Connection of Autumn North Asian Snow With Mid‐Winter Tibetan Plateau Snow
The Tibetan Plateau (TP) snow variability is attracting growing interest, while its causes are not yet fully clear. In this study, the potential link of Eurasian snow with TP snow is detected. Excessive October–November (ON) north Asian snow cover can boost the upward wave activity and thus heat the...
Uloženo v:
| Vydáno v: | Geophysical research letters Ročník 52; číslo 20 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Washington
John Wiley & Sons, Inc
28.10.2025
|
| Témata: | |
| ISSN: | 0094-8276, 1944-8007 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | The Tibetan Plateau (TP) snow variability is attracting growing interest, while its causes are not yet fully clear. In this study, the potential link of Eurasian snow with TP snow is detected. Excessive October–November (ON) north Asian snow cover can boost the upward wave activity and thus heat the stratospheric polar atmosphere, which subsequently gives rise to an attenuated stratospheric polar vortex (SPV). Meantime, the downward propagation of this SPV anomaly in boreal winter when the troposphere–stratosphere interaction is active induces an anomalous horizontal wave train in the middle troposphere. Such a wave train generates an anomalous anticyclone around the TP, facilitating the decreased local snowfall and snow depth in January. These processes indicate a connection of the mid‐latitude Asia–Arctic–TP via the vertical and horizontal wave activity and effectively supply a predictive indicator for the mid‐winter TP snow depth.
Plain Language Summary
As a key factor of climatic anomalies over East Asia, even the world, the Tibetan Plateau (TP) snow variability has recently been brought into focus. In spite of the sources from atmosphere and ocean widely probed into, the underlying causes remain incompletely understood. Through the analysis, our study reveals a delayed relation of Eurasian snow with TP snow. More October‐November north Asian snow cover dampens the subsequent stratospheric polar vortex (SPV) by triggering the strengthened vertical wave activity, which thereby constructs the mid‐latitude Asia–Arctic connection. Then on account of the active troposphere–stratosphere coupling in boreal winter, the abnormal SPV propagates downward and meanwhile, brings about a tropospheric wave train connecting the Arctic and TP, notably affecting the TP snowfall and snow depth in January. Hence, the “north Asian snow–TP snow” delayed relation suggests a potential predictor for the mid‐winter TP snow depth, a critical component of regional terrestrial water storage and water source for Asia. Furthermore, given the climatic effects of the TP snow, especially on the East Asian summer monsoon, our present study also provides valuable insights for advancing subseasonal‐to‐seasonal regional climate forecasting.
Key Points
North Asian October‐November snow cover shows the notable impact on Tibetan Plateau (TP) snow depth in the ensuing January
Such a delayed impact is exerted by the troposphere‐stratosphere interaction via the snow cover‐induced anomalous wave activity
Resultant high pressure anomaly around the TP through above processes decreases the local snowfall and thereby snow depth during January |
|---|---|
| AbstractList | The Tibetan Plateau (TP) snow variability is attracting growing interest, while its causes are not yet fully clear. In this study, the potential link of Eurasian snow with TP snow is detected. Excessive October–November (ON) north Asian snow cover can boost the upward wave activity and thus heat the stratospheric polar atmosphere, which subsequently gives rise to an attenuated stratospheric polar vortex (SPV). Meantime, the downward propagation of this SPV anomaly in boreal winter when the troposphere–stratosphere interaction is active induces an anomalous horizontal wave train in the middle troposphere. Such a wave train generates an anomalous anticyclone around the TP, facilitating the decreased local snowfall and snow depth in January. These processes indicate a connection of the mid‐latitude Asia–Arctic–TP via the vertical and horizontal wave activity and effectively supply a predictive indicator for the mid‐winter TP snow depth. The Tibetan Plateau (TP) snow variability is attracting growing interest, while its causes are not yet fully clear. In this study, the potential link of Eurasian snow with TP snow is detected. Excessive October–November (ON) north Asian snow cover can boost the upward wave activity and thus heat the stratospheric polar atmosphere, which subsequently gives rise to an attenuated stratospheric polar vortex (SPV). Meantime, the downward propagation of this SPV anomaly in boreal winter when the troposphere–stratosphere interaction is active induces an anomalous horizontal wave train in the middle troposphere. Such a wave train generates an anomalous anticyclone around the TP, facilitating the decreased