Accelerating Value-at-Risk estimation on highly parallel architectures

SUMMARY Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is dependent on whether they can estimate Value‐at‐Risk (VaR) of portfolios on‐demand when key decisions need to be made. However, VaR est...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Concurrency and computation Ročník 24; číslo 8; s. 895 - 907
Hlavní autoři: Dixon, M. F., Chong, J., Keutzer, K.
Médium: Journal Article
Jazyk:angličtina
Vydáno: Chichester, UK John Wiley & Sons, Ltd 10.06.2012
Témata:
ISSN:1532-0626, 1532-0634
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract SUMMARY Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is dependent on whether they can estimate Value‐at‐Risk (VaR) of portfolios on‐demand when key decisions need to be made. However, VaR estimation of portfolios uses the Monte Carlo method, which is a computationally intensive method often run as an overnight batch job. With the proliferation of highly parallel computing platforms such as multicore CPUs and manycore graphics processing units (GPUs), teraFLOPS of computation capability is now available on a desktop computer, enabling the VaR of large portfolios with thousands of risk factors to be computed within only a fraction of a second. Achieving such performance in practice requires the assimilation of expertise in the following three areas: (i) application domain; (ii) statistical analytics; and (iii) parallel computing. This paper demonstrates that these areas of expertise inform optimization perspectives that, when combined, lead to 127×speedup on our CPU‐based implementation and 538×speedup on our GPU‐based implementation. Copyright © 2011 John Wiley & Sons, Ltd.
AbstractList Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is dependent on whether they can estimate Value‐at‐Risk (VaR) of portfolios on‐demand when key decisions need to be made. However, VaR estimation of portfolios uses the Monte Carlo method, which is a computationally intensive method often run as an overnight batch job. With the proliferation of highly parallel computing platforms such as multicore CPUs and manycore graphics processing units (GPUs), teraFLOPS of computation capability is now available on a desktop computer, enabling the VaR of large portfolios with thousands of risk factors to be computed within only a fraction of a second. Achieving such performance in practice requires the assimilation of expertise in the following three areas: (i) application domain; (ii) statistical analytics; and (iii) parallel computing. This paper demonstrates that these areas of expertise inform optimization perspectives that, when combined, lead to 127×speedup on our CPU‐based implementation and 538×speedup on our GPU‐based implementation. Copyright © 2011 John Wiley & Sons, Ltd.
SUMMARY Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is dependent on whether they can estimate Value‐at‐Risk (VaR) of portfolios on‐demand when key decisions need to be made. However, VaR estimation of portfolios uses the Monte Carlo method, which is a computationally intensive method often run as an overnight batch job. With the proliferation of highly parallel computing platforms such as multicore CPUs and manycore graphics processing units (GPUs), teraFLOPS of computation capability is now available on a desktop computer, enabling the VaR of large portfolios with thousands of risk factors to be computed within only a fraction of a second. Achieving such performance in practice requires the assimilation of expertise in the following three areas: (i) application domain; (ii) statistical analytics; and (iii) parallel computing. This paper demonstrates that these areas of expertise inform optimization perspectives that, when combined, lead to 127×speedup on our CPU‐based implementation and 538×speedup on our GPU‐based implementation. Copyright © 2011 John Wiley & Sons, Ltd.
Author Keutzer, K.
Dixon, M. F.
Chong, J.
Author_xml – sequence: 1
  givenname: M. F.
  surname: Dixon
  fullname: Dixon, M. F.
  email: mfdixon@ucdavis.edu, M. F. Dixon, Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616, USA., mfdixon@ucdavis.edu
  organization: Department of Mathematics, University of California, One Shields Avenue, CA, 95616, Davis, USA
– sequence: 2
  givenname: J.
  surname: Chong
  fullname: Chong, J.
  organization: Parasians LLC, 258 Ficus Terrace, 94086, Sunnyvale, CA, USA
– sequence: 3
  givenname: K.
  surname: Keutzer
  fullname: Keutzer, K.
