Siloxene‐Functionalized Laser‐Induced Graphene via COSi Bonding for High‐Performance Heavy Metal Sensing Patch Applications
Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG...
Saved in:
| Published in: | Small (Weinheim an der Bergstrasse, Germany) Vol. 18; no. 25; pp. e2201247 - n/a |
|---|---|
| Main Authors: | , , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Germany
Wiley Subscription Services, Inc
01.06.2022
|
| Subjects: | |
| ISSN: | 1613-6810, 1613-6829, 1613-6829 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene‐CNT/LIG‐based Cu‐ion sensor shows linear response within a wide range of 10–500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu‐ion sensor. The polyaniline‐deposited pH sensor demonstrates a good sensitivity of −64.81 mV pH−1 over the pH range of 3–10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C−1 (correlation coefficient of 0.139% °C−1). The flexible hybrid sensor is promising in applications of noninvasive heavy‐metal ion detection and prediction of related diseases.
A flexible hybrid sensor based on Siloxene/LIG is newly developed for the noninvasive and accurate detection of Cu ions, pH, and temperature simultaneously. The laser‐induced graphene/polydimethylsiloxane is decorated with Siloxene‐based materials via a newly generated COSi bond to ultimately functionalize the electrodes into different sensors for multiple analyses of human perspiration. |
|---|---|
| AbstractList | Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH
over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C
(correlation coefficient of 0.139% °C
). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases. Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH-1 over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C-1 (correlation coefficient of 0.139% °C-1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases.Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene-CNT/LIG-based Cu-ion sensor shows linear response within a wide range of 10-500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu-ion sensor. The polyaniline-deposited pH sensor demonstrates a good sensitivity of -64.81 mV pH-1 over the pH range of 3-10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C-1 (correlation coefficient of 0.139% °C-1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy-metal ion detection and prediction of related diseases. Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene‐CNT/LIG‐based Cu‐ion sensor shows linear response within a wide range of 10–500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu‐ion sensor. The polyaniline‐deposited pH sensor demonstrates a good sensitivity of −64.81 mV pH−1 over the pH range of 3–10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C−1 (correlation coefficient of 0.139% °C−1). The flexible hybrid sensor is promising in applications of noninvasive heavy‐metal ion detection and prediction of related diseases. A flexible hybrid sensor based on Siloxene/LIG is newly developed for the noninvasive and accurate detection of Cu ions, pH, and temperature simultaneously. The laser‐induced graphene/polydimethylsiloxane is decorated with Siloxene‐based materials via a newly generated COSi bond to ultimately functionalize the electrodes into different sensors for multiple analyses of human perspiration. Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene‐CNT/LIG‐based Cu‐ion sensor shows linear response within a wide range of 10–500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu‐ion sensor. The polyaniline‐deposited pH sensor demonstrates a good sensitivity of −64.81 mV pH−1 over the pH range of 3–10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C−1 (correlation coefficient of 0.139% °C−1). The flexible hybrid sensor is promising in applications of noninvasive heavy‐metal ion detection and prediction of related diseases. Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical properties of LIG, and improve the heterogeneous electron transfer rate. Meanwhile, the newly generated COSi crosslink boosts the binding of LIG and Siloxene. Thus, the Siloxene/LIG composite is used as the basic electrode material for the multifunctional detection of copper (Cu) ions, pH, and temperature in human perspiration. Moreover, to enhance the sensing performance of Cu ions, Siloxene/LIG is further modified by carbon nanotubes (CNTs). The fabricated Siloxene‐CNT/LIG‐based Cu‐ion sensor shows linear response within a wide range of 10–500 ppb and a low detection limit of 1.55 ppb. In addition, a pH sensor is integrated to calibrate for determining the accurate concentration of Cu ions due to pH dependency of the Cu‐ion sensor. The polyaniline‐deposited pH sensor demonstrates a good sensitivity of −64.81 mV pH −1 over the pH range of 3–10. Furthermore, a temperature sensor for accurate skin temperature monitoring is also integrated and exhibits a stable linear resistance response with an excellent sensitivity of 9.147 Ω °C −1 (correlation coefficient of 0.139% °C −1 ). The flexible hybrid sensor is promising in applications of noninvasive heavy‐metal ion detection and prediction of related diseases. |
| Author | Sharifuzzaman, Md Zahed, Md Abu Shin, Young Do Sharma, Sudeep Park, Jae Yeong Hui, Xue Seonu, Soo Kyeong Song, Hye Su |
| Author_xml | – sequence: 1 givenname: Xue surname: Hui fullname: Hui, Xue organization: Kwangwoon University – sequence: 2 givenname: Sudeep surname: Sharma fullname: Sharma, Sudeep organization: Kwangwoon University – sequence: 3 givenname: Md surname: Sharifuzzaman fullname: Sharifuzzaman, Md organization: Kwangwoon University – sequence: 4 givenname: Md Abu surname: Zahed fullname: Zahed, Md Abu organization: Kwangwoon University – sequence: 5 givenname: Young Do surname: Shin fullname: Shin, Young Do organization: Kwangwoon University – sequence: 6 givenname: Soo Kyeong surname: Seonu fullname: Seonu, Soo Kyeong organization: Kwangwoon University – sequence: 7 givenname: Hye Su surname: Song fullname: Song, Hye Su organization: Kwangwoon University – sequence: 8 givenname: Jae Yeong orcidid: 0000-0002-2056-5151 surname: Park fullname: Park, Jae Yeong email: jaepark@kw.ac.kr organization: Kwangwoon University |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35595710$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkc1u1DAQgC1URH_gyhFZ4sJlF9tJ7ORYVrRbKVUrLZwtrzPpunLsYCeF5cSNK-_Ag_AuvACvgMO2RaqEONiesb5vLM8coj3nHSD0nJI5JYS9jp21c0YYI5Tl4hE6oJxmM16yau8-pmQfHcZ4TUg2QU_QflYUVSEoOUBfV8b6T-Dg55dvJ6PTg_FOWfMZGlyrCCFdn7lm1Ck_DarfJBLfGIUXv77_uEhrZfAb7xrjrnDrA16aq01SLiGkrFNOA16CutnicxiUxStwcUIv1aA3-LjvrdFqejI-RY9bZSM8uz2P0PuTt-8Wy1l9cXq2OK5nOiOZmNGsqUrBNckAoGVp42sOeUVayptKcaZJ2zY5KVVTVExoUbYtVVpXel0qpiE7Qq92dfvgP4wQB9mZqMFa5cCPUTLOhShFlrOEvnyAXvsxpO5MlKgKWgieJ-rFLTWuO2hkH0ynwlbetTgB-Q7QwccYoJXaDH8-PQRlrKRETpOU0yTl_SSTNn-g3VX-p1DthI_GwvY_tFyd1_Vf9zessLg4 |
