Sonic Log Prediction Based on Extreme Gradient Boosting (XGBoost) Machine Learning Algorithm by Using Well Log Data

Sonic log is an important aspect that provides a detailed description of the subsurface properties associated with oil and gas reservoirs. The problem that frequently occurs is the unavailability of sonic log data for various reasons needs to be given an effective solution. The alternative approach...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:BIO web of conferences Ročník 89; s. 9003
Hlavní autori: Hakam, Abdul, Utama, Widya, Garini, Sherly Ardhya, Jabar, Omar Abdul, Insani, Alif Nurdien Fitrah, Rosandi, Yudi
Médium: Journal Article Konferenčný príspevok..
Jazyk:English
Vydavateľské údaje: Les Ulis EDP Sciences 01.01.2024
Predmet:
ISSN:2117-4458, 2273-1709, 2117-4458
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Sonic log is an important aspect that provides a detailed description of the subsurface properties associated with oil and gas reservoirs. The problem that frequently occurs is the unavailability of sonic log data for various reasons needs to be given an effective solution. The alternative approach proposed in this research is sonic log prediction based on Extreme Gradient Boosting (XGBoost) machine learning algorithm, using available log data to build a reliable sonic log prediction model. In this research, the predicted DT log type is the Differential Time Shear Slowness (DTSM) log, which is the velocity of shear waves propagating in a formation. Log features used for training include gamma ray (GR), density (RHOB), porosity (NPHI), resistivity (RS and RD) logs with DTSM log as the prediction target. To optimise the performance and generalisation of the XGBoost algorithm in predicting log DTSM, hyperparameter tuning was applied using grid search technique to obtain optimal parameters for the prediction model. Based on the experimental results, this research found that hyperparameter tuning using grid search technique improved the accuracy of sonic log (DTSM) model prediction based on XGBoost algorithm, as proven by the decrease of RMSE and MAPE values to 19.699 and 7.713%. The results also pointed out the need for methods other than listwise deletion to handle missing values as an alternative to improving model accuracy. This research highlighted the need for continuous improvement in data processing methods and algorithm optimization to advance the application of machine learning in geophysical exploration.
AbstractList Sonic log is an important aspect that provides a detailed description of the subsurface properties associated with oil and gas reservoirs. The problem that frequently occurs is the unavailability of sonic log data for various reasons needs to be given an effective solution. The alternative approach proposed in this research is sonic log prediction based on Extreme Gradient Boosting (XGBoost) machine learning algorithm, using available log data to build a reliable sonic log prediction model. In this research, the predicted DT log type is the Differential Time Shear Slowness (DTSM) log, which is the velocity of shear waves propagating in a formation. Log features used for training include gamma ray (GR), density (RHOB), porosity (NPHI), resistivity (RS and RD) logs with DTSM log as the prediction target. To optimise the performance and generalisation of the XGBoost algorithm in predicting log DTSM, hyperparameter tuning was applied using grid search technique to obtain optimal parameters for the prediction model. Based on the experimental results, this research found that hyperparameter tuning using grid search technique improved the accuracy of sonic log (DTSM) model prediction based on XGBoost algorithm, as proven by the decrease of RMSE and MAPE values to 19.699 and 7.713%. The results also pointed out the need for methods other than listwise deletion to handle missing values as an alternative to improving model accuracy. This research highlighted the need for continuous improvement in data processing methods and algorithm optimization to advance the application of machine learning in geophysical exploration.
