Accelerating Value-at-Risk estimation on highly parallel architectures
SUMMARY Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is dependent on whether they can estimate Value‐at‐Risk (VaR) of portfolios on‐demand when key decisions need to be made. However, VaR est...
Uloženo v:
| Vydáno v: | Concurrency and computation Ročník 24; číslo 8; s. 895 - 907 |
|---|---|
| Hlavní autoři: | , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Chichester, UK
John Wiley & Sons, Ltd
10.06.2012
|
| Témata: | |
| ISSN: | 1532-0626, 1532-0634 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | SUMMARY
Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is dependent on whether they can estimate Value‐at‐Risk (VaR) of portfolios on‐demand when key decisions need to be made. However, VaR estimation of portfolios uses the Monte Carlo method, which is a computationally intensive method often run as an overnight batch job. With the proliferation of highly parallel computing platforms such as multicore CPUs and manycore graphics processing units (GPUs), teraFLOPS of computation capability is now available on a desktop computer, enabling the VaR of large portfolios with thousands of risk factors to be computed within only a fraction of a second.
Achieving such performance in practice requires the assimilation of expertise in the following three areas: (i) application domain; (ii) statistical analytics; and (iii) parallel computing. This paper demonstrates that these areas of expertise inform optimization perspectives that, when combined, lead to 127×speedup on our CPU‐based implementation and 538×speedup on our GPU‐based implementation. Copyright © 2011 John Wiley & Sons, Ltd. |
|---|---|
| AbstractList | Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is dependent on whether they can estimate Value‐at‐Risk (VaR) of portfolios on‐demand when key decisions need to be made. However, VaR estimation of portfolios uses the Monte Carlo method, which is a computationally intensive method often run as an overnight batch job. With the proliferation of highly parallel computing platforms such as multicore CPUs and manycore graphics processing units (GPUs), teraFLOPS of computation capability is now available on a desktop computer, enabling the VaR of large portfolios with thousands of risk factors to be computed within only a fraction of a second.
Achieving such performance in practice requires the assimilation of expertise in the following three areas: (i) application domain; (ii) statistical analytics; and (iii) parallel computing. This paper demonstrates that these areas of expertise inform optimization perspectives that, when combined, lead to 127×speedup on our CPU‐based implementation and 538×speedup on our GPU‐based implementation. Copyright © 2011 John Wiley & Sons, Ltd. SUMMARY Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is dependent on whether they can estimate Value‐at‐Risk (VaR) of portfolios on‐demand when key decisions need to be made. However, VaR estimation of portfolios uses the Monte Carlo method, which is a computationally intensive method often run as an overnight batch job. With the proliferation of highly parallel computing platforms such as multicore CPUs and manycore graphics processing units (GPUs), teraFLOPS of computation capability is now available on a desktop computer, enabling the VaR of large portfolios with thousands of risk factors to be computed within only a fraction of a second. Achieving such performance in practice requires the assimilation of expertise in the following three areas: (i) application domain; (ii) statistical analytics; and (iii) parallel computing. This paper demonstrates that these areas of expertise inform optimization perspectives that, when combined, lead to 127×speedup on our CPU‐based implementation and 538×speedup on our GPU‐based implementation. Copyright © 2011 John Wiley & Sons, Ltd. |
| Author | Keutzer, K. Dixon, M. F. Chong, J. |
| Author_xml | – sequence: 1 givenname: M. F. surname: Dixon fullname: Dixon, M. F. email: mfdixon@ucdavis.edu, M. F. Dixon, Department of Mathematics, University of California, One Shields Avenue, Davis, CA 95616, USA., mfdixon@ucdavis.edu organization: Department of Mathematics, University of California, One Shields Avenue, CA, 95616, Davis, USA – sequence: 2 givenname: J. surname: Chong fullname: Chong, J. organization: Parasians LLC, 258 Ficus Terrace, 94086, Sunnyvale, CA, USA – sequence: 3 givenname: K. surname: Keutzer fullname: Keutzer, K. organization: Department of Electrical Engineering and Computer Science, UC Berkeley, 576 Soda Hall, CA, 94720, USA |
| BookMark | eNp1kFtLAzEQhYNUsK2CP2Effdmay27jPra1rUK9IFXBl5AmkzY2bkuSovvv3VopKAoDMzDfGc6cFmqUqxIQOiW4QzCm52oNHcILfICaJGc0xV2WNfYz7R6hVgivGBOCGWmiUU8pcOBltOU8eZJuA6mM6YMNywRCtG_1YlUmdS3sfOGqZC29dA5cIr1a2AgqbjyEY3RopAtw8t3b6HE0nA6u0snd-HrQm6SKYYZTU2gwQFmWyZwqrSmjjHOWcwZSFzrLsdKq0AowyTilejbLjbkoKBieAyjF2qizu6v8KgQPRigbvyxGL60TBIttCqJOQWxTqAVnvwRrXz_lq7_QdIe-WwfVv5wY3A9_8jZE-Njz0i9FlzOei-fbsbgk5Ia_9Keizz4BZ6V-Ag |
| CitedBy_id | crossref_primary_10_1002_cpe_1789 |
| Cites_doi | 10.1007/978-0-387-21617-1 10.1145/641876.641879 10.1109/IPDPS.2002.1015484 10.1145/1371579.1371584 10.1145/1953611.1953626 10.1109/IPDPS.2008.4536320 10.21914/anziamj.v50i0.1440 10.1016/j.cam.2007.01.005 10.1287/mnsc.46.10.1349.12274 10.1145/42288.214372 10.1023/B:SUPE.0000020180.55726.6c 10.1109/WHPCF.2008.4745401 |
| ContentType | Journal Article |
| Copyright | Copyright © 2011 John Wiley & Sons, Ltd. |
| Copyright_xml | – notice: Copyright © 2011 John Wiley & Sons, Ltd. |
| DBID | BSCLL AAYXX CITATION |
| DOI | 10.1002/cpe.1790 |
| DatabaseName | Istex CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1532-0634 |
| EndPage | 907 |
| ExternalDocumentID | 10_1002_cpe_1790 CPE1790 ark_67375_WNG_D11M7ZBT_B |
| Genre | article |
| GroupedDBID | .3N .DC .GA .Y3 05W 0R~ 10A 1L6 1OC 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABEML ABIJN ACAHQ ACBWZ ACCZN ACPOU ACRPL ACSCC ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEIGN AEIMD AEUYR AEYWJ AFBPY AFFPM AFGKR AFWVQ AGQPQ AGYGG AHBTC AITYG AIURR AJXKR ALMA_UNASSIGNED_HOLDINGS ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN BAFTC BDRZF BFHJK BHBCM BMNLL BROTX BRXPI BSCLL BY8 CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM EBS EJD F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA HGLYW HHY HVGLF HZ~ IX1 JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A O66 O9- OIG P2W P2X P4D PQQKQ Q.N Q11 QB0 QRW R.K ROL RX1 SUPJJ TN5 UB1 V2E W8V W99 WBKPD WIH WIK WOHZO WQJ WXSBR WYISQ WZISG XG1 XV2 ~IA ~WT AAHHS ACCFJ ADZOD AEEZP AEQDE AEUQT AFPWT AIWBW AJBDE ALUQN RWI WRC AAYXX CITATION O8X |
| ID | FETCH-LOGICAL-c3030-f9defe2344a52cdd2323773573ead9d450cdc9dce014722dbb5ff892ef75eecc3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000303983700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1532-0626 |
| IngestDate | Sat Nov 29 01:41:11 EST 2025 Tue Nov 18 22:25:20 EST 2025 Wed Jan 22 16:50:01 EST 2025 Tue Nov 11 03:32:20 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Language | English |
| License | http://onlinelibrary.wiley.com/termsAndConditions#vor |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3030-f9defe2344a52cdd2323773573ead9d450cdc9dce014722dbb5ff892ef75eecc3 |
| Notes | ark:/67375/WNG-D11M7ZBT-B ArticleID:CPE1790 istex:68DB664EC10157180F0FA89094A5B26E4EEAA329 |
| PageCount | 13 |
| ParticipantIDs | crossref_citationtrail_10_1002_cpe_1790 crossref_primary_10_1002_cpe_1790 wiley_primary_10_1002_cpe_1790_CPE1790 istex_primary_ark_67375_WNG_D11M7ZBT_B |
| PublicationCentury | 2000 |
| PublicationDate | 2012-06-10 10 June 2012 |
| PublicationDateYYYYMMDD | 2012-06-10 |
| PublicationDate_xml | – month: 06 year: 2012 text: 2012-06-10 day: 10 |
| PublicationDecade | 2010 |
| PublicationPlace | Chichester, UK |
| PublicationPlace_xml | – name: Chichester, UK |
| PublicationTitle | Concurrency and computation |
| PublicationTitleAlternate | Concurrency Computat.: Pract. Exper |
| PublicationYear | 2012 |
| Publisher | John Wiley & Sons, Ltd |
| Publisher_xml | – name: John Wiley & Sons, Ltd |
| References | Joe S, Kuo F.Remark on algorithm 659: implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 2003; 29(1):49-57. Thomas DB, Luk W.Multivariate Gaussian random number generation targeting reconfigurable hardware. ACM Transactions on Reconfigurable Technology Systems 2008; 1(2):1-29. ISSN: 1936-7406. Giles MB, Kuo FY, Sloan IH, Waterhouse BJ.Quasi-Monte Carlo for finance applications. ANZIAM Journal 2008; 50:308-323. Bratley P, Fox BL.Algorithm 659: implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 1988; 14(1):88-100. Dixon M, Tan CJK.Using distributed computers to deterministically approximate higher dimensional convection diffusion equations. Journal of Supercomputing 2004; 28(2):235-253. Glasserman P, Heidelberger P, Shahabuddin P.Variance reduction techniques for estimating Value-at-Risk. Management Science 2000; 46(10):1349-1364. Moro B.The full Monte. Risk Magazine 1995; 8(2):57-58. Bailey R.Polar generation of random variates with the t-distribution. Mathematics of Computation 1994; 62(206):779-781. Jorion P. Value-at-Risk: the new benchmark for managing financial risk (3rd edn). New York: McGraw-Hill, 2007. Glasserman P. Monte Carlo Methods in Financial Engineering, Stochastic Modelling and Applied Probability, vol. 53, Springer: Berlin, 2003. Wang X, Sloan IH.Low discrepancy sequences in high dimensions: how well are their projections distributed? Journal of Computational and Applied Mathematics 2008; 213(2). 2010 2004; 28 2000; 46 1988; 14 2009 2008 2007 2003; 29 2008; 213 2002 2008; 1 2008; 50 2003; 53 1994; 62 1995; 8 Jorion P (e_1_2_10_7_1) 2007 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_10_1 e_1_2_10_11_1 Giles MB (e_1_2_10_13_1) 2008; 50 Bailey R (e_1_2_10_17_1) 1994; 62 e_1_2_10_2_1 e_1_2_10_4_1 Moro B (e_1_2_10_16_1) 1995; 8 e_1_2_10_18_1 e_1_2_10_3_1 e_1_2_10_6_1 e_1_2_10_5_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_15_1 |
| References_xml | – reference: Glasserman P, Heidelberger P, Shahabuddin P.Variance reduction techniques for estimating Value-at-Risk. Management Science 2000; 46(10):1349-1364. – reference: Moro B.The full Monte. Risk Magazine 1995; 8(2):57-58. – reference: Bailey R.Polar generation of random variates with the t-distribution. Mathematics of Computation 1994; 62(206):779-781. – reference: Thomas DB, Luk W.Multivariate Gaussian random number generation targeting reconfigurable hardware. ACM Transactions on Reconfigurable Technology Systems 2008; 1(2):1-29. ISSN: 1936-7406. – reference: Bratley P, Fox BL.Algorithm 659: implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 1988; 14(1):88-100. – reference: Jorion P. Value-at-Risk: the new benchmark for managing financial risk (3rd edn). New York: McGraw-Hill, 2007. – reference: Joe S, Kuo F.Remark on algorithm 659: implementing Sobol's quasirandom sequence generator. ACM Transactions on Mathematical Software 2003; 29(1):49-57. – reference: Dixon M, Tan CJK.Using distributed computers to deterministically approximate higher dimensional convection diffusion equations. Journal of Supercomputing 2004; 28(2):235-253. – reference: Glasserman P. Monte Carlo Methods in Financial Engineering, Stochastic Modelling and Applied Probability, vol. 53, Springer: Berlin, 2003. – reference: Wang X, Sloan IH.Low discrepancy sequences in high dimensions: how well are their projections distributed? Journal of Computational and Applied Mathematics 2008; 213(2). – reference: Giles MB, Kuo FY, Sloan IH, Waterhouse BJ.Quasi-Monte Carlo for finance applications. ANZIAM Journal 2008; 50:308-323. – year: 2009 – start-page: 1 year: 2008 end-page: 12 – volume: 14 start-page: 88 issue: 1 year: 1988 end-page: 100 article-title: Algorithm 659: implementing Sobol's quasirandom sequence generator publication-title: ACM Transactions on Mathematical Software – volume: 46 start-page: 1349 issue: 10 year: 2000 end-page: 1364 article-title: Variance reduction techniques for estimating Value‐at‐Risk publication-title: Management Science – volume: 50 start-page: 308 year: 2008 end-page: 323 article-title: Quasi‐Monte Carlo for finance applications publication-title: ANZIAM Journal – year: 2002 – volume: 1 start-page: 1 issue: 2 year: 2008 end-page: 29 article-title: Multivariate Gaussian random number generation targeting reconfigurable hardware publication-title: ACM Transactions on Reconfigurable Technology Systems – year: 2007 – volume: 53 year: 2003 – volume: 29 start-page: 49 issue: 1 year: 2003 end-page: 57 article-title: Remark on algorithm 659: implementing Sobol's quasirandom sequence generator publication-title: ACM Transactions on Mathematical Software – volume: 8 start-page: 57 issue: 2 year: 1995 end-page: 58 article-title: The full Monte publication-title: Risk Magazine – start-page: 1 year: 2008 end-page: 7 – volume: 28 start-page: 235 issue: 2 year: 2004 end-page: 253 article-title: Using distributed computers to deterministically approximate higher dimensional convection diffusion equations publication-title: Journal of Supercomputing – volume: 62 start-page: 779 issue: 206 year: 1994 end-page: 781 article-title: Polar generation of random variates with the t‐distribution publication-title: Mathematics of Computation – year: 2010 – volume: 213 issue: 2 year: 2008 article-title: Low discrepancy sequences in high dimensions: how well are their projections distributed? publication-title: Journal of Computational and Applied Mathematics – ident: e_1_2_10_11_1 doi: 10.1007/978-0-387-21617-1 – ident: e_1_2_10_15_1 doi: 10.1145/641876.641879 – ident: e_1_2_10_9_1 doi: 10.1109/IPDPS.2002.1015484 – ident: e_1_2_10_2_1 – ident: e_1_2_10_6_1 doi: 10.1145/1371579.1371584 – ident: e_1_2_10_4_1 doi: 10.1145/1953611.1953626 – ident: e_1_2_10_10_1 doi: 10.1109/IPDPS.2008.4536320 – volume: 50 start-page: 308 year: 2008 ident: e_1_2_10_13_1 article-title: Quasi‐Monte Carlo for finance applications publication-title: ANZIAM Journal doi: 10.21914/anziamj.v50i0.1440 – ident: e_1_2_10_14_1 doi: 10.1016/j.cam.2007.01.005 – volume: 8 start-page: 57 issue: 2 year: 1995 ident: e_1_2_10_16_1 article-title: The full Monte publication-title: Risk Magazine – volume-title: Value‐at‐Risk: the new benchmark for managing financial risk (3rd edn) year: 2007 ident: e_1_2_10_7_1 – ident: e_1_2_10_12_1 doi: 10.1287/mnsc.46.10.1349.12274 – ident: e_1_2_10_18_1 doi: 10.1145/42288.214372 – ident: e_1_2_10_3_1 – ident: e_1_2_10_8_1 doi: 10.1023/B:SUPE.0000020180.55726.6c – volume: 62 start-page: 779 issue: 206 year: 1994 ident: e_1_2_10_17_1 article-title: Polar generation of random variates with the t‐distribution publication-title: Mathematics of Computation – ident: e_1_2_10_5_1 doi: 10.1109/WHPCF.2008.4745401 |