  organization: Department of Electrical Engineering and Computer Science, UC Berkeley, 576 Soda Hall, CA, 94720, USA
BookMark eNp1kFtLAzEQhYNUsK2CP2Effdmay27jPra1rUK9IFXBl5AmkzY2bkuSovvv3VopKAoDMzDfGc6cFmqUqxIQOiW4QzCm52oNHcILfICaJGc0xV2WNfYz7R6hVgivGBOCGWmiUU8pcOBltOU8eZJuA6mM6YMNywRCtG_1YlUmdS3sfOGqZC29dA5cIr1a2AgqbjyEY3RopAtw8t3b6HE0nA6u0snd-HrQm6SKYYZTU2gwQFmWyZwqrSmjjHOWcwZSFzrLsdKq0AowyTilejbLjbkoKBieAyjF2qizu6v8KgQPRigbvyxGL60TBIttCqJOQWxTqAVnvwRrXz_lq7_QdIe-WwfVv5wY3A9_8jZE-Njz0i9FlzOei-fbsbgk5Ia_9Keizz4BZ6V-Ag
CitedBy_id crossref_primary_10_1002_cpe_1789
Cites_doi 10.1007/978-0-387-21617-1
10.1145/641876.641879
10.1109/IPDPS.2002.1015484
10.1145/1371579.1371584
10.1145/1953611.1953626
10.1109/IPDPS.2008.4536320
10.21914/anziamj.v50i0.1440
10.1016/j.cam.2007.01.005
10.1287/mnsc.46.10.1349.12274
10.1145/42288.214372
10.1023/B:SUPE.0000020180.55726.6c
10.1109/WHPCF.2008.4745401
ContentType Journal Article
Copyright Copyright © 2011 John Wiley & Sons, Ltd.
Copyright_xml – notice: Copyright © 2011 John Wiley & Sons, Ltd.
DBID BSCLL
AAYXX
CITATION
DOI 10.1002/cpe.1790
DatabaseName Istex
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1532-0634
EndPage 907
ExternalDocumentID 10_1002_cpe_1790
CPE1790
ark_67375_WNG_D11M7ZBT_B
Genre article
GroupedDBID .3N
.DC
.GA
.Y3
05W
0R~
10A
1L6
1OC
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABEML
ABIJN
ACAHQ
ACBWZ
ACCZN
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEIGN
AEIMD
AEUYR
AEYWJ
AFBPY
AFFPM
AFGKR
AFWVQ
AGQPQ
AGYGG
AHBTC
AITYG
AIURR
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BROTX
BRXPI
BSCLL
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
EBS
EJD
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
HGLYW
HHY
HVGLF
HZ~
IX1
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
O66
O9-
OIG
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RX1
SUPJJ
TN5
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WOHZO
WQJ
WXSBR
WYISQ
WZISG
XG1
XV2
~IA
~WT
AAHHS
ACCFJ
ADZOD
AEEZP
AEQDE
AEUQT
AFPWT
AIWBW
AJBDE
ALUQN
RWI
WRC
AAYXX
CITATION
O8X
ID FETCH-LOGICAL-c3030-f9defe2344a52cdd2323773573ead9d450cdc9dce014722dbb5ff892ef75eecc3
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303983700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1532-0626
IngestDate Sat Nov 29 01:41:11 EST 2025
Tue Nov 18 22:25:20 EST 2025
Wed Jan 22 16:50:01 EST 2025
Tue Nov 11 03:32:20 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 8
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3030-f9defe2344a52cdd2323773573ead9d450cdc9dce014722dbb5ff892ef75eecc3
Notes ark:/67375/WNG-D11M7ZBT-B
ArticleID:CPE1790
istex:68DB664EC10157180F0FA89094A5B26E4EEAA329
PageCount 13
ParticipantIDs crossref_citationtrail_10_1002_cpe_1790
crossref_primary_10_1002_cpe_1790
wiley_primary_10_1002_cpe_1790_CPE1790
istex_primary_ark_67375_WNG_D11M7ZBT_B
PublicationCentury 2000
PublicationDate 2012-06-10
10 June 2012
PublicationDateYYYYMMDD 2012-06-10
PublicationDate_xml – month: 06
  year: 2012
  text: 2012-06-10
  day: 10
PublicationDecade 2010
PublicationPlace Chichester, UK
PublicationPlace_xml – name: Chichester, UK
PublicationTitle Concurrency and computation
PublicationTitleAlternate Concurrency Computat.: Pract. Exper
PublicationYear 2012
Publisher John Wiley & Sons, Ltd
Publisher_xml – name: John Wiley & Sons, Ltd
References Joe S, Kuo F.Remark on algorithm 659: implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 2003; 29(1):49-57.