Author Garini, Sherly Ardhya
Jabar, Omar Abdul
Insani, Alif Nurdien Fitrah
Rosandi, Yudi
Hakam, Abdul
Utama, Widya
Author_xml – sequence: 1
  givenname: Abdul
  surname: Hakam
  fullname: Hakam, Abdul
– sequence: 2
  givenname: Widya
  surname: Utama
  fullname: Utama, Widya
– sequence: 3
  givenname: Sherly Ardhya
  surname: Garini
  fullname: Garini, Sherly Ardhya
– sequence: 4
  givenname: Omar Abdul
  surname: Jabar
  fullname: Jabar, Omar Abdul
– sequence: 5
  givenname: Alif Nurdien Fitrah
  surname: Insani
  fullname: Insani, Alif Nurdien Fitrah
– sequence: 6
  givenname: Yudi
  surname: Rosandi
  fullname: Rosandi, Yudi
BookMark eNp9UcFu1DAQtVCRKKVfwMUSFzgsHdtx4hzb0i6VFlGpVHCzJs5k61XWLrYr0b9vsluhigNzmaeZee-N9N6ygxADMfZewGcBWpx0ProYhhMJsjIttADqFTuUQjSLqtLm4AV-w45z3sBUrVDQ6EOWb2Lwjq_iml8n6r0rPgZ-hpl6PoGLPyXRlvgyYe8pFH4WYy4-rPnHX8sd_sS_obvzgfiKMIV5dTquY_Llbsu7R36b59FPGsedyRcs-I69HnDMdPzcj9jt5cWP86-L1ffl1fnpauEUKLWoDFSkNdQERteDcEMN5FB2TvbthLUxjUOE3rWVcTRgC7WshdKdaGCQWh2xq71uH3Fj75PfYnq0Eb3dDWJaW0zFu5GslFoiYQ9kugp7NCCdlhVN8rImIyatD3ut-xR_P1AudhMfUpjet0qYRk_f1POV2l-5FHNONPx1FWDnsOxzWPZFWBOr_YflfME5iJLQj__lPgHG6Jxz
CitedBy_id crossref_primary_10_1088_2631_8695_add084
Cites_doi 10.1145/3292500.3330649.
10.1017/pan.2017.43
10.1145/3219819.3220058.
10.1109/ACCESS.2021.3134138
10.3102/00346543074004525
10.24996/ijs.2023.64.1.24
10.1016/j.seta.2021.101474
10.1155/2021/5506599
10.1007/s13202-020-00843-2
10.1186/s12879-021-06503-y
10.1186/2193-1801-2-1
10.1109/ijcnn.2006.247304.
10.1190/segam2020-3427540.1.
10.1038/s41598-021-99269-x
10.1186/s12967-020-02620-5
10.55730/1300-0632.3821
10.1016/j.petrol.2017.10.028
ContentType Journal Article
Conference Proceeding
Copyright 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7SN
7TM
8AO
8FE
8FH
ABUWG
AEUYN
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
C1K
CCPQU
DWQXO
GNUQQ
HCIFZ
LK8
M7P
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOA
DOI 10.1051/bioconf/20248909003
DatabaseName CrossRef
Ecology Abstracts
Nucleic Acids Abstracts
ProQuest Pharma Collection
ProQuest SciTech Collection
ProQuest Natural Science Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Biological Science Collection
Biological Science Database
ProQuest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
Nucleic Acids Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Pharma Collection
ProQuest Central China
Environmental Sciences and Pollution Management
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central Korea
Biological Science Collection
ProQuest Central (New)
ProQuest Biological Science Collection
ProQuest One Academic Eastern Edition
Biological Science Database
ProQuest SciTech Collection
Ecology Abstracts
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList Publicly Available Content Database
CrossRef

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: PIMPY
  name: Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 2117-4458
ExternalDocumentID oai_doaj_org_article_2252aead0e8b4ada802c524eaa026e81
10_1051_bioconf_20248909003
Genre Conference Proceeding
GroupedDBID 4.4
5VS
8AO
8FE
8FH
AAFWJ
AAHBH
AAOGA
AAYXX
ABZDU
ACACO
ACPRK
ACRPL
ADBBV
ADMLS
ADNMO
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AGQPQ
ALMA_UNASSIGNED_HOLDINGS
ARCSS
BBNVY
BCNDV
BENPR
BHPHI
CCPQU
CITATION
EBS
EJD
GI~
GROUPED_DOAJ
GX1
HCIFZ
IPNFZ
KQ8
LK8
M7P
M~E
OK1
PHGZM
PHGZT
PIMPY
PQGLB
PROAC
RIG
RNS
7SN
7TM
ABUWG
AZQEC
C1K
DWQXO
GNUQQ
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c3033-4804e5506e0856f1cf60eca2bc2d9f605887caa0dc948cefa90626135b170f253
IEDL.DBID DOA
ISSN 2117-4458
2273-1709
IngestDate Fri Oct 03 12:51:46 EDT 2025
Fri Jul 25 12:03:16 EDT 2025
Sat Nov 29 04:44:54 EST 2025
Tue Nov 18 20:42:58 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3033-4804e5506e0856f1cf60eca2bc2d9f605887caa0dc948cefa90626135b170f253
Notes ObjectType-Conference Proceeding-1
SourceType-Conference Papers & Proceedings-1
content type line 21
OpenAccessLink https://doaj.org/article/2252aead0e8b4ada802c524eaa026e81
PQID 3187505861
PQPubID 2040557
ParticipantIDs doaj_primary_oai_doaj_org_article_2252aead0e8b4ada802c524eaa026e81
proquest_journals_3187505861
crossref_primary_10_1051_bioconf_20248909003
crossref_citationtrail_10_1051_bioconf_20248909003
PublicationCentury 2000
PublicationDate 20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: 20240101
  day: 01
PublicationDecade 2020
PublicationPlace Les Ulis
PublicationPlace_xml – name: Les Ulis
PublicationTitle BIO web of conferences
PublicationYear 2024
Publisher EDP Sciences
Publisher_xml – name: EDP Sciences
References Arel-Bundock (R20) 2018; 26
R3
Hoque (R15) 2021; 9
R9
Raghu (R10) 2021; 28
Kumar Dubey (R8) 2021; 47
Jia (R16) 2016; 9966
Peugh (R19) 2004; 74
Uyar (R14) 2022; 30
Xie (R18) 2018; 160
R11
Hou (R4) 2020; 18
R13
Onalo (R1) 2020; 10
Dong (R7) 2013; 2
Lv (R5) 2021; 21
Mohammed (R2) 2023; 64
Khodak (R12) 2021; 23
R17
Kawano (R6) 2022; 12
References_xml – ident: R9
  doi: 10.1145/3292500.3330649.
– volume: 26
  start-page: 240
  issue: 2
  year: 2018
  ident: R20
  publication-title: Polit. Anal.
  doi: 10.1017/pan.2017.43
– ident: R13
  doi: 10.1145/3219819.3220058.
– volume: 9
  start-page: 163815
  year: 2021
  ident: R15
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3134138
– volume: 23
  start-page: 19184
  year: 2021
  ident: R12
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 74
  start-page: 525
  issue: 4
  year: 2004
  ident: R19
  publication-title: Rev. Educ. Res.
  doi: 10.3102/00346543074004525
– volume: 64
  start-page: 253
  issue: 1
  year: 2023
  ident: R2
  publication-title: Iraqi J. Sci.
  doi: 10.24996/ijs.2023.64.1.24
– volume: 47
  start-page: 101474
  year: 2021
  ident: R8
  publication-title: Sustain. Energy Technol. Assessments
  doi: 10.1016/j.seta.2021.101474
– volume: 28
  start-page: 23231
  year: 2021
  ident: R10
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 9966
  start-page: 180
  year: 2016
  ident: R16
  publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics)
– ident: R17
  doi: 10.1155/2021/5506599
– volume: 10
  start-page: 1429
  issue: 4
  year: 2020
  ident: R1
  publication-title: J. Pet. Explor. Prod. Technol.
  doi: 10.1007/s13202-020-00843-2
– volume: 21
  start-page: 1
  issue: 1
  year: 2021
  ident: R5
  publication-title: BMC Infect. Dis.
  doi: 10.1186/s12879-021-06503-y
– volume: 2
  start-page: 1
  issue: 1
  year: 2013
  ident: R7
  publication-title: Springerplus
  doi: 10.1186/2193-1801-2-1
– ident: R11
  doi: 10.1109/ijcnn.2006.247304.