local snowfall and snow depth in January. These processes indicate a connection of the mid‐latitude Asia–Arctic–TP via the vertical and horizontal wave activity and effectively supply a predictive indicator for the mid‐winter TP snow depth. As a key factor of climatic anomalies over East Asia, even the world, the Tibetan Plateau (TP) snow variability has recently been brought into focus. In spite of the sources from atmosphere and ocean widely probed into, the underlying causes remain incompletely understood. Through the analysis, our study reveals a delayed relation of Eurasian snow with TP snow. More October‐November north Asian snow cover dampens the subsequent stratospheric polar vortex (SPV) by triggering the strengthened vertical wave activity, which thereby constructs the mid‐latitude Asia–Arctic connection. Then on account of the active troposphere–stratosphere coupling in boreal winter, the abnormal SPV propagates downward and meanwhile, brings about a tropospheric wave train connecting the Arctic and TP, notably affecting the TP snowfall and snow depth in January. Hence, the “north Asian snow–TP snow” delayed relation suggests a potential predictor for the mid‐winter TP snow depth, a critical component of regional terrestrial water storage and water source for Asia. Furthermore, given the climatic effects of the TP snow, especially on the East Asian summer monsoon, our present study also provides valuable insights for advancing subseasonal‐to‐seasonal regional climate forecasting. North Asian October‐November snow cover shows the notable impact on Tibetan Plateau (TP) snow depth in the ensuing January Such a delayed impact is exerted by the troposphere‐stratosphere interaction via the snow cover‐induced anomalous wave activity Resultant high pressure anomaly around the TP through above processes decreases the local snowfall and thereby snow depth during January The Tibetan Plateau (TP) snow variability is attracting growing interest, while its causes are not yet fully clear. In this study, the potential link of Eurasian snow with TP snow is detected. Excessive October–November (ON) north Asian snow cover can boost the upward wave activity and thus heat the stratospheric polar atmosphere, which subsequently gives rise to an attenuated stratospheric polar vortex (SPV). Meantime, the downward propagation of this SPV anomaly in boreal winter when the troposphere–stratosphere interaction is active induces an anomalous horizontal wave train in the middle troposphere. Such a wave train generates an anomalous anticyclone around the TP, facilitating the decreased local snowfall and snow depth in January. These processes indicate a connection of the mid‐latitude Asia–Arctic–TP via the vertical and horizontal wave activity and effectively supply a predictive indicator for the mid‐winter TP snow depth. Plain Language Summary As a key factor of climatic anomalies over East Asia, even the world, the Tibetan Plateau (TP) snow variability has recently been brought into focus. In spite of the sources from atmosphere and ocean widely probed into, the underlying causes remain incompletely understood. Through the analysis, our study reveals a delayed relation of Eurasian snow with TP snow. More October‐November north Asian snow cover dampens the subsequent stratospheric polar vortex (SPV) by triggering the strengthened vertical wave activity, which thereby constructs the mid‐latitude Asia–Arctic connection. Then on account of the active troposphere–stratosphere coupling in boreal winter, the abnormal SPV propagates downward and meanwhile, brings about a tropospheric wave train connecting the Arctic and TP, notably affecting the TP snowfall and snow depth in January. Hence, the “north Asian snow–TP snow” delayed relation suggests a potential predictor for the mid‐winter TP snow depth, a critical component of regional terrestrial water storage and water source for Asia. Furthermore, given the climatic effects of the TP snow, especially on the East Asian summer monsoon, our present study also provides valuable insights for advancing subseasonal‐to‐seasonal regional climate forecasting. Key Points North Asian October‐November snow cover shows the notable impact on Tibetan Plateau (TP) snow depth in the ensuing January Such a delayed impact is exerted by the troposphere‐stratosphere interaction via the snow cover‐induced anomalous wave activity Resultant high pressure anomaly around the TP through above processes decreases the local snowfall and thereby snow depth during January |
| Author | Han, Shuangze Sun, Jianqi Zhang, Mengqi Su, Baohuang Ren, Hong‐Li |