Thomas DB, Luk W.Multivariate Gaussian random number generation targeting reconfigurable hardware. ACM Transactions on Reconfigurable Technology Systems 2008; 1(2):1-29. ISSN: 1936-7406.
Giles MB, Kuo FY, Sloan IH, Waterhouse BJ.Quasi-Monte Carlo for finance applications. ANZIAM Journal 2008; 50:308-323.
Bratley P, Fox BL.Algorithm 659: implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 1988; 14(1):88-100.
Dixon M, Tan CJK.Using distributed computers to deterministically approximate higher dimensional convection diffusion equations. Journal of Supercomputing 2004; 28(2):235-253.
Glasserman P, Heidelberger P, Shahabuddin P.Variance reduction techniques for estimating Value-at-Risk. Management Science 2000; 46(10):1349-1364.
Moro B.The full Monte. Risk Magazine 1995; 8(2):57-58.
Bailey R.Polar generation of random variates with the t-distribution. Mathematics of Computation 1994; 62(206):779-781.
Jorion P. Value-at-Risk: the new benchmark for managing financial risk (3rd edn). New York: McGraw-Hill, 2007.
Glasserman P. Monte Carlo Methods in Financial Engineering, Stochastic Modelling and Applied Probability, vol. 53, Springer: Berlin, 2003.
Wang X, Sloan IH.Low discrepancy sequences in high dimensions: how well are their projections distributed? Journal of Computational and Applied Mathematics 2008; 213(2).
2010
2004; 28
2000; 46
1988; 14
2009
2008
2007
2003; 29
2008; 213
2002
2008; 1
2008; 50
2003; 53
1994; 62
1995; 8
Jorion P (e_1_2_10_7_1) 2007
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_10_1
e_1_2_10_11_1
Giles MB (e_1_2_10_13_1) 2008; 50
Bailey R (e_1_2_10_17_1) 1994; 62
e_1_2_10_2_1
e_1_2_10_4_1
Moro B (e_1_2_10_16_1) 1995; 8
e_1_2_10_18_1
e_1_2_10_3_1
e_1_2_10_6_1
e_1_2_10_5_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_15_1
References_xml – reference: Glasserman P, Heidelberger P, Shahabuddin P.Variance reduction techniques for estimating Value-at-Risk. Management Science 2000; 46(10):1349-1364.
– reference: Moro B.The full Monte. Risk Magazine 1995; 8(2):57-58.
– reference: Bailey R.Polar generation of random variates with the t-distribution. Mathematics of Computation 1994; 62(206):779-781.
– reference: Thomas DB, Luk W.Multivariate Gaussian random number generation targeting reconfigurable hardware. ACM Transactions on Reconfigurable Technology Systems 2008; 1(2):1-29. ISSN: 1936-7406.
– reference: Bratley P, Fox BL.Algorithm 659: implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 1988; 14(1):88-100.
– reference: Jorion P. Value-at-Risk: the new benchmark for managing financial risk (3rd edn). New York: McGraw-Hill, 2007.
– reference: Joe S, Kuo F.Remark on algorithm 659: implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 2003; 29(1):49-57.
– reference: Dixon M, Tan CJK.Using distributed computers to deterministically approximate higher dimensional convection diffusion equations. Journal of Supercomputing 2004; 28(2):235-253.
– reference: Glasserman P. Monte Carlo Methods in Financial Engineering, Stochastic Modelling and Applied Probability, vol. 53, Springer: Berlin, 2003.
– reference: Wang X, Sloan IH.Low discrepancy sequences in high dimensions: how well are their projections distributed? Journal of Computational and Applied Mathematics 2008; 213(2).
– reference: Giles MB, Kuo FY, Sloan IH, Waterhouse BJ.Quasi-Monte Carlo for finance applications. ANZIAM Journal 2008; 50:308-323.