– ident: R3
  doi: 10.1190/segam2020-3427540.1.
– volume: 12
  start-page: 1
  issue: 1
  year: 2022
  ident: R6
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-99269-x
– volume: 18
  start-page: 1
  issue: 1
  year: 2020
  ident: R4
  publication-title: J. Transl. Med.
  doi: 10.1186/s12967-020-02620-5
– volume: 30
  start-page: 961
  issue: 3
  year: 2022
  ident: R14
  publication-title: Turkish J. Electr. Eng. Comput. Sci.
  doi: 10.55730/1300-0632.3821
– volume: 160
  start-page: 182
  year: 2018
  ident: R18
  publication-title: J. Pet. Sci. Eng.
  doi: 10.1016/j.petrol.2017.10.028
SSID ssj0000913075
Score 2.256769
Snippet Sonic log is an important aspect that provides a detailed description of the subsurface properties associated with oil and gas reservoirs. The problem that...
SourceID doaj
proquest
crossref
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
StartPage 9003
SubjectTerms Algorithms
Availability
Continuous improvement
Data processing
Gamma rays
Geophysical exploration
Learning algorithms
Machine learning
Oil reservoirs
Optimization
Porosity
Prediction models
Predictions
Propagation velocity
Tuning
Wave propagation
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKCxInKBSxtFQ-cACJqLHjJM4Jdcu2PZTViofYW-TnttKyKZtQ0X_PjOPdUlXqpTcrmSjjzHjGnpl8Q8g7qWyWsaxMKqnTBLbUNpHgdhJvy8Ixprwq-mYT5Xgsp9NqEgNubSyrXNnEYKhtYzBGfgC6B84tlwX7dPk7wa5RmF2NLTQekS1EKgM93xqOxpOv6ygLol72aLsc_HTCyrRaQQ_l7EBfNHDo9BgAEMAhBvVuuaeA4n_HSAfPc_zsoTw_Jzs3P_XRydpdbZMNt3hBnvS9KK9fkvYbguTSs2YGVJi9QYnRITg5S2Ew-tthJJGeLEONWEeHTdNiyTR9Pz0J4w_0SyjMdDRits7o4XwG7HTnv6i-pqE4gf5083l4yWfVqR3y43j0_eg0iR0ZEpNh0zchU-HgTFM42KkVnhlfpM4org23lccMqyyNUqk1lZDGeYUoyLBhyDV8ec_z7BXZXDQL95pQMKuSOZ2DNhjBrKyMF6bMtNKVEtbyAeErQdQmwpVj14x5HdLmOauj9Or_pDcgH9cPXfZoHfeTD1HCa1KE2g4XmuWsjiu3BoPHFay31EktlFUy5SbnwsE0eQFzGJC9lfDruP7b-kbyb-6_vUueIkN9UGePbHbLP-4teWyuuot2uR_V-R-VC_1S
  priority: 102
  providerName: ProQuest
Title Sonic Log Prediction Based on Extreme Gradient Boosting (XGBoost) Machine Learning Algorithm by Using Well Log Data
URI https://www.proquest.com/docview/3187505861
https://doaj.org/article/2252aead0e8b4ada802c524eaa026e81
Volume 89
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2117-4458
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913075
  issn: 2117-4458
  databaseCode: DOA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2117-4458
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913075
  issn: 2117-4458
  databaseCode: M~E
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: Biological Science Database
  customDbUrl:
  eissn: 2117-4458
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913075