| Author_xml | – sequence: 1 givenname: Shuangze orcidid: 0000-0002-7258-7045 surname: Han fullname: Han, Shuangze organization: China Meteorological Administration – sequence: 2 givenname: Hong‐Li orcidid: 0000-0001-7194-0567 surname: Ren fullname: Ren, Hong‐Li email: renhl@cma.gov.cn organization: Chinese Academy of Meteorological Sciences – sequence: 3 givenname: Jianqi orcidid: 0000-0002-3879-6986 surname: Sun fullname: Sun, Jianqi organization: University of Chinese Academy of Sciences – sequence: 4 givenname: Baohuang surname: Su fullname: Su, Baohuang organization: China Meteorological Administration – sequence: 5 givenname: Mengqi surname: Zhang fullname: Zhang, Mengqi organization: Chinese Academy of Sciences |
| BookMark | eNp90M1KAzEQB_AgCrbVmw-w4NXVyedmj6VoFdYPtNBj2KQJprRJze5SevMRfEafxNV68ORpZpgf84cZosMQg0XoDMMlBlJeESB8WmEsBYgDNMAlY7kEKA7RAKDse1KIYzRsmiUAUKB4gKpJDMGa1seQRZeNu7Zbh-whpvY1Gze-DtlLiNts7vv53i8-3z_mPrQ2ZTOvbduvn1Z1a-vuh52gI1evGnv6W0dodnM9m9zm1eP0bjKuctOHQm4BU20MB6bdAjMueWkc1kCMMJo7IrgmVMuaUOoAF9QZzK2UlmoCVAg6Quf7s5sU3zrbtGoZuxT6REWJYFIyUuJeXeyVSbFpknVqk_y6TjuFQX2_S_19V8_Jnm_9yu7-tWr6XBWYMaBf4-xsQQ |
| Cites_doi | 10.3389/feart.2020.00265 10.1175/jcli‐d‐16‐0041.1 10.1175/jcli‐d‐17‐0327.1 10.1175/1520‐0442(2003)016<3917:mnhwcr>2.0.co;2 10.1007/s00382‐020‐05206‐5 10.1007/s00382‐019‐04774‐5 10.1002/joc.3711 10.1002/joc.6676 10.1175/1520‐0469(2001)058<0608:afoapi>2.0.co;2 10.1126/science.263.5144.198 10.1002/joc.784 10.1002/joc.4484 10.1007/s00382‐020‐05497‐8 10.1175/JCLI‐D‐21‐0348.1 10.1007/s00382‐018‐4589‐1 10.1007/s00382‐015‐2775‐y 10.1175/jcli‐d‐16‐0830.1 10.1175/jcli‐d‐20‐0298.1 10.1126/science.1063315 10.1029/2002gl016062 10.1029/2018jd028443 10.1175/jcli4068.1 10.1029/2010JD013996 10.1175/1520‐0493(2001)129<2746:eoarte>2.0.co;2 10.1029/JZ066i001p00083 10.1175/JCLI‐D‐22‐0487.1 10.1007/s00382‐021‐05625‐y 10.1002/joc.5831 10.1016/j.accre.2022.10.003 10.1029/2003jd003834 10.1007/s00382‐024‐07130‐4 10.1029/2020jd032685 10.1029/2019jd031384 10.1002/joc.6974 10.1175/jcli‐d‐13‐00779.1 10.1029/2018jd029525 10.1002/joc.2355 10.1175/2007jcli1725.1 10.1029/2018jd028612 10.1175/1520‐0469(1999)056<1154:UTSOOF>2.0.CO;2 10.1007/s00382‐017‐3732‐8 10.1007/s00382‐012‐1439‐4 10.1029/98GL00950 10.1175/JCLI‐D‐21‐0758.1 10.1175/jcli‐d‐16‐0214.1 10.1016/j.atmosres.2023.106926 10.1007/s00382‐008‐0495‐2 10.1175/jcli‐d‐16‐0623.1 10.1007/s00382‐011‐1204‐0 10.1175/1520‐0469(1985)042<0217:ottdpo>2.0.co;2 10.1126/science.1139426 10.1175/bams‐83‐11‐1631(2002)083<1631:nar>2.3.co;2 10.1175/jcli‐d‐14‐00629.1 10.1175/1520‐0469(1989)046<0661:teoesc>2.0.co;2 10.1175/jcli‐d‐21‐0009.1 10.1016/j.atmosres.2022.106405 10.1038/ncomms5646 10.1175/jcli3391.1 10.1007/s00382‐018‐4138‐y 10.1126/science.1183188 10.1002/qj.3009 10.1175/jcli‐d‐17‐0117.1 10.1175/jcli‐d‐19‐0229.1 10.1029/2005GL023237 10.1029/2019gl083852 |
| ContentType | Journal Article |
| Copyright | 2025. The Author(s). 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: 2025. The Author(s). – notice: 2025. This work is published under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | 24P AAYXX CITATION 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BENPR BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
| DOI | 10.1029/2025GL118606 |
| DatabaseName | Wiley Online Library Open Access CrossRef ProQuest Central (Corporate) Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Research Library ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Meteorological & Geoastrophysical Abstracts - Academic Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Environmental Science Database Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering collection Environmental Science Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China ProQuest One Applied & Life Sciences ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Environmental Science Collection ProQuest One Academic UKI Edition Environmental Science Database Engineering Research Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection Oceanic Abstracts ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts Materials Science & Engineering Collection ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geology Physics |
| EISSN | 1944-8007 |
| EndPage | n/a |
| ExternalDocumentID | 10_1029_2025GL118606 GRL71440 |
| Genre | article |
| GeographicLocations | Asia Eurasia Arctic region |
| GeographicLocations_xml | – name: Arctic region – name: Eurasia – name: Asia |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 42305066 – fundername: Youth Innovation Team of China Meteorological Administration “Climate change and its impact in the Tibetan Plateau” funderid: CMA2023QN16 – fundername: Major Science and Technology Project of the Xizang Autonomous Region funderid: XZ202402ZD0006 – fundername: State Key Laboratory of Severe Weather Meteorological Science and Technology Project funderid: 2025QZA15 – fundername: National Key Research and Development Program of China funderid: 2023YFC3007503; 2023YFF0805300 – fundername: Special Project for Innovation and Development of China Meteorological Administration funderid: CXFZ2025Q024 – fundername: Basic Research and Operational Special Project of Chinese Academy of Meteorological Sciences funderid: 2023Z024 |