– year: 2009
– start-page: 1
  year: 2008
  end-page: 12
– volume: 14
  start-page: 88
  issue: 1
  year: 1988
  end-page: 100
  article-title: Algorithm 659: implementing Sobol's quasirandom sequence generator
  publication-title: ACM Transactions on Mathematical Software
– volume: 46
  start-page: 1349
  issue: 10
  year: 2000
  end-page: 1364
  article-title: Variance reduction techniques for estimating Value‐at‐Risk
  publication-title: Management Science
– volume: 50
  start-page: 308
  year: 2008
  end-page: 323
  article-title: Quasi‐Monte Carlo for finance applications
  publication-title: ANZIAM Journal
– year: 2002
– volume: 1
  start-page: 1
  issue: 2
  year: 2008
  end-page: 29
  article-title: Multivariate Gaussian random number generation targeting reconfigurable hardware
  publication-title: ACM Transactions on Reconfigurable Technology Systems
– year: 2007
– volume: 53
  year: 2003
– volume: 29
  start-page: 49
  issue: 1
  year: 2003
  end-page: 57
  article-title: Remark on algorithm 659: implementing Sobol's quasirandom sequence generator
  publication-title: ACM Transactions on Mathematical Software
– volume: 8
  start-page: 57
  issue: 2
  year: 1995
  end-page: 58
  article-title: The full Monte
  publication-title: Risk Magazine
– start-page: 1
  year: 2008
  end-page: 7
– volume: 28
  start-page: 235
  issue: 2
  year: 2004
  end-page: 253
  article-title: Using distributed computers to deterministically approximate higher dimensional convection diffusion equations
  publication-title: Journal of Supercomputing
– volume: 62
  start-page: 779
  issue: 206
  year: 1994
  end-page: 781
  article-title: Polar generation of random variates with the t‐distribution
  publication-title: Mathematics of Computation
– year: 2010
– volume: 213
  issue: 2
  year: 2008
  article-title: Low discrepancy sequences in high dimensions: how well are their projections distributed?
  publication-title: Journal of Computational and Applied Mathematics
– ident: e_1_2_10_11_1
  doi: 10.1007/978-0-387-21617-1
– ident: e_1_2_10_15_1
  doi: 10.1145/641876.641879
– ident: e_1_2_10_9_1
  doi: 10.1109/IPDPS.2002.1015484
– ident: e_1_2_10_2_1
– ident: e_1_2_10_6_1
  doi: 10.1145/1371579.1371584
– ident: e_1_2_10_4_1
  doi: 10.1145/1953611.1953626
– ident: e_1_2_10_10_1
  doi: 10.1109/IPDPS.2008.4536320
– volume: 50
  start-page: 308
  year: 2008
  ident: e_1_2_10_13_1
  article-title: Quasi‐Monte Carlo for finance applications
  publication-title: ANZIAM Journal
  doi: 10.21914/anziamj.v50i0.1440
– ident: e_1_2_10_14_1
  doi: 10.1016/j.cam.2007.01.005
– volume: 8
  start-page: 57
  issue: 2
  year: 1995
  ident: e_1_2_10_16_1
  article-title: The full Monte
  publication-title: Risk Magazine
– volume-title: Value‐at‐Risk: the new benchmark for managing financial risk (3rd edn)
  year: 2007
  ident: e_1_2_10_7_1
– ident: e_1_2_10_12_1
  doi: 10.1287/mnsc.46.10.1349.12274
– ident: e_1_2_10_18_1
  doi: 10.1145/42288.214372
– ident: e_1_2_10_3_1
– ident: e_1_2_10_8_1
  doi: 10.1023/B:SUPE.0000020180.55726.6c
– volume: 62
  start-page: 779
  issue: 206
  year: 1994
  ident: e_1_2_10_17_1
  article-title: Polar generation of random variates with the t‐distribution
  publication-title: Mathematics of Computation
– ident: e_1_2_10_5_1
  doi: 10.1109/WHPCF.2008.4745401
SSID ssj0011031
Score 1.9554834
Snippet SUMMARY Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management...
Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is...