| CitedBy_id | crossref_primary_10_1016_j_cej_2023_143364 crossref_primary_10_1016_j_apsusc_2023_157099 crossref_primary_10_1016_j_cej_2024_151513 crossref_primary_10_1016_j_talanta_2024_127039 crossref_primary_10_1088_2631_7990_adbb35 crossref_primary_10_1016_j_cej_2023_145836 crossref_primary_10_1007_s12633_023_02664_4 crossref_primary_10_1002_smtd_202400118 crossref_primary_10_1021_acsami_5c04078 crossref_primary_10_1007_s00216_023_05082_y crossref_primary_10_1016_j_mattod_2023_06_022 crossref_primary_10_1016_j_mtchem_2025_103033 crossref_primary_10_1016_j_talanta_2023_124362 crossref_primary_10_1007_s40820_024_01428_y crossref_primary_10_1016_j_jiec_2025_01_036 |
| Cites_doi | 10.1039/D0CC00245C 10.1021/acs.analchem.0c02211 10.1016/j.bios.2012.12.031 10.1002/adfm.202007661 10.1002/admt.202000014 10.1039/C5TA00321K 10.2215/CJN.08331109 10.1039/C6TA07545B 10.1016/j.cej.2021.129728 10.1039/c0jm03751f 10.1038/s41587-019-0321-x 10.1016/j.snb.2014.03.045 10.1039/c2jm34795d 10.1002/smll.201702249 10.1039/C8EE00160J 10.1002/adfm.202009018 10.1039/C9TA03584B 10.1039/c4tb00104d 10.1016/j.memsci.2019.117322 10.1016/j.matlet.2021.130637 10.1002/adfm.201910331 10.1016/0025-5408(95)00195-6 10.1039/c2ay25674f 10.1002/adhm.201800074 10.1021/acsami.8b15323 10.1016/j.snb.2020.128790 10.1016/S0022-0728(02)01005-7 10.1021/acssensors.6b00287 10.1126/sciadv.aax0649 10.1016/j.bios.2020.112220 10.1021/acsnano.6b04005 10.1021/acsami.0c03148 10.1007/s00216-020-03002-y 10.1021/acssensors.7b00729 10.1016/j.electacta.2017.07.084 10.1038/ncomms6714 10.1021/acsami.9b04915 10.1002/elan.201600568 10.1007/s11581-015-1499-7 10.1016/j.bios.2020.112637 10.1016/j.aca.2013.06.040 10.1002/smll.201802350 10.1016/j.cej.2020.124684 10.1039/C7RA02267K 10.1002/elan.201800414 10.1021/acsnano.7b02182 10.1039/C5RA00871A |
| ContentType | Journal Article |
| Copyright | 2022 Wiley‐VCH GmbH 2022 Wiley-VCH GmbH. |
| Copyright_xml | – notice: 2022 Wiley‐VCH GmbH – notice: 2022 Wiley-VCH GmbH. |
| DBID | AAYXX CITATION NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| DOI | 10.1002/smll.202201247 |
| DatabaseName | CrossRef PubMed Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX MEDLINE - Academic |
| DatabaseTitleList | PubMed MEDLINE - Academic Materials Research Database CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1613-6829 |
| EndPage | n/a |
| ExternalDocumentID | 35595710 10_1002_smll_202201247 SMLL202201247 |
| Genre | article Journal Article |
| GrantInformation_xml | – fundername: Ministry of Trade, Industry & Energy (MI, Korea) – fundername: Technology Innovation Program funderid: 20000773 – fundername: Technology Innovation Program grantid: 20000773 |