| GroupedDBID | -DZ -~X 05W 0R~ 1OB 1OC 24P 33P 50Y 5GY 5VS 702 8-1 AAESR AAFWJ AAIHA AAMMB AAXRX AAZKR ABCUV ABPPZ ACAHQ ACCMX ACCZN ACGFO ACGFS ACGOD ACIWK ACNCT ACPOU ACTHY ACXBN ACXQS ADBBV ADEOM ADKYN ADMGS ADOZA ADXAS ADZMN AEFGJ AENEX AFBPY AFGKR AFPKN AFRAH AGXDD AIDQK AIDYY AIURR ALMA_UNASSIGNED_HOLDINGS ALXUD AMYDB AVUZU AZFZN AZVAB BENPR BMXJE BRXPI CS3 DCZOG DPXWK DRFUL DRSTM DU5 EBS F5P G-S GODZA GROUPED_DOAJ HZ~ LATKE LEEKS LITHE LOXES LUTES LYRES MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OK1 P-X P2P P2W R.K RNS ROL SUPJJ TN5 TWZ UPT WBKPD WH7 WIN WXSBR XSW ZZTAW ~02 ~OA ~~A AAYXX CITATION 3V. 7TG 7TN 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS ATCPS AZQEC BGLVJ BHPHI BKSAR CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KL. KR7 L.G L6V L7M M2O M2P M7S MBDVC P62 PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS PYCSY Q9U |
| ID | FETCH-LOGICAL-c3030-e013bcc504bfd145859cf1b02c6cb5f265b23b8a233f0173fc15e88e3b203663 |
| IEDL.DBID | 24P |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001599723100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0094-8276 |
| IngestDate | Thu Nov 06 13:45:52 EST 2025 Thu Nov 20 00:49:36 EST 2025 Wed Oct 29 10:24:36 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 20 |
| Language | English |
| License | Attribution-NonCommercial-NoDerivs |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3030-e013bcc504bfd145859cf1b02c6cb5f265b23b8a233f0173fc15e88e3b203663 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-7258-7045 0000-0002-3879-6986 0000-0001-7194-0567 |
| OpenAccessLink | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2025GL118606 |
| PQID | 3264884291 |
| PQPubID | 54723 |
| PageCount | 11 |
| ParticipantIDs | proquest_journals_3264884291 crossref_primary_10_1029_2025GL118606 wiley_primary_10_1029_2025GL118606_GRL71440 |
| PublicationCentury | 2000 |
| PublicationDate | 28 October 2025 |
| PublicationDateYYYYMMDD | 2025-10-28 |
| PublicationDate_xml | – month: 10 year: 2025 text: 28 October 2025 day: 28 |
| PublicationDecade | 2020 |
| PublicationPlace | Washington |
| PublicationPlace_xml | – name: Washington |
| PublicationTitle | Geophysical research letters |
| PublicationYear | 2025 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2023; 36 2019; 53 2019; 52 2018; 123 2014; 27 2019; 124 2003; 16 2020; 125 2020; 54 1989; 46 2016; 36 2020; 8 2017; 30 2001; 294 2014; 5 1987; 40 2021; 34 2002; 83 2023; 293 1994; 263 2010; 115 2022; 35 2024; 62 1999; 56 2005; 32 2007; 20 2021; 41 2018; 31 2001; 58 2016; 46 2010; 328 2019; 39 2012; 39 2020; 33 2001; 129 1985; 42 2012; 32 1998; 25 2022; 279 2009; 33 2003; 108 2015; 28 2002; 29 2021; 56 2007; 315 2019; 46 2002; 22 2022; 13 2018; 50 2017; 143 1961; 66 2005; 18 2014; 34 e_1_2_8_28_1 e_1_2_8_24_1 e_1_2_8_47_1 e_1_2_8_26_1 e_1_2_8_49_1 e_1_2_8_3_1 e_1_2_8_5_1 e_1_2_8_7_1 Andrews D. G. (e_1_2_8_2_1) 1987 e_1_2_8_9_1 e_1_2_8_20_1 e_1_2_8_43_1 e_1_2_8_66_1 e_1_2_8_22_1 e_1_2_8_45_1 e_1_2_8_64_1 e_1_2_8_62_1 e_1_2_8_41_1 e_1_2_8_60_1 e_1_2_8_17_1 e_1_2_8_19_1 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_59_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_57_1 e_1_2_8_32_1 e_1_2_8_55_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_53_1 e_1_2_8_51_1 e_1_2_8_30_1 e_1_2_8_29_1 e_1_2_8_25_1 e_1_2_8_46_1 e_1_2_8_27_1 e_1_2_8_48_1 e_1_2_8_4_1 e_1_2_8_6_1 e_1_2_8_8_1 e_1_2_8_21_1 e_1_2_8_42_1 e_1_2_8_67_1 e_1_2_8_23_1 e_1_2_8_44_1 e_1_2_8_65_1 e_1_2_8_63_1 e_1_2_8_40_1 e_1_2_8_61_1 e_1_2_8_18_1 e_1_2_8_39_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_16_1 e_1_2_8_37_1 e_1_2_8_58_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_56_1 e_1_2_8_12_1 e_1_2_8_33_1 e_1_2_8_54_1 e_1_2_8_52_1 e_1_2_8_50_1 |
| References_xml | – volume: 35 start-page: 725 issue: 2 year: 2022 end-page: 743 article-title: An interdecadal change in the influence of ENSO on the spring Tibetan Plateau snow‐cover variability in the early 2000s publication-title: Journal of Climate – volume: 58 start-page: 608 issue: 6 year: 2001 end-page: 627 article-title: A formulation of a phase‐independent wave‐activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow publication-title: Journal of the Atmospheric Sciences – volume: 32 start-page: 1336 issue: 9 year: 2012 end-page: 1345 article-title: Decadal variability in springtime snow over Eurasia: Relation with circulation and possible influence on springtime rainfall over China publication-title: International Journal of Climatology – volume: 30 start-page: 3421 issue: 9 year: 2017 end-page: 3437 article-title: Impact of eurasian spring snow decrement on East Asian summer precipitation publication-title: Journal of Climate – volume: 293 year: 2023 article-title: Linkage of the preceding winter mid‐latitude Eurasian atmospheric circulation with the spring northern East Asian snow cover publication-title: Atmospheric Research – volume: 279 year: 2022 article-title: Connection between the North Atlantic sea surface temperature and the late autumn snow cover anomalies over the central Tibetan