| SSID | ssj0011031 |
| Score | 1.9554834 |
| Snippet | SUMMARY
Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management... Values of portfolios in modern financial markets may change precipitously with changing market conditions. The utility of financial risk management tools is... |
| SourceID | crossref wiley istex |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 895 |
| SubjectTerms | D.1.3 concurrent programming [parallel programming] G.3 probability and statistics [probabilistic algorithms (including Monte Carlo)] J.4 social and behavioral sciences [economics] |
| Title | Accelerating Value-at-Risk estimation on highly parallel architectures |
| URI | https://api.istex.fr/ark:/67375/WNG-D11M7ZBT-B/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcpe.1790 |
| Volume | 24 |
| WOSCitedRecordID | wos000303983700011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1532-0634 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0011031 issn: 1532-0626 databaseCode: DRFUL dateStart: 20010101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF609eDF-sT6IoLoKTbdZN3usU9FtJTSavESkt2JlIZY-hC9-RP8jf4SZ5O0WlAQhJBcJiHMI99MdvYbQk6k5XjSCYQpLAFYoARgeiUuTMsW0mYcQV2peNgEbzZLvZ5opV2Vei9Mwg8x_-GmIyP-XusA9_xx4Ys0VA7hXNNLLZMsRbd1MiRbaze6N_M1BD3AIGFLpaaFefuMetaihdm9C2CU1Xp9WUxSY5Rp5P7zfutkLc0tjXLiDBtkCaJNkpvNbTDSMN4i12UpEW207aNH484Lp_Dx9u5N8NTujweGJt5IdjQaeGhC4_DV0BzhYQih8X3pYbxNuo16p3plpjMVTIlgZZmBUBAAtR3HY1QqhQmVzTlaxUaXEsphllRSKAlYOnFKle-zICgJCgFngOa2d0gmeopglxgcdD-NklhiggPMFwyKjn8RYMqHeOixPDmbKdeVKeG4nnsRuglVMnVRRa5WUZ4czyWHCcnGDzKnsX3mAt5ooJvSOHPvm5durVi85Q-VjltBwdgsvz7Jrbbq-rr3V8F9soppknYiBK0DkpmMpnBIVuTzpD8eHaVu9wnS3t2z |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ZS8NAEB5qK-iLt3gbQfQpmiZZt4tPVluvtohULb4s6e5ExFClraJv_gR_o7_E2RxVQUEQQvIyG8Ic-Wb2-AZgXTl-oPxQ2MIRSAVKiHZQ4sJ2PKE8xgnUtY6bTfBGo9RqibMc7GZnYRJ-iMGEm4mM-H9tAtxMSG9_soaqB9wy_FJDUPDJi1geCgfn1YvaYBHBdDBI6FJd26HEPeOeddztbOw3NCoYxT5_z1JjmKmO_-sDJ2AszS6tvcQdJiGHnSkYzzo3WGkgT8PJnlKEN8b6nRvrMoge8f31LejT7fy2d2cZ6o3kTKNFl6E0jl4swxIeRRhZXxcfejNwUa0094_stKuCrQiuHDsUGkN0Pd8PmKu0ppTK45zs4pFTCe0zR2kltEIqnrjr6nabhWFJuBhyhmRwbxbynfsOzoHF0eyo0YqKTPSRtQXDot_eCSnpI0QM2DxsZtqVKqUcN50vIpmQJbuSVCSNiuZhbSD5kNBs_CCzERtoIBB078y2NM7kVeNQHhSLdX5dbsoyCcZ2-fVNcv-sYp4LfxVchZGjZr0ma8eN00UYpaTJeBRB2BLk-91HXIZh9dS_7XVXUh_8ABan4aM |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3ZSsNAFL2oFfHFXdyNIPoUTZOM08Entda9FHEpvgzpzB0RQy1tFX3zE_xGv8Q7WaqCgiCE5OUmhLvknMnMnAuwqrwwUqERrvAE0gDFoBuVuHC9QKiAcQJ1rZNmE7xaLdXrotYH2_lemFQfovfDzVZG8r22BY4tbTY_VUNVCzesvlQ_FEImtqgqC-XzyuVpbxLBdjBI5VJ91yPinmvPev5mfu83NCpYxz5_Z6kJzFRG__WCYzCSsUtnJ02HcejD5gSM5p0bnKyQJ-F4RynCGxv95q1zFcWP-P76FnXpdH7XuXes9Ea6p9Ghw0oaxy-OVQmPY4ydr5MPnSm4rOxf7B26WVcFVxFcea4RGg36QRhGzFdaE6UKOKe4BJRUQofMU1oJrZAGT9z3daPBjCkJHw1nSAEPpmGg-dDEGXA42hU1WtEgE0NkDcGwGDa2DJE-QsSIzcJ67l2pMslx2_kilqlYsi_JRdK6aBZWepatVGbjB5u1JEA9g6h9b5elcSavqweyXCye8ZvdC7lLhklcfn2S3Kvt2-vcXw2XYahWrsjTo-rJPAwTZ7IJRQi2AAPd9iMuwqB66t512ktZCn4Az17hHg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerating+Value%E2%80%90at%E2%80%90Risk+estimation+on+highly+parallel+architectures&rft.jtitle=Concurrency+and+computation&rft.au=Dixon%2C+M.+F.&rft.au=Chong%2C+J.&rft.au=Keutzer%2C+K.&rft.date=2012-06-10&rft.issn=1532-0626&rft.eissn=1532-0634&rft.volume=24&rft.issue=8&rft.spage=895&rft.epage=907&rft_id=info:doi/10.1002%2Fcpe.1790&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_cpe_1790 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1532-0626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1532-0626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1532-0626&client=summon |