026 article-title: Risk index based models for portfolio adjusting problem with returns subject to experts’ evaluations publication-title: Econ Model doi: 10.1016/j.econmod.2012.09.032 – volume: 47 start-page: 1 issue: 4 year: 2017 ident: 10.1016/j.chaos.2021.110842_bib0040 article-title: Mean-variance model for portfolio optimization with background risk based on uncertainty theory publication-title: Int J Gen Syst – volume: 51 start-page: 2079 issue: 12 year: 2020 ident: 10.1016/j.chaos.2021.110842_bib0036 article-title: Uncertain portfolio selection with mental accounts publication-title: Int J Syst Sci doi: 10.1080/00207721.2019.1648706 – volume: 9 start-page: 1 issue: 1 year: 1974 ident: 10.1016/j.chaos.2021.110842_bib0003 article-title: Toward the development of an equilibrium capital-market model based on semivariance publication-title: J Financ Quant Anal doi: 10.2307/2329964 – volume: 39 start-page: 5887 issue: 5 year: 2012 ident: 10.1016/j.chaos.2021.110842_bib0028 article-title: Mean-variance models for portfolio selection subject to experts’ estimations publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2011.11.119 – volume: 24 start-page: 13331 year: 2020 ident: 10.1016/j.chaos.2021.110842_bib0037 article-title: Uncertain random portfolio selection based on risk curve publication-title: Soft Comput doi: 10.1007/s00500-020-04751-9 – volume: 202 start-page: 239 issue: 1 year: 2010 ident: 10.1016/j.chaos.2021.110842_bib0018 article-title: Mean-variance-skewness model for portfolio selection with fuzzy returns publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2009.05.003 – volume: 15 start-page: 1 issue: 1 year: 2016 ident: 10.1016/j.chaos.2021.110842_bib0031 article-title: Multiperiod mean absolute deviation uncertain portfolio selection publication-title: Soft Comput – volume: 30 start-page: 1143 issue: 10 year: 1984 ident: 10.1016/j.chaos.2021.110842_bib0005 article-title: Large-scale portfolio optimization publication-title: Manag Sci doi: 10.1287/mnsc.30.10.1143 – volume: 27 start-page: 484 issue: 4-6 year: 2018 ident: 10.1016/j.chaos.2021.110842_bib0010 article-title: Optimal portfolio diversification using the maximum entropy principle publication-title: Econom Rev doi: 10.1080/07474930801960394 – volume: 175 start-page: 879 issue: 2 year: 2006 ident: 10.1016/j.chaos.2021.110842_bib0024 article-title: Portfolio rebalancing model with transaction costs based on fuzzy decision theory publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2005.05.020 – year: 2007 ident: 10.1016/j.chaos.2021.110842_bib0027 – volume: 43 start-page: 1437 issue: 10 year: 1997 ident: 10.1016/j.chaos.2021.110842_bib0006 article-title: Estimation risk in portfolio selection: the mean variance model versus the mean absolute deviation model publication-title: Manag Sci doi: 10.1287/mnsc.43.10.1437 – volume: 14 start-page: 107 year: 1993 ident: 10.1016/j.chaos.2021.110842_bib0004 article-title: Linear programming models for portfolio optimization publication-title: Finance – volume: 56 start-page: 539 year: 2018 ident: 10.1016/j.chaos.2021.110842_bib0032 article-title: Multi-period portfolio selection problem under uncertain environment with bankruptcy constraint publication-title: Appl Math Model doi: 10.1016/j.apm.2017.12.016 – volume: 228 start-page: 188 issue: 1 year: 2009 ident: 10.1016/j.chaos.2021.110842_bib0012 article-title: Multi-objective possibilistic model for portfolio selection with transaction cost publication-title: J Comput Appl Math doi: 10.1016/j.cam.2008.09.008 – volume: 27 start-page: 1023 issue: 5 year: 2019 ident: 10.1016/j.chaos.2021.110842_bib0033 article-title: A novel hybrid ICA-FA algorithm for multi-period uncertain portfolio optimization model based on multiple criteria publication-title: IEEE Trans Fuzzy Syst doi: 10.1109/TFUZZ.2018.2829463 – volume: 18 start-page: 1045 issue: 5 year: 2003 ident: 10.1016/j.chaos.2021.110842_bib0020 article-title: Fuzzy portfolio optimization a quadratic programming approach publication-title: Chaos Solitons Fractals doi: 10.1016/S0960-0779(03)00071-7 – year: 1989 ident: 10.1016/j.chaos.2021.110842_bib0013 – volume: 14 start-page: 16 issue: 6 year: 2006 ident: 10.1016/j.chaos.2021.110842_bib0016 article-title: Mean-WCVar fuzzy portfolio optimization model of risk property combination publication-title: Chin J Manag Sci – volume: 158 start-page: 769 issue: 7 year: 2007 ident: 10.1016/j.chaos.2021.110842_bib0019 article-title: Fuzzy portfolio optimization under downside risk measures publication-title: Fuzzy Sets Syst doi: 10.1016/j.fss.2006.10.026 – volume: 94 start-page: 185 year: 2018 ident: 10.1016/j.chaos.2021.110842_bib0009 article-title: A polynomial goal programming model for portfolio optimization based on entropy and higher moments publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2017.10.056 – volume: 12 start-page: 754 issue: 2 year: 2012 ident: 10.1016/j.chaos.2021.110842_bib0015 article-title: A portfolio selection model with borrowing constraint based on possibility theory publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.10.017 – volume: 76 start-page: 274 year: 2019 ident: 10.1016/j.chaos.2021.110842_bib0034 article-title: Uncertain portfolio optimization problem under a minimax risk measure publication-title: Appl Math Model doi: 10.1016/j.apm.2019.06.019 – volume: 37 start-page: 519 issue: 5 year: 1990 ident: 10.1016/j.chaos.2021.110842_bib0002 article-title: Mean absolute portfolio optimization model and its application to Tokyo stock market publication-title: Manag Sci doi: 10.1287/mnsc.37.5.519 – volume: 523 start-page: 1371 year: 2019 ident: 10.1016/j.chaos.2021.110842_bib0008 article-title: Sparse and robust mean-variance portfolio optimization problems publication-title: Phys A doi: 10.1016/j.physa.2019.04.151 – year: 1997 ident: 10.1016/j.chaos.2021.110842_bib0023 – volume: 10 start-page: 71 issue: 1 year: 2011 ident: 10.1016/j.chaos.2021.110842_bib0043 article-title: Mean-risk model for uncertain portfolio selection publication-title: Fuzzy Optim Decis Mak doi: 10.1007/s10700-010-9094-x – volume: 37 start-page: 8417 issue: 6 year: 2019 ident: 10.1016/j.chaos.2021.110842_bib0035 article-title: A multi-period regret minimization model for uncertain portfolio selection with bankruptcy constraint publication-title: J Intell Fuzzy Syst – year: 1992 ident: 10.1016/j.chaos.2021.110842_bib0011 – volume: 8 start-page: 338 year: 1965 ident: 10.1016/j.chaos.2021.110842_bib0014 article-title: Fuzzy sets publication-title: Inf Control doi: 10.1016/S0019-9958(65)90241-X – volume: 133 start-page: 287 issue: 2 year: 2001 ident: 10.1016/j.chaos.2021.110842_bib0025 article-title: A fuzzy goal programming approach to portfolio selection publication-title: Eur J Oper Res doi: 10.1016/S0377-2217(00)00298-8 – volume: 66 start-page: 761 issue: 5 year: 2015 ident: 10.1016/j.chaos.2021.110842_bib0029 article-title: A mean-risk index model for uncertain capital budgeting publication-title: J Oper Res Soc doi: 10.1057/jors.2014.51 – volume: 3 start-page: 3 year: 2009 ident: 10.1016/j.chaos.2021.110842_bib0041 article-title: Some research problems in uncertainty theory publication-title: J Uncertain Syst – volume: 20 start-page: 717 issue: 2 year: 2016 ident: 10.1016/j.chaos.2021.110842_bib0030 article-title: Uncertain portfolio adjusting model using semiabsolute deviation publication-title: Soft Comput doi: 10.1007/s00500-014-1535-y – volume: 19 start-page: 80 year: 2017 ident: 10.1016/j.chaos.2021.110842_bib0039 article-title: A risk-free protection index model for portfolio selection with entropy constraint under an uncertainty framework publication-title: Entropy doi: 10.3390/e19020080 |
| SSID | ssj0001062 |
| Score | 2.5256479 |
| Snippet | This paper deals with a portfolio optimization problem with uncertain returns. Here, the returns of risky assets are regarded as uncertain variables which are... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 110842 |
| SubjectTerms | Diversification Liquidity Portfolio optimization Return rate Uncertain variable |
| Title | A new mean-variance-entropy model for uncertain portfolio optimization with liquidity and diversification |
| URI | https://dx.doi.org/10.1016/j.chaos.2021.110842 |
| Volume | 146 |
| WOSCitedRecordID | wos000647561300009&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: ScienceDirect database customDbUrl: eissn: 1873-2887 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0001062 issn: 0960-0779 databaseCode: AIEXJ dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3PT9swFLY22GEcpsE2wX7Jhx2YOleJ88PxsUNMGwKEEJN6ixzHFkEl6ZqC2H-_59hxO4qqcdglqqLYtfp9eX7v9fN7CH0qqAJalIxQFUGAInRKBJeapFxSVeqMicI2m2Cnp9l4zM-crLnt2gmwus7u7vj0v0IN9wBsc3T2EXD7SeEGfAbQ4Qqww_WfgB-ZLuGDayVqcguBsEGVmBRuM_1t-950ykLYzqwYYGAccN1MqmbQgPm4ducybYJ2Uv26qUrjqJv8emk1HNql-Zb92oNLYfV6rdHTGfmNGaDNESwx8W77cScd-NqsZKvPRT1zNHUZCBou9H59KjENSMBsUxhvVeNlu2gOG9gqWism22YProbSLHRo5h8unv67QPa9jcvLCXul2lXeTZKbSXI7yVO0SVnCwd5tjn4cjo_8Lg2hcPcPU7_2viJVp_1bWcvDXsuSJ3LxEr1wIQQeWei30RNV76CtE19_t91B285kt3jf1RX__ApVIwzMwA8yA3fMwMAM7JmBPTPwMjOwYQb2zMAANL7HjNfo57fDi4PvxHXaIBJcmDmBMCDlcSASGkRlRkWilWZFCr6kZEIXFDbBoIhDISRNdCCUgmHwgoMrKqKsYFn0Bm3UTa12EU4jAVGAKqKIhzETjGsZCl7KJCxjHetsD9H-l8ylK0NvuqFM8jUo7qEvftDUVmFZ_3jaQ5Q7R9I6iDmQbt3At4_7nnfo-eJ9eI825rMb9QE9k7fzqp19dIz7A9lnmOw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+new+mean-variance-entropy+model+for+uncertain+portfolio+optimization+with+liquidity+and+diversification&rft.jtitle=Chaos%2C+solitons+and+fractals&rft.au=Li%2C+Bo&rft.au=Zhang%2C+Ranran&rft.date=2021-05-01&rft.issn=0960-0779&rft.volume=146&rft.spage=110842&rft_id=info:doi/10.1016%2Fj.chaos.2021.110842&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_chaos_2021_110842 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-0779&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-0779&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-0779&client=summon |