Plateau publication-title: Atmospheric Research – volume: 39 start-page: 629 issue: 2 year: 2019 end-page: 642 article-title: Inter‐decadal change of the spring North Atlantic Oscillation impact on the summer Pamir‐Tienshan snow cover publication-title: International Journal of Climatology – volume: 8 year: 2020 article-title: Atmospheric Bridge connecting the Barents Sea ice and snow depth in the mid‐west Tibetan Plateau publication-title: Frontiers in Earth Science – volume: 46 start-page: 9118 issue: 15 year: 2019 end-page: 9125 article-title: Different sources of 10‐to 30‐day intraseasonal variations of autumn snow over Western and Eastern Tibetan Plateau publication-title: Geophysical Research Letters – volume: 39 start-page: 1643 issue: 7–8 year: 2012 end-page: 1660 article-title: IOD influence on the early winter Tibetan Plateau snow cover: Diagnostic analyses and an AGCM simulation publication-title: Climate Dynamics – volume: 315 start-page: 1533 issue: 5818 year: 2007 end-page: 1536 article-title: Perspectives on the Arctic's shrinking sea‐ice cover publication-title: Science – volume: 5 issue: 1 year: 2014 article-title: Weakening of the stratospheric polar vortex by Arctic sea‐ice loss publication-title: Nature Communications – volume: 20 start-page: 1285 issue: 7 year: 2007 end-page: 1304 article-title: Observed relationship of spring and summer East Asian rainfall with winter and spring Eurasian snow publication-title: Journal of Climate – volume: 46 start-page: 3405 issue: 11 year: 2016 end-page: 3417 article-title: Can the Tibetan Plateau snow cover influence the interannual variations of Eurasian heat wave frequency? publication-title: Climate Dynamics – volume: 46 start-page: 661 issue: 5 year: 1989 end-page: 686 article-title: The effect of Eurasian snow cover on regional and global climate variations publication-title: Journal of the Atmospheric Sciences – volume: 36 start-page: 2396 issue: 5 year: 2016 end-page: 2404 article-title: Connection between November snow cover over Eastern Europe and winter precipitation over East Asia publication-title: International Journal of Climatology – volume: 123 start-page: 10073 issue: 18 year: 2018 end-page: 10089 article-title: Interdecadal change of the impact of Eurasian snow on spring precipitation over Southern China publication-title: Journal of Geophysical Research: Atmospheres – volume: 328 start-page: 1382 issue: 5984 year: 2010 end-page: 1385 article-title: Climate change will affect the Asian water Towers publication-title: Science – volume: 29 issue: 22 year: 2002 article-title: Observed interannual oscillations of planetary wave forcing in the Northern Hemisphere winter publication-title: Geophysical Research Letters – volume: 294 start-page: 581 issue: 5542 year: 2001 end-page: 584 article-title: Stratospheric harbingers of anomalous weather regimes publication-title: Science – volume: 129 start-page: 2746 issue: 11 year: 2001 end-page: 2760 article-title: Evolution of atmospheric response to early‐season Eurasian snow cover anomalies publication-title: Monthly Weather Review – volume: 25 start-page: 1297 issue: 9 year: 1998 end-page: 1300 article-title: The Arctic oscillation signature in the wintertime geopotential height and temperature fields publication-title: Geophysical Research Letters – volume: 125 issue: 16 year: 2020 article-title: On the interdecadal change in the interannual variation in autumn snow cover over the central Eastern Tibetan Plateau in the Mid‐1990s publication-title: Journal of Geophysical Research: Atmospheres – volume: 30 start-page: 9027 issue: 22 year: 2017 end-page: 9039 article-title: The effect of Boreal late autumn snow cover over Western and central China on the Northern hemisphere wintertime blocking frequency publication-title: Journal of Climate – volume: 54 start-page: 3803 issue: 7 year: 2020 end-page: 3818 article-title: Impact of late spring Siberian snow on summer rainfall in South‐Central China publication-title: Climate Dynamics – volume: 27 start-page: 5422 issue: 14 year: 2014 end-page: 5432 article-title: Linking Siberian snow cover to precursors of stratospheric variability publication-title: Journal of Climate – volume: 50 start-page: 1993 issue: 5–6 year: 2018 end-page: 2006 article-title: Impact of northern Eurasian snow cover in autumn on the warm Arctic‐cold Eurasia pattern during the following January and its linkage to stationary planetary waves publication-title: Climate Dynamics – volume: 263 start-page: 198 issue: 5144 year: 1994 end-page: 200 article-title: Observed impact of snow cover on the heat balance and the rise of Continental Spring temperatures publication-title: Science – volume: 33 start-page: 9849 issue: 22 year: 2020 end-page: 9862 article-title: A bridging role of winter snow over Northern China and Southern Mongolia in linking the East Asian Winter and summer monsoons publication-title: Journal of Climate – volume: 115 issue: D22 year: 2010 article-title: Two distinct patterns of spring Eurasian snow cover anomaly and their impacts on the East Asian summer monsoon publication-title: Journal of Geophysical Research – volume: 124 start-page: 4873 issue: 9 year: 2019 end-page: 4890 article-title: Formation of snow cover anomalies over the Tibetan Plateau in cold seasons publication-title: Journal of Geophysical Research: Atmospheres – volume: 56 start-page: 3025 issue: 9–10 year: 2021 end-page: 3043 article-title: Impact of Tibetan Plateau snow cover on tropical cyclogenesis via the Madden‐Julian oscillation during the following boreal summer publication-title: Climate Dynamics – volume: 31 start-page: 7701 issue: 19 year: 2018 end-page: 7718 article-title: Southern hemisphere origins for interannual variations of snow cover over the Western Tibetan Plateau in boreal summer publication-title: Journal of Climate – volume: 28 start-page: 5510 issue: 14 year: 2015 end-page: 5522 article-title: Extratropical Ocean warming and Winter Arctic Sea ice cover since the 1990s publication-title: Journal of Climate – volume: 56 start-page: 1154 issue: 9 year: 1999 end-page: 1174 article-title: Understanding the seasonality of orographically forced stationary waves: Interaction between mechanical and thermal forcing publication-title: Journal of the Atmospheric Sciences – volume: 83 start-page: 1631 issue: 11 year: 2002 end-page: 1643 – volume: 13 start-page: 896 issue: 6 year: 2022 end-page: 908 article-title: Links between winter dust over the Tibetan Plateau and preceding autumn sea ice variability in the Barents and Kara Seas publication-title: Advances in Climate Change Research – volume: 34 start-page: 5985 issue: 14 year: 2021 end-page: 5997 article-title: Increased impact of the Tibetan Plateau spring snow cover to the Mei‐yu rainfall over the Yangtze River Valley after the 1990s publication-title: Journal of Climate – volume: 123 start-page: 10076 issue: 18 year: 2018 end-page: 10091 article-title: Impacts of autumnal Eurasian snow cover on predominant modes of boreal Winter surface air temperature over Eurasia publication-title: Journal of Geophysical Research: Atmospheres – volume: 39 start-page: 2393 issue: 9 year: 2012 end-page: 2402 article-title: Possible association of the western Tibetan Plateau snow cover with the decadal to interdecadal variations of northern China heatwave frequency publication-title: Climate Dynamics – volume: 30 start-page: 885 issue: 3 year: 2017 end-page: 903 article-title: Impacts of spatiotemporal anomalies of Tibetan Plateau snow cover on summer precipitation in Eastern China publication-title: Journal of Climate – volume: 33 start-page: 1691 issue: 5 year: 2020 end-page: 1706 article-title: Near‐Global atmospheric responses to observed springtime Tibetan Plateau snow anomalies publication-title: Journal of Climate – volume: 33 start-page: 509 issue: 4 year: 2009 end-page: 520 article-title: Respective influences of IOD and ENSO on the Tibetan snow cover in early winter publication-title: Climate Dynamics – volume: 124 start-page: 11961 issue: 22 year: 2019 end-page: 11975 article-title: Impacts of ENSO and IOD on snow depth over the Tibetan Plateau: Roles of convections over the Western north Pacific and Indian Ocean publication-title: Journal of Geophysical Research: Atmospheres – volume: 16 start-page: 3917 issue: 23 year: 2003 end-page: 3931 article-title: Modeled Northern Hemisphere winter climate response to realistic Siberian snow anomalies publication-title: Journal of Climate – volume: 41 start-page: 2553 issue: 4 year: 2021 end-page: 2567 article-title: Connection between the November snow cover over northeast Asia and the following January precipitation in southern China publication-title: International Journal of Climatology – volume: 40 year: 1987 – volume: 53 start-page: 353 issue: 1–2 year: 2019 end-page: 370 article-title: How do westerly jet streams regulate the winter snow depth over the Tibetan Plateau? publication-title: Climate Dynamics – volume: 108 issue: D24 year: 2003 article-title: Interannual variations of stationary planetary wave activity in the northern winter troposphere and stratosphere and their relations to NAM and SST publication-title: Journal of Geophysical Research – volume: 41 start-page: 846 issue: 2 year: 2021 end-page: 861 article-title: Connection between winter Arctic sea ice and west Tibetan Plateau snow depth through the NAO publication-title: International Journal of Climatology – volume: 22 start-page: 1075 issue: 9 year: 2002 end-page: 1089 article-title: Influence of Eurasian spring snow cover on Asian summer rainfall publication-title: International Journal of Climatology – volume: 20 start-page: 5335 issue: 21 year: 2007 end-page: 5343 article-title: Stratosphere‐troposphere coupling and links with Eurasian land surface variability publication-title: Journal of Climate – volume: 30 start-page: 7599 issue: 19 year: 2017 end-page: 7619 article-title: The