  issn: 2117-4458
  databaseCode: M7P
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/biologicalscijournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2117-4458
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913075
  issn: 2117-4458
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Publicly Available Content Database
  customDbUrl:
  eissn: 2117-4458
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000913075
  issn: 2117-4458
  databaseCode: PIMPY
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmPiReEONDFFjlhz2AtIjYcRLnkbKWTRpVxDate4r8WSqVBqUB0f-es5OiTpPghTfLcuTL3eU-7MvvEPrMhY4iEqVBxmUYQEitAw5uJ7A6TQwhwoqkaTaRDod8NMrylVZfriasgQduGHcO-kYFvG5ouGRCCx5SFVNmhIDswfifrmmYZivJlLfBGdjmNF7CDMXkXE5KSDCtS_YZUOMO8P5xRR6x_z-D7L3MYAdtt-EhvmjI-og-mNku2mwaRi720PynQ7LFP8oxzit3xeLYinvgiTSGQf-pdsd9-KryhVw17pXl3NU149PRlR-f4WtfPWlwC6w6xhfTcVlN6ts7LBfYVxDgP2Y69Zt8FbXYR78H_V-X34K2bUKgIteZjfGQGUg8EgPhVGKJsklolKBSUZ1Zdw3KUwXs0ypjXBkrHFQxePVYkjS0NI4O0NqsnJlDhMH2cWJkDCJTjGieKctUGkkhM8G0ph1ElxwsVIsp7lpbTAt_tx2TomV7scL2Dvry8tB9A6nx-vKeE83LUoeH7SdAS4pWS4q3tKSDTpaCLdqPdF6AOYN4KeYJOXqPPY7RliO7OZ85QWt19WA-oQ31WE_mVRet9_rD_Kbr9bTrSkxzmMu_X-d_nwG0m-6Q
linkProvider Directory of Open Access Journals
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmDgRP42OIsgF-AAkkosWOkzgPCFH2Va2tKjFEecoc2ymTumZrskH_FL-Re52kAyHtbQ-8RYmjxMnJPfb1zTmEvJLKBAELYi-Rme_BkNp4EmjHy00cWcZUrqLabCIejeRkkozXyK_2Xxgsq2xjogvUptCYI98B7AG5hTJiH84vPHSNwtXV1kKjhsWRXf6AKVv5vr8L7_c15_t7x58OvcZVwNMBGpcJ6QsL4_LIwmgjypnOI99qxTPNTZLjKqGMtVK-0YmQ2uYKlXyB9MKMxX7O0SUCQv66ALD7HbI-7g_H31ZZHVTZrNV9OYwLPDgjaaWOQraTnRYwyc0x4SDgiWAS8S86dK4B_5CCY7r9jf_tGT0gm9c_LdLxio4fkjU7f0Tu1l6by8ek_IwiwHRQTKEVrk4hImkPSNxQ2Nj7WWGmlB4sXA1cRXtFUWJJOH0zOXDbb-nQFZ5a2mjSTunH2RS6X30_o9mSuuIL-tXOZu4iu6pSm-TLrfT7CenMi7l9SijQhmQ2CwHtWjAjE50LHQeZyhIljOFdwtsXn-pGjh1dQWapKwsIWdqgJf0DLV3ybnXSea1GcnPzHiJq1RSlxN2OYjFNm8iUQkDnCuKJb2UmlFHS5zrkwkI3eQR96JLtFmxpE9_K9Bppz24-_JLcOzweDtJBf3S0Re7jzdUJrG3SqRaX9jm5o6-q03LxovmUKDm5bWT-BkRDWLg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=BIO+web+of+conferences&rft.atitle=Sonic+Log+Prediction+Based+on+Extreme+Gradient+Boosting+%28XGBoost%29+Machine+Learning+Algorithm+by+Using+Well+Log+Data&rft.au=Hakam%2C+Abdul&rft.au=Utama%2C+Widya&rft.au=Garini%2C+Sherly+Ardhya&rft.au=Omar+Abdul+Jabar&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.issn=2273-1709&rft.eissn=2117-4458&rft.volume=89&rft_id=info:doi/10.1051%2Fbioconf%2F20248909003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2117-4458&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2117-4458&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2117-4458&client=summon