| GroupedDBID | --- 05W 0R~ 123 1L6 1OC 33P 3SF 3WU 4.4 50Y 52U 53G 5VS 66C 8-0 8-1 8UM AAESR AAEVG AAHQN AAIHA AAMMB AAMNL AANLZ AAONW AAXRX AAYCA AAZKR ABCUV ABIJN ABJNI ABLJU ABRTZ ACAHQ ACCZN ACFBH ACGFS ACIWK ACPOU ACXBN ACXQS ADBBV ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AEIGN AEIMD AENEX AEUYR AFBPY AFFPM AFGKR AFWVQ AFZJQ AGHNM AGXDD AGYGG AHBTC AIDQK AIDYY AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ATUGU AUFTA AZVAB BFHJK BHBCM BMNLL BMXJE BNHUX BOGZA BRXPI CS3 DCZOG DPXWK DR2 DRFUL DRSTM DU5 EBD EBS EMOBN F5P G-S GNP HBH HGLYW HHY HHZ HZ~ IX1 KQQ LATKE LAW LEEKS LITHE LOXES LUTES LYRES MEWTI MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM MY~ O66 O9- OIG P2P P2W QRW R.K RIWAO RNS ROL RX1 RYL SUPJJ SV3 V2E W99 WBKPD WFSAM WIH WIK WJL WOHZO WXSBR WYISQ XV2 Y6R ZZTAW ~S- 31~ AANHP AASGY AAYXX ACBWZ ACRPL ACYXJ ADNMO AGQPQ ASPBG AVWKF AZFZN BDRZF CITATION EJD FEDTE GODZA HVGLF LH4 AAHHS ACCFJ AEEZP AEQDE AIWBW AJBDE NPM 7SR 7U5 8BQ 8FD JG9 L7M 7X8 |
| ID | FETCH-LOGICAL-c3037-13d9876c03eeef2eee6b6e490f16d9a62c0ffd408ad5927c78ff1acc9cb8a2ce3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 22 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000799500300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1613-6810 1613-6829 |
| IngestDate | Fri Sep 05 11:17:35 EDT 2025 Fri Jul 25 12:13:45 EDT 2025 Thu Apr 03 07:03:27 EDT 2025 Sat Nov 29 04:10:42 EST 2025 Tue Nov 18 21:19:23 EST 2025 Sun Jul 06 04:45:29 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 25 |
| Keywords | flexible hybrid perspiration sensors noninvasive Cu ions detection Siloxene-functionalized laser-induced graphene pH calibration C O Si bonds |
| Language | English |
| License | 2022 Wiley-VCH GmbH. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3037-13d9876c03eeef2eee6b6e490f16d9a62c0ffd408ad5927c78ff1acc9cb8a2ce3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0002-2056-5151 |
| PMID | 35595710 |
| PQID | 2679515764 |
| PQPubID | 1046358 |
| PageCount | 14 |
| ParticipantIDs | proquest_miscellaneous_2667787342 proquest_journals_2679515764 pubmed_primary_35595710 crossref_citationtrail_10_1002_smll_202201247 crossref_primary_10_1002_smll_202201247 wiley_primary_10_1002_smll_202201247_SMLL202201247 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-01 |
| PublicationDateYYYYMMDD | 2022-06-01 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Germany |
| PublicationPlace_xml | – name: Germany – name: Weinheim |
| PublicationTitle | Small (Weinheim an der Bergstrasse, Germany) |
| PublicationTitleAlternate | Small |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 7 2017; 7 2017; 2 2015; 5 2019; 5 2015; 3 2019; 31 2021; 421 2013; 43 2019; 11 2019; 13 2021; 304 2002; 531 2020; 160 2016; 10 2020; 325 2019; 38 2020; 12 2020; 56 2017; 29 2020; 169 2014; 197 1996; 31 2018; 7 2016; 4 2020; 5 2014; 5 2016; 1 2021; 31 2014; 2 2020; 30 2020; 393 2017; 11 2021; 413 2020; 92 2015; 21 2011; 21 2013; 790 2019; 591 2018; 11 2010; 5 2012; 4 2012; 22 2017; 248 2018; 14 e_1_2_8_28_1 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_26_1 e_1_2_8_27_1 e_1_2_8_48_1 Luong D. X. (e_1_2_8_13_1) 2019; 13 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_5_1 e_1_2_8_4_1 e_1_2_8_7_1 e_1_2_8_6_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_1_1 e_1_2_8_41_1 e_1_2_8_40_1 e_1_2_8_17_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_19_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_30_1 |
| References_xml | – volume: 5 year: 2015 publication-title: RSC Adv. – volume: 413 start-page: 727 year: 2021 publication-title: Anal. Bioanal. Chem. – volume: 7 year: 2019 publication-title: J. Mater. Chem. A – volume: 4 year: 2016 publication-title: J. Mater. Chem. A – volume: 169 year: 2020 publication-title: Biosens. Bioelectron. – volume: 11 start-page: 624 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 12 year: 2020 publication-title: ACS Appl. Mater. Interfaces – volume: 2 start-page: 1860 year: 2017 publication-title: ACS Sens. – volume: 1 start-page: 866 year: 2016 publication-title: ACS Sens. – volume: 14 year: 2018 publication-title: Small – volume: 43 start-page: 293 year: 2013 publication-title: Biosens. Bioelectron. – volume: 197 start-page: 422 year: 2014 publication-title: Sens. Actuators, B – volume: 3 start-page: 9411 year: 2015 publication-title: J. Mater. Chem. A – volume: 2 start-page: 2212 year: 2014 publication-title: J. Mater. Chem. B – volume: 325 year: 2020 publication-title: Sens. Actuators, B – volume: 5 year: 2020 publication-title: Adv. Mater. Technol. – volume: 591 year: 2019 publication-title: J. Membr. Sci. – volume: 393 year: 2020 publication-title: Chem. Eng. J. – volume: 160 year: 2020 publication-title: Biosens. Bioelectron. – volume: 38 start-page: 217 year: 2019 publication-title: Nat. Biotechnol. – volume: 7 year: 2018 publication-title: Adv. Healthcare Mater. – volume: 248 start-page: 46 year: 2017 publication-title: Electrochim. Acta – volume: 13 start-page: 2579 year: 2019 publication-title: ACS Nano – volume: 11 year: 2019 publication-title: ACS Appl. Mater. Interfaces – volume: 790 start-page: 31 year: 2013 publication-title: Anal. Chim. Acta – volume: 92 year: 2020 publication-title: Anal. Chem. – volume: 29 start-page: 1022 year: 2017 publication-title: Electroanalysis – volume: 10 start-page: 7216 year: 2016 publication-title: ACS Nano – volume: 30 year: 2020 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 5714 year: 2014 publication-title: Nat. Commun. – volume: 31 start-page: 239 year: 2019 publication-title: Electroanalysis – volume: 22 year: 2012 publication-title: J. Mater. Chem. – volume: 11 start-page: 1595 year: 2018 publication-title: Energy Environ. Sci. – volume: 11 start-page: 7634 year: 2017 publication-title: ACS Nano – volume: 31 year: 2021 publication-title: Adv. Funct. Mater. – volume: 5 start-page: 1277 year: 2010 publication-title: Clin. J. Am. Soc. Nephrol. – volume: 56 start-page: 4824 year: 2020 publication-title: Chem. Commun. – volume: 4 start-page: 3332 year: 2012 publication-title: Anal. Methods – volume: 421 year: 2021 publication-title: Chem. Eng. J. – volume: 5 year: 2019 publication-title: Sci. Adv. – volume: 304 year: 2021 publication-title: Mater. Lett. – volume: 531 start-page: 43 year: 2002 publication-title: J. Electroanal. Chem. – volume: 7 year: 2017 publication-title: RSC Adv. – volume: 21 start-page: 4326 year: 2011 publication-title: J. Mater. Chem. – volume: 31 start-page: 307 year: 1996 publication-title: Mater. Res, Bull. – volume: 21 start-page: 3125 year: 2015 publication-title: Ionics – ident: e_1_2_8_25_1 doi: 10.1039/D0CC00245C – ident: e_1_2_8_48_1 doi: 10.1021/acs.analchem.0c02211 – ident: e_1_2_8_31_1 doi: 10.1016/j.bios.2012.12.031 – ident: e_1_2_8_44_1 doi: 10.1002/adfm.202007661 – ident: e_1_2_8_46_1 doi: 10.1002/admt.202000014 – ident: e_1_2_8_27_1 doi: 