SourceID crossref
wiley
istex
SourceType Enrichment Source
Index Database
Publisher
StartPage 895
SubjectTerms D.1.3 concurrent programming [parallel programming]
G.3 probability and statistics [probabilistic algorithms (including Monte Carlo)]
J.4 social and behavioral sciences [economics]
Title Accelerating Value-at-Risk estimation on highly parallel architectures
URI https://api.istex.fr/ark:/67375/WNG-D11M7ZBT-B/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.1790
Volume 24
WOSCitedRecordID wos000303983700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1532-0634
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0011031
  issn: 1532-0626
  databaseCode: DRFUL
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609eDF-sT6IoLoKTbdZN3usU9FtJTSavESkt2JlIZY-hC9-RP8jf4SZ5O0WlAQhJBcJiHMI99MdvYbQk6k5XjSCYQpLAFYoARgeiUuTMsW0mYcQV2peNgEbzZLvZ5opV2Vei9Mwg8x_-GmIyP-XusA9_xx4Ys0VA7hXNNLLZMsRbd1MiRbaze6N_M1BD3AIGFLpaaFefuMetaihdm9C2CU1Xp9WUxSY5Rp5P7zfutkLc0tjXLiDBtkCaJNkpvNbTDSMN4i12UpEW207aNH484Lp_Dx9u5N8NTujweGJt5IdjQaeGhC4_DV0BzhYQih8X3pYbxNuo16p3plpjMVTIlgZZmBUBAAtR3HY1QqhQmVzTlaxUaXEsphllRSKAlYOnFKle-zICgJCgFngOa2d0gmeopglxgcdD-NklhiggPMFwyKjn8RYMqHeOixPDmbKdeVKeG4nnsRuglVMnVRRa5WUZ4czyWHCcnGDzKnsX3mAt5ooJvSOHPvm5durVi85Q-VjltBwdgsvz7Jrbbq-rr3V8F9soppknYiBK0DkpmMpnBIVuTzpD8eHaVu9wnS3t2z
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qK-iLt3gbQfQpmiZZt4tPVluvtohULb4s6e5ExFClraJv_gR_o7_E2RxVQUEQQvIyG8Ic-Wb2-AZgXTl-oPxQ2MIRSAVKiHZQ4sJ2PKE8xgnUtY6bTfBGo9RqibMc7GZnYRJ-iMGEm4mM-H9tAtxMSG9_soaqB9wy_FJDUPDJi1geCgfn1YvaYBHBdDBI6FJd26HEPeOeddztbOw3NCoYxT5_z1JjmKmO_-sDJ2AszS6tvcQdJiGHnSkYzzo3WGkgT8PJnlKEN8b6nRvrMoge8f31LejT7fy2d2cZ6o3kTKNFl6E0jl4swxIeRRhZXxcfejNwUa0094_stKuCrQiuHDsUGkN0Pd8PmKu0ppTK45zs4pFTCe0zR2kltEIqnrjr6nabhWFJuBhyhmRwbxbynfsOzoHF0eyo0YqKTPSRtQXDot_eCSnpI0QM2DxsZtqVKqUcN50vIpmQJbuSVCSNiuZhbSD5kNBs_CCzERtoIBB078y2NM7kVeNQHhSLdX5dbsoyCcZ2-fVNcv-sYp4LfxVchZGjZr0ma8eN00UYpaTJeBRB2BLk-91HXIZh9dS_7XVXUh_8ABan4aM
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZSsNAFL2oFfHFXdyNIPoUTZOM08Entda9FHEpvgzpzB0RQy1tFX3zE_xGv8Q7WaqCgiCE5OUmhLvknMnMnAuwqrwwUqERrvAE0gDFoBuVuHC9QKiAcQJ1rZNmE7xaLdXrotYH2_lemFQfovfDzVZG8r22BY4tbTY_VUNVCzesvlQ_FEImtqgqC-XzyuVpbxLBdjBI5VJ91yPinmvPev5mfu83NCpYxz5_Z6kJzFRG__WCYzCSsUtnJ02HcejD5gSM5p0bnKyQJ-F4RynCGxv95q1zFcWP-P76FnXpdH7XuXes9Ea6p9Ghw0oaxy-OVQmPY4ydr5MPnSm4rOxf7B26WVcFVxFcea4RGg36QRhGzFdaE6UKOKe4BJRUQofMU1oJrZAGT9z3daPBjCkJHw1nSAEPpmGg-dDEGXA42hU1WtEgE0NkDcGwGDa2DJE-QsSIzcJ67l2pMslx2_kilqlYsi_JRdK6aBZWepatVGbjB5u1JEA9g6h9b5elcSavqweyXCye8ZvdC7lLhklcfn2S3Kvt2-vcXw2XYahWrsjTo-rJPAwTZ7IJRQi2AAPd9iMuwqB66t512ktZCn4Az17hHg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Value%E2%80%90at%E2%80%90Risk+estimation+on+highly+parallel+architectures&rft.jtitle=Concurrency+and+computation&rft.au=Dixon%2C+M.+F.&rft.au=Chong%2C+J.&rft.au=Keutzer%2C+K.&rft.date=2012-06-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=24&rft.issue=8&rft.spage=895&rft.epage=907&rft_id=info:doi/10.1002%2Fcpe.1790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_1790
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon