Sonic Log Prediction Based on Extreme Gradient Boosting (XGBoost) Machine Learning Algorithm by Using Well Log Data
Sonic log is an important aspect that provides a detailed description of the subsurface properties associated with oil and gas reservoirs. The problem that frequently occurs is the unavailability of sonic log data for various reasons needs to be given an effective solution. The alternative approach...
Uložené v:
| Vydané v: | BIO web of conferences Ročník 89; s. 9003 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article Konferenčný príspevok.. |
| Jazyk: | English |
| Vydavateľské údaje: |
Les Ulis
EDP Sciences
01.01.2024
|
| Predmet: | |
| ISSN: | 2117-4458, 2273-1709, 2117-4458 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Sonic log is an important aspect that provides a detailed description of the subsurface properties associated with oil and gas reservoirs. The problem that frequently occurs is the unavailability of sonic log data for various reasons needs to be given an effective solution. The alternative approach proposed in this research is sonic log prediction based on Extreme Gradient Boosting (XGBoost) machine learning algorithm, using available log data to build a reliable sonic log prediction model. In this research, the predicted DT log type is the Differential Time Shear Slowness (DTSM) log, which is the velocity of shear waves propagating in a formation. Log features used for training include gamma ray (GR), density (RHOB), porosity (NPHI), resistivity (RS and RD) logs with DTSM log as the prediction target. To optimise the performance and generalisation of the XGBoost algorithm in predicting log DTSM, hyperparameter tuning was applied using grid search technique to obtain optimal parameters for the prediction model. Based on the experimental results, this research found that hyperparameter tuning using grid search technique improved the accuracy of sonic log (DTSM) model prediction based on XGBoost algorithm, as proven by the decrease of RMSE and MAPE values to 19.699 and 7.713%. The results also pointed out the need for methods other than listwise deletion to handle missing values as an alternative to improving model accuracy. This research highlighted the need for continuous improvement in data processing methods and algorithm optimization to advance the application of machine learning in geophysical exploration. |
|---|---|
| AbstractList | Sonic log is an important aspect that provides a detailed description of the subsurface properties associated with oil and gas reservoirs. The problem that frequently occurs is the unavailability of sonic log data for various reasons needs to be given an effective solution. The alternative approach proposed in this research is sonic log prediction based on Extreme Gradient Boosting (XGBoost) machine learning algorithm, using available log data to build a reliable sonic log prediction model. In this research, the predicted DT log type is the Differential Time Shear Slowness (DTSM) log, which is the velocity of shear waves propagating in a formation. Log features used for training include gamma ray (GR), density (RHOB), porosity (NPHI), resistivity (RS and RD) logs with DTSM log as the prediction target. To optimise the performance and generalisation of the XGBoost algorithm in predicting log DTSM, hyperparameter tuning was applied using grid search technique to obtain optimal parameters for the prediction model. Based on the experimental results, this research found that hyperparameter tuning using grid search technique improved the accuracy of sonic log (DTSM) model prediction based on XGBoost algorithm, as proven by the decrease of RMSE and MAPE values to 19.699 and 7.713%. The results also pointed out the need for methods other than listwise deletion to handle missing values as an alternative to improving model accuracy. This research highlighted the need for continuous improvement in data processing methods and algorithm optimization to advance the application of machine learning in geophysical exploration. |
| Author | Garini, Sherly Ardhya Jabar, Omar Abdul Insani, Alif Nurdien Fitrah Rosandi, Yudi Hakam, Abdul Utama, Widya |
| Author_xml | – sequence: 1 givenname: Abdul surname: Hakam fullname: Hakam, Abdul – sequence: 2 givenname: Widya surname: Utama fullname: Utama, Widya – sequence: 3 givenname: Sherly Ardhya surname: Garini fullname: Garini, Sherly Ardhya – sequence: 4 givenname: Omar Abdul surname: Jabar fullname: Jabar, Omar Abdul – sequence: 5 givenname: Alif Nurdien Fitrah surname: Insani fullname: Insani, Alif Nurdien Fitrah – sequence: 6 givenname: Yudi surname: Rosandi fullname: Rosandi, Yudi |
| BookMark | eNp9UcFu1DAQtVCRKKVfwMUSFzgsHdtx4hzb0i6VFlGpVHCzJs5k61XWLrYr0b9vsluhigNzmaeZee-N9N6ygxADMfZewGcBWpx0ProYhhMJsjIttADqFTuUQjSLqtLm4AV-w45z3sBUrVDQ6EOWb2Lwjq_iml8n6r0rPgZ-hpl6PoGLPyXRlvgyYe8pFH4WYy4-rPnHX8sd_sS_obvzgfiKMIV5dTquY_Llbsu7R36b59FPGsedyRcs-I69HnDMdPzcj9jt5cWP86-L1ffl1fnpauEUKLWoDFSkNdQERteDcEMN5FB2TvbthLUxjUOE3rWVcTRgC7WshdKdaGCQWh2xq71uH3Fj75PfYnq0Eb3dDWJaW0zFu5GslFoiYQ9kugp7NCCdlhVN8rImIyatD3ut-xR_P1AudhMfUpjet0qYRk_f1POV2l-5FHNONPx1FWDnsOxzWPZFWBOr_YflfME5iJLQj__lPgHG6Jxz |
| CitedBy_id | crossref_primary_10_1088_2631_8695_add084 |
| Cites_doi | 10.1145/3292500.3330649. 10.1017/pan.2017.43 10.1145/3219819.3220058. 10.1109/ACCESS.2021.3134138 10.3102/00346543074004525 10.24996/ijs.2023.64.1.24 10.1016/j.seta.2021.101474 10.1155/2021/5506599 10.1007/s13202-020-00843-2 10.1186/s12879-021-06503-y 10.1186/2193-1801-2-1 10.1109/ijcnn.2006.247304. 10.1190/segam2020-3427540.1. 10.1038/s41598-021-99269-x 10.1186/s12967-020-02620-5 10.55730/1300-0632.3821 10.1016/j.petrol.2017.10.028 |
| ContentType | Journal Article Conference Proceeding |
| Copyright | 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2024. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 7SN 7TM 8AO 8FE 8FH ABUWG AEUYN AFKRA AZQEC BBNVY BENPR BHPHI C1K CCPQU DWQXO GNUQQ HCIFZ LK8 M7P PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
| DOI | 10.1051/bioconf/20248909003 |
| DatabaseName | CrossRef Ecology Abstracts Nucleic Acids Abstracts ProQuest Pharma Collection ProQuest SciTech Collection ProQuest Natural Science Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Biological Science Collection Biological Science Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials Nucleic Acids Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Pharma Collection ProQuest Central China Environmental Sciences and Pollution Management ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central Korea Biological Science Collection ProQuest Central (New) ProQuest Biological Science Collection ProQuest One Academic Eastern Edition Biological Science Database ProQuest SciTech Collection Ecology Abstracts ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Biology |
| EISSN | 2117-4458 |
| ExternalDocumentID | oai_doaj_org_article_2252aead0e8b4ada802c524eaa026e81 10_1051_bioconf_20248909003 |
| Genre | Conference Proceeding |
| GroupedDBID | 4.4 5VS 8AO 8FE 8FH AAFWJ AAHBH AAOGA AAYXX ABZDU ACACO ACPRK ACRPL ADBBV ADMLS ADNMO AEUYN AFFHD AFKRA AFPKN AFRAH AGQPQ ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BHPHI CCPQU CITATION EBS EJD GI~ GROUPED_DOAJ GX1 HCIFZ IPNFZ KQ8 LK8 M7P M~E OK1 PHGZM PHGZT PIMPY PQGLB PROAC RIG RNS 7SN 7TM ABUWG AZQEC C1K DWQXO GNUQQ PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c3033-4804e5506e0856f1cf60eca2bc2d9f605887caa0dc948cefa90626135b170f253 |
| IEDL.DBID | DOA |
| ISSN | 2117-4458 2273-1709 |
| IngestDate | Fri Oct 03 12:51:46 EDT 2025 Fri Jul 25 12:03:16 EDT 2025 Sat Nov 29 04:44:54 EST 2025 Tue Nov 18 20:42:58 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| License | https://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3033-4804e5506e0856f1cf60eca2bc2d9f605887caa0dc948cefa90626135b170f253 |
| Notes | ObjectType-Conference Proceeding-1 SourceType-Conference Papers & Proceedings-1 content type line 21 |
| OpenAccessLink | https://doaj.org/article/2252aead0e8b4ada802c524eaa026e81 |
| PQID | 3187505861 |
| PQPubID | 2040557 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_2252aead0e8b4ada802c524eaa026e81 proquest_journals_3187505861 crossref_primary_10_1051_bioconf_20248909003 crossref_citationtrail_10_1051_bioconf_20248909003 |
| PublicationCentury | 2000 |
| PublicationDate | 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: 20240101 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Les Ulis |
| PublicationPlace_xml | – name: Les Ulis |
| PublicationTitle | BIO web of conferences |
| PublicationYear | 2024 |
| Publisher | EDP Sciences |
| Publisher_xml | – name: EDP Sciences |
| References | Arel-Bundock (R20) 2018; 26 R3 Hoque (R15) 2021; 9 R9 Raghu (R10) 2021; 28 Kumar Dubey (R8) 2021; 47 Jia (R16) 2016; 9966 Peugh (R19) 2004; 74 Uyar (R14) 2022; 30 Xie (R18) 2018; 160 R11 Hou (R4) 2020; 18 R13 Onalo (R1) 2020; 10 Dong (R7) 2013; 2 Lv (R5) 2021; 21 Mohammed (R2) 2023; 64 Khodak (R12) 2021; 23 R17 Kawano (R6) 2022; 12 |
| References_xml | – ident: R9 doi: 10.1145/3292500.3330649. – volume: 26 start-page: 240 issue: 2 year: 2018 ident: R20 publication-title: Polit. Anal. doi: 10.1017/pan.2017.43 – ident: R13 doi: 10.1145/3219819.3220058. – volume: 9 start-page: 163815 year: 2021 ident: R15 publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3134138 – volume: 23 start-page: 19184 year: 2021 ident: R12 publication-title: Adv. Neural Inf. Process. Syst. – volume: 74 start-page: 525 issue: 4 year: 2004 ident: R19 publication-title: Rev. Educ. Res. doi: 10.3102/00346543074004525 – volume: 64 start-page: 253 issue: 1 year: 2023 ident: R2 publication-title: Iraqi J. Sci. doi: 10.24996/ijs.2023.64.1.24 – volume: 47 start-page: 101474 year: 2021 ident: R8 publication-title: Sustain. Energy Technol. Assessments doi: 10.1016/j.seta.2021.101474 – volume: 28 start-page: 23231 year: 2021 ident: R10 publication-title: Adv. Neural Inf. Process. Syst. – volume: 9966 start-page: 180 year: 2016 ident: R16 publication-title: Lect. Notes Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes Bioinformatics) – ident: R17 doi: 10.1155/2021/5506599 – volume: 10 start-page: 1429 issue: 4 year: 2020 ident: R1 publication-title: J. Pet. Explor. Prod. Technol. doi: 10.1007/s13202-020-00843-2 – volume: 21 start-page: 1 issue: 1 year: 2021 ident: R5 publication-title: BMC Infect. Dis. doi: 10.1186/s12879-021-06503-y – volume: 2 start-page: 1 issue: 1 year: 2013 ident: R7 publication-title: Springerplus doi: 10.1186/2193-1801-2-1 – ident: R11 doi: 10.1109/ijcnn.2006.247304. – ident: R3 doi: 10.1190/segam2020-3427540.1. – volume: 12 start-page: 1 issue: 1 year: 2022 ident: R6 publication-title: Sci. Rep. doi: 10.1038/s41598-021-99269-x – volume: 18 start-page: 1 issue: 1 year: 2020 ident: R4 publication-title: J. Transl. Med. doi: 10.1186/s12967-020-02620-5 – volume: 30 start-page: 961 issue: 3 year: 2022 ident: R14 publication-title: Turkish J. Electr. Eng. Comput. Sci. doi: 10.55730/1300-0632.3821 – volume: 160 start-page: 182 year: 2018 ident: R18 publication-title: J. Pet. Sci. Eng. doi: 10.1016/j.petrol.2017.10.028 |
| SSID | ssj0000913075 |
| Score | 2.256769 |
| Snippet | Sonic log is an important aspect that provides a detailed description of the subsurface properties associated with oil and gas reservoirs. The problem that... |
| SourceID | doaj proquest crossref |
| SourceType | Open Website Aggregation Database Enrichment Source Index Database |
| StartPage | 9003 |
| SubjectTerms | Algorithms Availability Continuous improvement Data processing Gamma rays Geophysical exploration Learning algorithms Machine learning Oil reservoirs Optimization Porosity Prediction models Predictions Propagation velocity Tuning Wave propagation |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZKCxInKBSxtFQ-cACJqLHjJM4Jdcu2PZTViofYW-TnttKyKZtQ0X_PjOPdUlXqpTcrmSjjzHjGnpl8Q8g7qWyWsaxMKqnTBLbUNpHgdhJvy8Ixprwq-mYT5Xgsp9NqEgNubSyrXNnEYKhtYzBGfgC6B84tlwX7dPk7wa5RmF2NLTQekS1EKgM93xqOxpOv6ygLol72aLsc_HTCyrRaQQ_l7EBfNHDo9BgAEMAhBvVuuaeA4n_HSAfPc_zsoTw_Jzs3P_XRydpdbZMNt3hBnvS9KK9fkvYbguTSs2YGVJi9QYnRITg5S2Ew-tthJJGeLEONWEeHTdNiyTR9Pz0J4w_0SyjMdDRits7o4XwG7HTnv6i-pqE4gf5083l4yWfVqR3y43j0_eg0iR0ZEpNh0zchU-HgTFM42KkVnhlfpM4org23lccMqyyNUqk1lZDGeYUoyLBhyDV8ec_z7BXZXDQL95pQMKuSOZ2DNhjBrKyMF6bMtNKVEtbyAeErQdQmwpVj14x5HdLmOauj9Or_pDcgH9cPXfZoHfeTD1HCa1KE2g4XmuWsjiu3BoPHFay31EktlFUy5SbnwsE0eQFzGJC9lfDruP7b-kbyb-6_vUueIkN9UGePbHbLP-4teWyuuot2uR_V-R-VC_1S priority: 102 providerName: ProQuest |
| Title | Sonic Log Prediction Based on Extreme Gradient Boosting (XGBoost) Machine Learning Algorithm by Using Well Log Data |
| URI | https://www.proquest.com/docview/3187505861 https://doaj.org/article/2252aead0e8b4ada802c524eaa026e81 |
| Volume | 89 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2117-4458 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913075 issn: 2117-4458 databaseCode: DOA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2117-4458 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913075 issn: 2117-4458 databaseCode: M~E dateStart: 20110101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: Biological Science Database customDbUrl: eissn: 2117-4458 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913075 issn: 2117-4458 databaseCode: M7P dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/biologicalscijournals providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2117-4458 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913075 issn: 2117-4458 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 2117-4458 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000913075 issn: 2117-4458 databaseCode: PIMPY dateStart: 20140101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3dT9swELcmPiReEONDFFjlhz2AtIjYcRLnkbKWTRpVxDate4r8WSqVBqUB0f-es5OiTpPghTfLcuTL3eU-7MvvEPrMhY4iEqVBxmUYQEitAw5uJ7A6TQwhwoqkaTaRDod8NMrylVZfriasgQduGHcO-kYFvG5ouGRCCx5SFVNmhIDswfifrmmYZivJlLfBGdjmNF7CDMXkXE5KSDCtS_YZUOMO8P5xRR6x_z-D7L3MYAdtt-EhvmjI-og-mNku2mwaRi720PynQ7LFP8oxzit3xeLYinvgiTSGQf-pdsd9-KryhVw17pXl3NU149PRlR-f4WtfPWlwC6w6xhfTcVlN6ts7LBfYVxDgP2Y69Zt8FbXYR78H_V-X34K2bUKgIteZjfGQGUg8EgPhVGKJsklolKBSUZ1Zdw3KUwXs0ypjXBkrHFQxePVYkjS0NI4O0NqsnJlDhMH2cWJkDCJTjGieKctUGkkhM8G0ph1ElxwsVIsp7lpbTAt_tx2TomV7scL2Dvry8tB9A6nx-vKeE83LUoeH7SdAS4pWS4q3tKSDTpaCLdqPdF6AOYN4KeYJOXqPPY7RliO7OZ85QWt19WA-oQ31WE_mVRet9_rD_Kbr9bTrSkxzmMu_X-d_nwG0m-6Q |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1db9MwFLWmDgRP42OIsgF-AAkkosWOkzgPCFH2Va2tKjFEecoc2ymTumZrskH_FL-Re52kAyHtbQ-8RYmjxMnJPfb1zTmEvJLKBAELYi-Rme_BkNp4EmjHy00cWcZUrqLabCIejeRkkozXyK_2Xxgsq2xjogvUptCYI98B7AG5hTJiH84vPHSNwtXV1kKjhsWRXf6AKVv5vr8L7_c15_t7x58OvcZVwNMBGpcJ6QsL4_LIwmgjypnOI99qxTPNTZLjKqGMtVK-0YmQ2uYKlXyB9MKMxX7O0SUCQv66ALD7HbI-7g_H31ZZHVTZrNV9OYwLPDgjaaWOQraTnRYwyc0x4SDgiWAS8S86dK4B_5CCY7r9jf_tGT0gm9c_LdLxio4fkjU7f0Tu1l6by8ek_IwiwHRQTKEVrk4hImkPSNxQ2Nj7WWGmlB4sXA1cRXtFUWJJOH0zOXDbb-nQFZ5a2mjSTunH2RS6X30_o9mSuuIL-tXOZu4iu6pSm-TLrfT7CenMi7l9SijQhmQ2CwHtWjAjE50LHQeZyhIljOFdwtsXn-pGjh1dQWapKwsIWdqgJf0DLV3ybnXSea1GcnPzHiJq1RSlxN2OYjFNm8iUQkDnCuKJb2UmlFHS5zrkwkI3eQR96JLtFmxpE9_K9Bppz24-_JLcOzweDtJBf3S0Re7jzdUJrG3SqRaX9jm5o6-q03LxovmUKDm5bWT-BkRDWLg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=BIO+web+of+conferences&rft.atitle=Sonic+Log+Prediction+Based+on+Extreme+Gradient+Boosting+%28XGBoost%29+Machine+Learning+Algorithm+by+Using+Well+Log+Data&rft.au=Hakam%2C+Abdul&rft.au=Utama%2C+Widya&rft.au=Garini%2C+Sherly+Ardhya&rft.au=Omar+Abdul+Jabar&rft.date=2024-01-01&rft.pub=EDP+Sciences&rft.issn=2273-1709&rft.eissn=2117-4458&rft.volume=89&rft_id=info:doi/10.1051%2Fbioconf%2F20248909003 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2117-4458&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2117-4458&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2117-4458&client=summon |