Transferred Long Short-Term Memory Network for River Flow Forecasting in Data-Scarce Basins

Hydrological models have made significant advances in methodologies and applications in recent years. However, there is still a need to address the challenge of modeling in areas with limited or no data. This study proposes a transferred Long Short-Term Memory (T-LSTM) network based on transfer lear...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Water resources management Ročník 39; číslo 9; s. 4493 - 4507
Hlavní autoři: Xie, Zaichao, Xu, Wei, Zhu, Bing, Yin, Shiming, Yang, Yi, Li, Xiaojie, Wang, Sufan
Médium: Journal Article
Jazyk:angličtina
Vydáno: Dordrecht Springer Netherlands 01.07.2025
Springer Nature B.V
Témata:
ISSN:0920-4741, 1573-1650
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Hydrological models have made significant advances in methodologies and applications in recent years. However, there is still a need to address the challenge of modeling in areas with limited or no data. This study proposes a transferred Long Short-Term Memory (T-LSTM) network based on transfer learning and Long Short-Term Memory (LSTM) networks to address this issue. Firstly, the K-nearest neighbor (K-NN) algorithm is used to estimate precipitation data, while the Soil and Water Assessment Tool (SWAT) is applied to generate long series of flow data for training. Secondly, four transfer learning scenarios, classified into intra-basin transfer and inter-basin transfer, are constructed based on the simulated and observed data. Finally, T-LSTM networks are constructed with different transfer learning scenarios and the performance of the networks is evaluated in five river basins in China, Hunjiang, Jialingjiang, Wujiang, Minjiang and Jinshajiang. The results indicate that inter-basin T-LSTM networks perform exceptionally well in data-scarce basins, particularly those with similar hydrometeorological and basin characteristics.
AbstractList Hydrological models have made significant advances in methodologies and applications in recent years. However, there is still a need to address the challenge of modeling in areas with limited or no data. This study proposes a transferred Long Short-Term Memory (T-LSTM) network based on transfer learning and Long Short-Term Memory (LSTM) networks to address this issue. Firstly, the K-nearest neighbor (K-NN) algorithm is used to estimate precipitation data, while the Soil and Water Assessment Tool (SWAT) is applied to generate long series of flow data for training. Secondly, four transfer learning scenarios, classified into intra-basin transfer and inter-basin transfer, are constructed based on the simulated and observed data. Finally, T-LSTM networks are constructed with different transfer learning scenarios and the performance of the networks is evaluated in five river basins in China, Hunjiang, Jialingjiang, Wujiang, Minjiang and Jinshajiang. The results indicate that inter-basin T-LSTM networks perform exceptionally well in data-scarce basins, particularly those with similar hydrometeorological and basin characteristics.
Author Xie, Zaichao
Zhu, Bing
Yin, Shiming
Wang, Sufan
Xu, Wei
Yang, Yi
Li, Xiaojie
Author_xml – sequence: 1
  givenname: Zaichao
  surname: Xie
  fullname: Xie, Zaichao
  organization: College of River and Ocean Engineering, Chongqing Jiaotong University
– sequence: 2
  givenname: Wei
  orcidid: 0000-0002-2226-4096
  surname: Xu
  fullname: Xu, Wei
  email: xuwei19850711@163.com
  organization: College of River and Ocean Engineering, Chongqing Jiaotong University, National Engineering Research Center for Inland Waterway Regulation, Chongqing Jiaotong University
– sequence: 3
  givenname: Bing
  surname: Zhu
  fullname: Zhu, Bing
  organization: Information Center (Hydrology Monitor and Forecast Center), MWR
– sequence: 4
  givenname: Shiming
  surname: Yin
  fullname: Yin, Shiming
  organization: Qingshen County Water Conservancy Bureau
– sequence: 5
  givenname: Yi
  surname: Yang
  fullname: Yang, Yi
  organization: College of River and Ocean Engineering, Chongqing Jiaotong University
– sequence: 6
  givenname: Xiaojie
  surname: Li
  fullname: Li, Xiaojie
  organization: College of River and Ocean Engineering, Chongqing Jiaotong University
– sequence: 7
  givenname: Sufan
  surname: Wang
  fullname: Wang, Sufan
  organization: College of River and Ocean Engineering, Chongqing Jiaotong University
BookMark eNp9kE1P3DAQhq0KJBboH-BkqRcuLmM7iZMjH11AWlqpbE8cLMeZ0NBdG8bZrvbfY1gkJA5cZjTS87wavftsJ8SAjB1J-C4BzEmSUlWNAFUKKGRVis0XNpGl0SIfsMMm0CgQhSnkHttP6QEgaw1M2N2cXEg9EmHHZzHc89u_kUYxR1ryG1xG2vCfOK4j_eN9JP57-I_Ep4u45tNI6F0ahywNgV-40Ylb78gjP3NpCOmQ7fZukfDr2z5gf6Y_5udXYvbr8vr8dCa8Bj0KqaUxTnnT1hU2rjPo82w72TnU2pRtXXRFX2LVgqsbaZQylZeydh6wh9brA3a8zX2k-LTCNNrlkDwuFi5gXCWrVaGgrqq6yOi3D-hDXFHI32VKF6ZuKgWZUlvKU0yJsLePNCwdbawE-9K33fZtc9_2tW-7yZLeSinD4R7pPfoT6xlrXYUc
Cites_doi 10.1109/TCPMT.2020.3043011
10.1016/j.fuel.2024.131461
10.1016/j.apenergy.2024.122685
10.1016/j.eswa.2024.124139
10.1016/j.jhydrol.2024.131215
10.1029/1999WR900028
10.1016/j.atmosenv.2019.116885
10.1016/0022-1694(70)90255-6
10.1016/j.jhydrol.2021.126573
10.1007/s11269-024-04052-y
10.1109/CVPR.2018.00131
10.1007/s11269-022-03148-7
10.1118/1.4957255
10.1162/neco.1997.9.8.1735
10.2166/nh.2020.026
10.1007/s11600-023-01157-7
10.1111/j.1752-1688.1998.tb05961.x
10.1007/s11269-023-03713-8
10.1109/ISSCC.2017.7870350
10.1016/j.rineng.2023.101566
10.3390/w12010096
10.1016/j.ejrh.2024.101744
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
The Author(s), under exclusive licence to Springer Nature B.V. 2025.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025 Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: The Author(s), under exclusive licence to Springer Nature B.V. 2025.
DBID AAYXX
CITATION
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
DOI 10.1007/s11269-025-04165-y
DatabaseName CrossRef
Aqualine
Environment Abstracts
Water Resources Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environment Abstracts
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aqualine
Environment Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
Civil Engineering Abstracts
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-1650
EndPage 4507
ExternalDocumentID 10_1007_s11269_025_04165_y
GeographicLocations China
GeographicLocations_xml – name: China
GrantInformation_xml – fundername: Scientific Research and Technology Development Program of Guangxi Zhuang Autonomous Region
  grantid: Guike AA23062023
  funderid: http://dx.doi.org/10.13039/501100009329
– fundername: National Key Research and Development Program of China
  grantid: 2023YFC3006605
GroupedDBID -Y2
-~C
.86
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29R
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
4P2
5QI
5VS
67M
67Z
6NX
78A
7WY
7XC
88I
8CJ
8FE
8FG
8FH
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACSNA
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHPBZ
AHSBF
AHWEU
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
ATHPR
AVWKF
AXYYD
AYFIA
AYJHY
AZFZN
AZQEC
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BHPHI
BKSAR
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
D1J
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBLON
EBS
ECGQY
EDH
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
KOW
L6V
L8X
LAK
LK5
LK8
LLZTM
M0C
M2P
M4Y
M7P
M7R
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
PATMY
PCBAR
PF0
PHGZM
PHGZT
PQBIZ
PQBZA
PQGLB
PQQKQ
PROAC
PT4
PT5
PTHSS
PYCSY
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RIG
RNI
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SDM
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TH9
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
YLTOR
Z45
Z8Z
ZMTXR
~02
~A9
~EX
~KM
AAYXX
AFFHD
BANNL
CITATION
7QH
7ST
7UA
8FD
C1K
F1W
FR3
H97
KR7
L.G
SOI
7S9
L.6
ID FETCH-LOGICAL-c303t-13177a2c7b86e9ad7ec9adbd1dae3375b84d4f5e6b0a89172276c118ac0ef0bc3
IEDL.DBID RSV
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001441584800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0920-4741
IngestDate Fri Nov 14 18:39:31 EST 2025
Wed Nov 05 08:43:00 EST 2025
Sat Nov 29 07:33:43 EST 2025
Thu Jul 31 01:53:43 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords SWAT
LSTM
Hydrological modeling
Transfer learning
K-nearest neighbor
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c303t-13177a2c7b86e9ad7ec9adbd1dae3375b84d4f5e6b0a89172276c118ac0ef0bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2226-4096
PQID 3234789620
PQPubID 54174
PageCount 15
ParticipantIDs proquest_miscellaneous_3242086684
proquest_journals_3234789620
crossref_primary_10_1007_s11269_025_04165_y
springer_journals_10_1007_s11269_025_04165_y
PublicationCentury 2000
PublicationDate 20250700
2025-07-00
20250701
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 7
  year: 2025
  text: 20250700
PublicationDecade 2020
PublicationPlace Dordrecht
PublicationPlace_xml – name: Dordrecht
PublicationSubtitle An International Journal - Published for the European Water Resources Association (EWRA)
PublicationTitle Water resources management
PublicationTitleAbbrev Water Resour Manage
PublicationYear 2025
Publisher Springer Netherlands
Springer Nature B.V
Publisher_xml – name: Springer Netherlands
– name: Springer Nature B.V
References J Shi (4165_CR21) 2020; 11
4165_CR23
4165_CR22
4165_CR25
4165_CR24
W Xu (4165_CR26) 2020; 51
B Huynh (4165_CR9) 2016; 43
B Rajagopalan (4165_CR20) 1999; 35
4165_CR19
4165_CR17
4165_CR5
4165_CR12
4165_CR4
4165_CR11
4165_CR3
4165_CR10
JG Arnold (4165_CR1) 1998; 34
4165_CR16
JG Arnold (4165_CR2) 2011
4165_CR7
4165_CR14
4165_CR6
4165_CR13
JE Nash (4165_CR18) 1970; 10
N Kimura (4165_CR15) 2019; 12
S Hochreiter (4165_CR8) 1997; 9
References_xml – volume: 11
  start-page: 71
  issue: 1
  year: 2020
  ident: 4165_CR21
  publication-title: IEEE Trans Compo, Packaging Manufact Technol
  doi: 10.1109/TCPMT.2020.3043011
– volume-title: Soil and water assessment tool input/output file documentation version 2009
  year: 2011
  ident: 4165_CR2
– ident: 4165_CR13
  doi: 10.1016/j.fuel.2024.131461
– ident: 4165_CR6
  doi: 10.1016/j.apenergy.2024.122685
– ident: 4165_CR10
  doi: 10.1016/j.eswa.2024.124139
– ident: 4165_CR25
  doi: 10.1016/j.jhydrol.2024.131215
– volume: 35
  start-page: 3089
  issue: 10
  year: 1999
  ident: 4165_CR20
  publication-title: Water Resource Res
  doi: 10.1029/1999WR900028
– ident: 4165_CR5
– ident: 4165_CR16
  doi: 10.1016/j.atmosenv.2019.116885
– ident: 4165_CR7
– volume: 10
  start-page: 282
  issue: 3
  year: 1970
  ident: 4165_CR18
  publication-title: J Hydrology
  doi: 10.1016/0022-1694(70)90255-6
– ident: 4165_CR3
  doi: 10.1016/j.jhydrol.2021.126573
– ident: 4165_CR4
  doi: 10.1007/s11269-024-04052-y
– ident: 4165_CR23
  doi: 10.1109/CVPR.2018.00131
– ident: 4165_CR19
  doi: 10.1007/s11269-022-03148-7
– volume: 43
  start-page: 3705
  issue: 6
  year: 2016
  ident: 4165_CR9
  publication-title: Med Phys
  doi: 10.1118/1.4957255
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  ident: 4165_CR8
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.8.1735
– volume: 51
  start-page: 1358
  issue: 6
  year: 2020
  ident: 4165_CR26
  publication-title: Hydrology Res
  doi: 10.2166/nh.2020.026
– ident: 4165_CR17
– ident: 4165_CR14
  doi: 10.1007/s11600-023-01157-7
– volume: 34
  start-page: 73
  issue: 1
  year: 1998
  ident: 4165_CR1
  publication-title: JAWRA J American Water Resource Ass
  doi: 10.1111/j.1752-1688.1998.tb05961.x
– ident: 4165_CR11
  doi: 10.1007/s11269-023-03713-8
– ident: 4165_CR22
  doi: 10.1109/ISSCC.2017.7870350
– ident: 4165_CR12
  doi: 10.1016/j.rineng.2023.101566
– volume: 12
  start-page: 96
  issue: 1
  year: 2019
  ident: 4165_CR15
  publication-title: Water
  doi: 10.3390/w12010096
– ident: 4165_CR24
  doi: 10.1016/j.ejrh.2024.101744
SSID ssj0010090
Score 2.426747
Snippet Hydrological models have made significant advances in methodologies and applications in recent years. However, there is still a need to address the challenge...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Index Database
Publisher
StartPage 4493
SubjectTerms Algorithms
Artificial intelligence
Atmospheric Sciences
Basins
China
Civil Engineering
Earth and Environmental Science
Earth Sciences
Environment
Geotechnical Engineering & Applied Earth Sciences
Hydrogeology
Hydrologic data
Hydrologic models
Hydrology
Hydrology/Water Resources
Hydrometeorology
Interbasin transfers
K-nearest neighbors algorithm
Long short-term memory
Machine learning
Networks
Neural networks
Performance evaluation
Precipitation
River basins
River flow
River forecasting
Rivers
Soil and Water Assessment Tool model
Stream flow
Time series
Topography
Transfer learning
water
Water resources
Title Transferred Long Short-Term Memory Network for River Flow Forecasting in Data-Scarce Basins
URI https://link.springer.com/article/10.1007/s11269-025-04165-y
https://www.proquest.com/docview/3234789620
https://www.proquest.com/docview/3242086684
Volume 39
WOSCitedRecordID wos001441584800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: Springer LINK
  customDbUrl:
  eissn: 1573-1650
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010090
  issn: 0920-4741
  databaseCode: RSV
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://link.springer.com/search?facet-content-type=%22Journal%22
  providerName: Springer Nature
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV07T8MwELagMMDAG1EoyEhsYClxnNgeeVUMUKG2VJUYIsdxoBJKUdKC-u85p0kLCAZYvNiyozvb313u8x1CJwAh1E-oIJqaiDDtJUS5iQuNDXrBVamL9MW9W95qiX5f3pePwvKK7V6FJIubev7YzaWBJLb8qgNWhE8mi2gJ4E7Ygg3tTm8WOwCrofizIsExYgCY5VOZn-f4CkdzG_NbWLRAm-b6_75zA62V1iU-n26HTbRg0i20-inn4DZ6LNApMVlmYnw7TJ9w5xlMcNKFKxrfWd7tBLem3HAMBi1uW-IGbr4M37Et46lVbonSeJDiKzVSxAZwtMEXKh-k-Q56aF53L29IWWGBaIAuW4fe5VxRzSMRGKlibjS0UezGynge9yPBYpb4JogcJcCxo5QHGlwSpR2TOJH2dlEtHaZmD-FA-ZopBu62lkxLLTk1jidYBEc-8SSro9NK0OHrNJFGOE-ZbEUWgsjCQmThpI4alS7C8lDloUc9xoUMqFNHx7NuOA42xqFSMxzbMZYvEAQCFjyr9DOf4vcV9_82_ACt0ELFlrjbQLVRNjaHaFm_jQZ5dlRsyA-Ay9qP
linkProvider Springer Nature
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8QwEB50FdSDb3F9RvCmgTZNm-boa1FcF9FVBA8lTVNdkK5sV2X_vZNu66roQS-5JCRlJsk30_kyA7CLEML8lIVUMxNTrr2UKjd1sbFBL7wqdZG--LYpWq3w7k5elo_C8ortXoUki5t69NjNZYGktvyqg1aETwfjMMERsWzG_Kvr24_YAVoNxZ8ViY4RR8Asn8r8PMdXOBrZmN_CogXaNOb-953zMFtal-RguB0WYMxkizDzKefgEtwX6JSaXs8kpNnNHsj1I5rgtI1XNLmwvNsBaQ254QQNWnJliRuk8dR9I7aMp1a5JUqTTkaOVV9RG8DRhhyqvJPly3DTOGkfndKywgLVCF22Dr0rhGJaxGFgpEqE0djGiZso43nCj0Oe8NQ3QeyoEB07xkSg0SVR2jGpE2tvBWpZNzOrQALla644uttaci21FMw4XshjPPKpJ3kd9ipBR8_DRBrRKGWyFVmEIosKkUWDOmxUuojKQ5VHHvO4CGXAnDrsfHTjcbAxDpWZ7osdY_kCQRDigvuVfkZT_L7i2t-Gb8PUafuiGTXPWufrMM0KdVsS7wbU-r0XswmT-rXfyXtbxeZ8B8hY3XM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB58IXrwLa7PCN40bJumTXNU10VxXUTXRfBQ0jTVBenKdlX23zvpvlT0IF5ySUjKTDKPzjczAAeoQpifspBqZmLKtZdS5aYuDjbohaJSF-WLmzVRr4f39_L6UxZ_gXYfhiT7OQ22SlPWLb8kaXmc-OayQFLbitVBi8KnvUmY5hZIb_312-YojoAWRPGXRaKTxFF5DtJmft7jq2oa25vfQqSF5qku_v-bl2BhYHWS4_41WYYJk63A_KdahKvwUGit1HQ6JiG1dvZIbp_QNKcNFN3kyuJxe6Tex4wTNHTJjQV0kOpz-53Y9p5a5RZATVoZqaiuojawow05UXkry9fgrnrWOD2ng84LVKNKs_3pXSEU0yIOAyNVIozGMU7cRBnPE34c8oSnvgliR4Xo8DEmAo2uitKOSZ1Ye-swlbUzswEkUL7miqMbriXXUkvBjOOFPEZRkHqSl-BwSPTopV9gIxqXUrYki5BkUUGyqFeC7SFfosFjyyOPeVyEMmBOCfZH0_hMbOxDZab9atdYHEEQhHjg0ZBX4y1-P3Hzb8v3YPa6Uo1qF_XLLZhjBbcttncbprqdV7MDM_qt28o7u8U9_QDSxeZX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Transferred+Long+Short-Term+Memory+Network+for+River+Flow+Forecasting+in+Data-Scarce+Basins&rft.jtitle=Water+resources+management&rft.au=Xie%2C+Zaichao&rft.au=Xu%2C+Wei&rft.au=Zhu%2C+Bing&rft.au=Yin%2C+Shiming&rft.date=2025-07-01&rft.pub=Springer+Netherlands&rft.issn=0920-4741&rft.eissn=1573-1650&rft.volume=39&rft.issue=9&rft.spage=4493&rft.epage=4507&rft_id=info:doi/10.1007%2Fs11269-025-04165-y&rft.externalDocID=10_1007_s11269_025_04165_y
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0920-4741&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0920-4741&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0920-4741&client=summon