10.1039/C5TA00321K – ident: e_1_2_8_7_1 doi: 10.2215/CJN.08331109 – ident: e_1_2_8_21_1 doi: 10.1039/C6TA07545B – ident: e_1_2_8_22_1 doi: 10.1016/j.cej.2021.129728 – ident: e_1_2_8_32_1 doi: 10.1039/c0jm03751f – ident: e_1_2_8_45_1 doi: 10.1038/s41587-019-0321-x – ident: e_1_2_8_41_1 doi: 10.1016/j.snb.2014.03.045 – volume: 13 start-page: 2579 year: 2019 ident: e_1_2_8_13_1 publication-title: ACS Nano – ident: e_1_2_8_36_1 doi: 10.1039/c2jm34795d – ident: e_1_2_8_10_1 doi: 10.1002/smll.201702249 – ident: e_1_2_8_24_1 doi: 10.1039/C8EE00160J – ident: e_1_2_8_29_1 doi: 10.1002/adfm.202009018 – ident: e_1_2_8_20_1 doi: 10.1039/C9TA03584B – ident: e_1_2_8_37_1 doi: 10.1039/c4tb00104d – ident: e_1_2_8_16_1 doi: 10.1016/j.memsci.2019.117322 – ident: e_1_2_8_18_1 doi: 10.1016/j.matlet.2021.130637 – ident: e_1_2_8_19_1 doi: 10.1002/adfm.201910331 – ident: e_1_2_8_26_1 doi: 10.1016/0025-5408(95)00195-6 – ident: e_1_2_8_34_1 doi: 10.1039/c2ay25674f – ident: e_1_2_8_8_1 doi: 10.1002/adhm.201800074 – ident: e_1_2_8_23_1 doi: 10.1021/acsami.8b15323 – ident: e_1_2_8_17_1 doi: 10.1016/j.snb.2020.128790 – ident: e_1_2_8_40_1 doi: 10.1016/S0022-0728(02)01005-7 – ident: e_1_2_8_5_1 doi: 10.1021/acssensors.6b00287 – ident: e_1_2_8_2_1 doi: 10.1126/sciadv.aax0649 – ident: e_1_2_8_42_1 doi: 10.1016/j.bios.2020.112220 – ident: e_1_2_8_6_1 doi: 10.1021/acsnano.6b04005 – ident: e_1_2_8_15_1 doi: 10.1021/acsami.0c03148 – ident: e_1_2_8_1_1 doi: 10.1007/s00216-020-03002-y – ident: e_1_2_8_3_1 doi: 10.1021/acssensors.7b00729 – ident: e_1_2_8_39_1 doi: 10.1016/j.electacta.2017.07.084 – ident: e_1_2_8_11_1 doi: 10.1038/ncomms6714 – ident: e_1_2_8_14_1 doi: 10.1021/acsami.9b04915 – ident: e_1_2_8_33_1 doi: 10.1002/elan.201600568 – ident: e_1_2_8_38_1 doi: 10.1007/s11581-015-1499-7 – ident: e_1_2_8_12_1 doi: 10.1016/j.bios.2020.112637 – ident: e_1_2_8_30_1 doi: 10.1016/j.aca.2013.06.040 – ident: e_1_2_8_9_1 doi: 10.1002/smll.201802350 – ident: e_1_2_8_28_1 doi: 10.1016/j.cej.2020.124684 – ident: e_1_2_8_35_1 doi: 10.1039/C7RA02267K – ident: e_1_2_8_4_1 doi: 10.1002/elan.201800414 – ident: e_1_2_8_47_1 doi: 10.1021/acsnano.7b02182 – ident: e_1_2_8_43_1 doi: 10.1039/C5RA00871A |
| SSID | ssj0031247 |
| Score | 2.4910188 |
| Snippet | Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser‐induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical... Here, 2D Siloxene nanosheets are newly applied to functionalize porous laser-induced graphene (LIG) on polydimethylsiloxane, modify the surface chemical... |
| SourceID | proquest pubmed crossref wiley |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | e2201247 |
| SubjectTerms | C O Si bonds Carbon nanotubes Chemical properties Copper Correlation coefficients Electrode materials Electron transfer flexible hybrid perspiration sensors Graphene Heavy metals Ion detectors Nanotechnology noninvasive Cu ions detection Perspiration pH calibration Polyanilines Polydimethylsiloxane Sensitivity Sensors Siloxene‐functionalized laser‐induced graphene Skin temperature Temperature sensors |
| Title | Siloxene‐Functionalized Laser‐Induced Graphene via COSi Bonding for High‐Performance Heavy Metal Sensing Patch Applications |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fsmll.202201247 https://www.ncbi.nlm.nih.gov/pubmed/35595710 https://www.proquest.com/docview/2679515764 https://www.proquest.com/docview/2667787342 |
| Volume | 18 |
| WOSCitedRecordID | wos000799500300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1613-6829 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031247 issn: 1613-6810 databaseCode: DRFUL dateStart: 20050101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NbtQwEB7RLQd64B8aKJWRkDhFTRzHjo9VYekhLSuWSnuL_KtGWnbRbrsCTty48g48CO_CC_AKjDfZdFcIIcEhUZyMHcue8Xz--wzwTIhUefQDsc6kxQ6Kc7E2qMvceK4Z8ywXy43CpTg9LUYjOVjbxd_wQ3QDbsEylu11MHCl5wdXpKHzd-MwdUDRg1EmtmCbovKyHmy_eNM_K1etcRY-hk4Xuq04cG-tiBsTerCZwqZj-g1tboLXpffp3_r_fN-Gmy3yJIeNqtyBa25yF3bW-AjvwZdhPZ5-wNbvx-evfXR4zThh_clZUqK3m-HrcNSHwfCrQHSNkmRRK3L089v313gNaxKOKca0CGJhEtaQYJTB1d4EcuzU4iM5cQj5yTCsnUfRAXqDc3K4NpN-H876L98eHcftSQ2xycI-wzSzEptVk2TOOU_xxjV3TCY-5VYqTk3ivWVJoWwuqTCi8D5VxkijC0WNyx5AbzKduF0g3uZW55JrheDCa6oFimpOU5tqQamLIF5VU2VaGvNwmsa4agiYaRUKuOoKOILnnfz7hsDjj5J7q1qvWkOeV5QLxKDYKWMRPO0-owmGeRU1cdPLIBNY-ETGaAQPG23pfoVwTuaI4iKgS6X4Sx6q4UlZdqFH_xLpMdwIz81ytj3oXcwu3RO4bhYX9Xy2D1tiVOy3RvILHC0ZPw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NjtMwEB5BFwk48P8TWMBISJyiTRzHbo6rhVJEWiq6K-0tsh1bROq2q3a3Ak7cuPIOPAjvwgvwCsw0aXYrhJAQh0SKPXYse8bz-e8zwDOlYu3RD4QmyUocoDgXGou6LK2XRggvUrU6KJyr4bB7eJiNmt2EdBam5odoJ9zIMlb9NRk4TUjvnLGGLo4mtHbA0YVxoS7ClkBdSjuw9eJd7yBfd8cJRdKoC_1WSORba-bGiO9s5rDpmX6Dm5vodeV-etf_Q8FvwLUGe7LdWlluwgU3vQVXzzES3oYv42oy-4D934_PX3vo8uqZwuqTK1mO_m6OwXTZh8XvV0R1jZJsWWm29_Pb97f4jCtGFxVjXgzRMKNdJJhkdHY6gfWdXn5kA4egn41p9zyKjtAfvGe759bS78BB7-X-Xj9s7moIbUInDeOkzLBjtVHinPMcX9JIJ7LIx7LMtOQ28r4UUVeXacaVVV3vY21tZk1Xc-uSu9CZzqbuPjBfpqVJM2k0wgtvuFEoaiSPy9gozl0A4bqdCtsQmdN9GpOipmDmBVVw0VZwAM9b-eOawuOPktvrZi8aU14UXCpEoTgsEwE8baPRCGllRU_d7JRkiIdPJYIHcK9Wl_ZXCOiyFHFcAHylFX8pQzEe5Hn79eBfEj2By_39QV7kr4dvHsIVCq83t21D52R-6h7BJbs8qRbzx42t_AI66BxH |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NbtQwEB5BixAc-C0QKGAkJE5RE8exN8eqJRSRLiuWSr1F8Z-ItOxWu-0KOHHjyjvwIH2XvgCvwMwmm3aFEBLikEixx45lezyff-YzwHOl4sqjHQh1klmcoDgXaoN9WRovtRBepGrhKFyofr93eJgN2tOE5AvT8EN0C26kGYvxmhTcHVm_dc4aOvs4or0DjiaMC3UZ1kWaSdTN9d13-UGxHI4TiqRZF9qtkMi3lsyNEd9azWHVMv0GN1fR68L85Df_Q8FvwY0We7LtprPchktufAeuX2AkvAvfhvVo8gnHv7Ov33M0ec1KYf3FWVagvZtiMF32YfD7FVFdoySb1xXb-fnj9C0-w5rRRcWYF0M0zOgUCSYZnHsnsD1XzT-zfYegnw3p9DyKDtAefGDbF_bSN-Agf_l-Zy9s72oITUKehnFiMxxYTZQ45zzHl9TSiSzysbRZJbmJvLci6lU2zbgyqud9XBmTGd2ruHHJPVgbT8buATBvU6uxKXWF8MJrrhWKasljG2vFuQsgXLZTaVoic7pPY1Q2FMy8pAouuwoO4EUnf9RQePxRcnPZ7GWryrOSS4UoFKdlIoBnXTQqIe2sVGM3OSEZ4uFTieAB3G-6S_crBHRZijguAL7oFX8pQzncL4ru6-G_JHoKVwe7eVm87r95BNcouDnbtglrx9MT9xiumPlxPZs-aVXlF58TG8I |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Siloxene-Functionalized+Laser-Induced+Graphene+via+C%EF%A3%BFO%EF%A3%BFSi+Bonding+for+High-Performance+Heavy+Metal+Sensing+Patch+Applications&rft.jtitle=Small+%28Weinheim+an+der+Bergstrasse%2C+Germany%29&rft.au=Hui%2C+Xue&rft.au=Sharma%2C+Sudeep&rft.au=Sharifuzzaman%2C+Md&rft.au=Zahed%2C+Md+Abu&rft.date=2022-06-01&rft.eissn=1613-6829&rft.spage=e2201247&rft_id=info:doi/10.1002%2Fsmll.202201247&rft_id=info%3Apmid%2F35595710&rft.externalDocID=35595710 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1613-6810&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1613-6810&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1613-6810&client=summon |