influence of autumnal Eurasian snow cover on climate and its link with Arctic Sea ice cover publication-title: Journal of Climate – volume: 36 start-page: 3765 issue: 11 year: 2023 end-page: 3780 article-title: Interdecadal changes in the dominant modes of spring snow cover over the Tibetan Plateau around the early 1990s publication-title: Journal of Climate – volume: 66 start-page: 83 issue: 1 year: 1961 end-page: 109 article-title: Propagation of planetary‐scale disturbances from the lower into the upper atmosphere publication-title: Journal of Geophysical Research – volume: 18 start-page: 2067 issue: 12 year: 2005 end-page: 2079 article-title: The effect of ENSO on Tibetan Plateau snow depth: A stationary wave teleconnection mechanism and implications for the South Asian monsoons publication-title: Journal of Climate – volume: 30 start-page: 9435 issue: 23 year: 2017 end-page: 9454 article-title: Modeled Northern hemisphere autumn and Winter climate responses to realistic Tibetan Plateau and Mongolia snow anomalies publication-title: Journal of Climate – volume: 32 issue: 16 year: 2005 article-title: Relationship between western North Pacific typhoon activity and Tibetan Plateau winter and spring snow cover publication-title: Geophysical Research Letters – volume: 53 start-page: 4077 issue: 7–8 year: 2019 end-page: 4093 article-title: Delayed impacts of the IOD: Cross‐seasonal relationships between the IOD, Tibetan Plateau snow, and summer precipitation over the Yangtze‐Huaihe River region publication-title: Climate Dynamics – volume: 56 start-page: 767 issue: 3–4 year: 2021 end-page: 782 article-title: Influence of Tibetan Plateau autumn snow cover on interannual variations in spring precipitation over southern China publication-title: Climate Dynamics – volume: 143 start-page: 1351 issue: 704 year: 2017 end-page: 1363 article-title: Influence of tropical South Atlantic sea‐surface temperatures on the Indian summer monsoon in CMIP5 models publication-title: Quarterly Journal of the Royal Meteorological Society – volume: 42 start-page: 217 issue: 3 year: 1985 end-page: 229 article-title: On the three‐dimensional propagation of stationary waves publication-title: Journal of the Atmospheric Sciences – volume: 52 start-page: 69 issue: 1–2 year: 2019 end-page: 82 article-title: How autumn Eurasian snow anomalies affect east Asian winter monsoon: A numerical study publication-title: Climate Dynamics – volume: 62 start-page: 4253 issue: 5 year: 2024 end-page: 4266 article-title: Influence of winter northern Eurasian snow depth on the early summer Tibetan Plateau heat source during 1950–2019 publication-title: Climate Dynamics – volume: 35 start-page: 2093 issue: 7 year: 2022 end-page: 2110 article-title: Enhanced predictability of rapidly intensifying tropical cyclones over the Western North Pacific associated with snow depth changes over the Tibetan Plateau publication-title: Journal of Climate – volume: 34 start-page: 623 issue: 3 year: 2014 end-page: 642 – ident: e_1_2_8_11_1 doi: 10.3389/feart.2020.00265 – ident: e_1_2_8_50_1 doi: 10.1175/jcli‐d‐16‐0041.1 – ident: e_1_2_8_16_1 doi: 10.1175/jcli‐d‐17‐0327.1 – ident: e_1_2_8_18_1 doi: 10.1175/1520‐0442(2003)016<3917:mnhwcr>2.0.co;2 – ident: e_1_2_8_46_1 doi: 10.1007/s00382‐020‐05206‐5 – ident: e_1_2_8_66_1 doi: 10.1007/s00382‐019‐04774‐5 – ident: e_1_2_8_26_1 doi: 10.1002/joc.3711 – ident: e_1_2_8_12_1 doi: 10.1002/joc.6676 – ident: e_1_2_8_48_1 doi: 10.1175/1520‐0469(2001)058<0608:afoapi>2.0.co;2 – ident: e_1_2_8_19_1 doi: 10.1126/science.263.5144.198 – ident: e_1_2_8_37_1 doi: 10.1002/joc.784 – ident: e_1_2_8_3_1 doi: 10.1002/joc.4484 – ident: e_1_2_8_29_1 doi: 10.1007/s00382‐020‐05497‐8 – ident: e_1_2_8_51_1 doi: 10.1175/JCLI‐D‐21‐0348.1 – ident: e_1_2_8_5_1 doi: 10.1007/s00382‐018‐4589‐1 – ident: e_1_2_8_56_1 doi: 10.1007/s00382‐015‐2775‐y – ident: e_1_2_8_13_1 doi: 10.1175/jcli‐d‐16‐0830.1 – ident: e_1_2_8_38_1 doi: 10.1175/jcli‐d‐20‐0298.1 – ident: e_1_2_8_4_1 doi: 10.1126/science.1063315 – ident: e_1_2_8_9_1 doi: 10.1029/2002gl016062 – ident: e_1_2_8_22_1 doi: 10.1029/2018jd028443 – ident: e_1_2_8_54_1 doi: 10.1175/jcli4068.1 – ident: e_1_2_8_60_1 doi: 10.1029/2010JD013996 – ident: e_1_2_8_43_1 doi: 10.1175/1520‐0493(2001)129<2746:eoarte>2.0.co;2 – ident: e_1_2_8_8_1 doi: 10.1029/JZ066i001p00083 – ident: e_1_2_8_64_1 doi: 10.1175/JCLI‐D‐22‐0487.1 – ident: e_1_2_8_24_1 doi: 10.1007/s00382‐021‐05625‐y – ident: e_1_2_8_53_1 doi: 10.1002/joc.5831 – ident: e_1_2_8_58_1 doi: 10.1016/j.accre.2022.10.003 – ident: e_1_2_8_10_1 doi: 10.1029/2003jd003834 – ident: e_1_2_8_25_1 doi: 10.1007/s00382‐024‐07130‐4 – ident: e_1_2_8_41_1 doi: 10.1029/2020jd032685 – start-page: 489 volume-title: International geophysics series year: 1987 ident: e_1_2_8_2_1 – ident: e_1_2_8_30_1 doi: 10.1029/2019jd031384 – ident: e_1_2_8_23_1 doi: 10.1002/joc.6974 – ident: e_1_2_8_15_1 doi: 10.1175/jcli‐d‐13‐00779.1 – ident: e_1_2_8_52_1 doi: 10.1029/2018jd029525 – ident: e_1_2_8_67_1 doi: 10.1002/joc.2355 – ident: e_1_2_8_14_1 doi: 10.1175/2007jcli1725.1 – ident: e_1_2_8_28_1 doi: 10.1029/2018jd028612 – ident: e_1_2_8_42_1 doi: 10.1175/1520‐0469(1999)056<1154:UTSOOF>2.0.CO;2 – ident: e_1_2_8_59_1 doi: 10.1007/s00382‐017‐3732‐8 – ident: e_1_2_8_55_1 doi: 10.1007/s00382‐012‐1439‐4 – ident: e_1_2_8_49_1 doi: 10.1029/98GL00950 – ident: e_1_2_8_7_1 doi: 10.1175/JCLI‐D‐21‐0758.1 – ident: e_1_2_8_65_1 doi: 10.1175/jcli‐d‐16‐0214.1 – ident: e_1_2_8_20_1 doi: 10.1016/j.atmosres.2023.106926 – ident: e_1_2_8_61_1 doi: 10.1007/s00382‐008‐0495‐2 – ident: e_1_2_8_17_1 doi: 10.1175/jcli‐d‐16‐0623.1 – ident: e_1_2_8_62_1 doi: 10.1007/s00382‐011‐1204‐0 – ident: e_1_2_8_40_1 doi: 10.1175/1520‐0469(1985)042<0217:ottdpo>2.0.co;2 – ident: e_1_2_8_44_1 doi: 10.1126/science.1139426 – ident: e_1_2_8_31_1 doi: 10.1175/bams‐83‐11‐1631(2002)083<1631:nar>2.3.co;2 – ident: e_1_2_8_34_1 doi: 10.1175/jcli‐d‐14‐00629.1 – ident: e_1_2_8_6_1 doi: 10.1175/1520‐0469(1989)046<0661:teoesc>2.0.co;2 – ident: e_1_2_8_63_1 doi: 10.1175/jcli‐d‐21‐0009.1 – ident: e_1_2_8_21_1 doi: 10.1016/j.atmosres.2022.106405 – ident: e_1_2_8_32_1 doi: 10.1038/ncomms5646 – ident: e_1_2_8_45_1 doi: 10.1175/jcli3391.1 – ident: e_1_2_8_39_1 doi: 10.1007/s00382‐018‐4138‐y – ident: e_1_2_8_27_1 doi: 10.1126/science.1183188 – ident: e_1_2_8_33_1 doi: 10.1002/qj.3009 – ident: e_1_2_8_35_1 doi: 10.1175/jcli‐d‐17‐0117.1 – ident: e_1_2_8_36_1 doi: 10.1175/jcli‐d‐19‐0229.1 – ident: e_1_2_8_57_1 doi: 10.1029/2005GL023237 – ident: e_1_2_8_47_1 doi: 10.1029/2019gl083852 |
| SSID | ssj0003031 |
| Score | 2.490255 |
| Snippet | The Tibetan Plateau (TP) snow variability is attracting growing interest, while its causes are not yet fully clear. In this study, the potential link of... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Index Database Publisher |
| SubjectTerms | Anticyclones Autumn CMIP6 Hydrology Middle troposphere north Asian snow cover Polar vortex Precipitation Predation Snow Snow accumulation Snow cover Snow depth Snowfall Stratosphere Stratospheric polar vortexes Stratospheric vortices Tibetan Plateau snow depth Troposphere wave activity Wave packets Wave trains Winter |
| SummonAdditionalLinks | – databaseName: Engineering Database dbid: M7S link: http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV27TsMwFLWggMTCG1EoyANMyCJx4sSeUIVoGUpV0UrtFsUvqRIkpWlAbHwC38iXYLsp7cTCliiJFV3b9x77Ht8DwKUMOeNYxIiFkqIQY43SWBOEBUsJ1so8lE5sIu526WjEetWGW1HRKhc-0TlqmQu7R34TWCoWNd7Tv528IqsaZbOrlYTGOtiwVRKwo-71fz2xcc9zxTwWIorjqCK-e5jZNT9pdwy6jqzW0WpIWuLMVbTqwk1r978_ugd2KqAJm_ORsQ_WVHYAttpOyPfDXDnqpygOQcdxXdzxBphr2Cxn5UsGXT4HNu0RS9jP8nc4HJv7x7H8_vwa2hoTUzgYc2WgJew9G7yalu61IzBo3Q_uHlClsYCEsY6HlIGAXAjihVxLPzSLBya0zz0sIsGJxhHhOOA0xUGgzeQNtPCJolQF3GYwo-AY1LI8UycAEiUjnwpPKoMCuaJcKs0CJjhjOiYRrYOrhZWTybySRuIy4Jglq71RB42FXZNqPhXJ0qh1cO265c82kvZTJ7Zp69O_GzsD2_YzG4swbYDabFqqc7Ap3mbjYnrhBtMPLBfOzA priority: 102 providerName: ProQuest |
| Title | Connection of Autumn North Asian Snow With Mid‐Winter Tibetan Plateau Snow |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2025GL118606 https://www.proquest.com/docview/3264884291 |
| Volume | 52 |
| WOSCitedRecordID | wos001599723100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: Directory of Open Access Journals customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DOA dateStart: 20230101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell – providerCode: PRVWIB databaseName: Wiley Online Library Open Access customDbUrl: eissn: 1944-8007 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003031 issn: 0094-8276 databaseCode: 24P dateStart: 20230101 isFulltext: true titleUrlDefault: https://authorservices.wiley.com/open-science/open-access/browse-journals.html providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI7QAIkLb8R4TDnACVWsSdMmx_HYOIxRbUObuFRNmkiToEN7gLjxE_iN_BKcrMC4ICEuVtMmVeXG9pfYsRE6ygIpJFGRJ4KMewEhxksjwzyiRMqI0fAwc8UmolaL9_siLjbc7FmYWX6Irw03KxlOX1sBT-W4SDZgc2TCqp01moCPQ5txe9H3KbelG0gQf2liUM-zinki8DiJwiLwHcafzo_-aZK-ceY8WnXmpr723w9dR6sF0MS12czYQAs630TLDVfI9wWuXOinGm-hpot1cccb8NDg2nQyfcix8-fgmj1iiTv58Bn3BtC-HmTvr289m2NihLsDqQFa4vge8Go6dd22Ubd-2T2_8ooaC54C7lQ9DRBQKsWqgTSZH8DiQSjjyypRoZLMkJBJQiVPCaUGhJca5TPNuabSejBDuoNK-TDXuwgznYU-V9VMAwqUmstMG0GFkkKYiIW8jI4_uZw8zjJpJM4DTkQyz6IyOvj8BUkhT-OE2kA8DrbTL6MTx-xf35E02s3Iuq33_tR7H63Y-9Y0EX6ASpPRVB-iJfU0GYxHFTe3Kmjx7LIVtytu8Q6ti3b9tgmta3LjaGxp1AEas7sPTznUQA |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT-MwEB512V3BhX2B6FJYH5bTytrEiRP7gFDFo6CmVbVUgltUv6RKkJY-QL3xE_aP8Kf4JdhuAz1x48AtUayRkhl988Uz4w_gt4oFF0SmmMeK4ZgQg3upoZhI3qPEaPtQebGJtN1ml5e8U4GHchbGtVWWmOiBWg2k2yP_G7lWLGbRMzwY3mCnGuWqq6WExjwsmnp2Z3_ZxvtnR9a_e4ScHHcPT_FCVQBLC9cB1pb0CClpEAujwtjSZS5NKAIiEymoIQkVJBKsR6LI2HCNjAypZkxHwtXsksia_QAfYwf-vlPw_Bn4rfm5QB-PMSNpsuizDwh3Wwy0kVkynzhppeUM-EJrl8mxz24nX97Zd_kK6wsajerzuP8GFV18h88NL1M8s1e-sVWOf0DmO3n88AYaGFSfTqbXBfLVKlR3A6TovBjcoYu-vW_11eP9_wt3gsYIdftCW-KMOleWjfemftkGdN_inTZhpRgUegsQ1SoJmQyUthxXaCaUNjziUnBuUpqwKuyVTs2H83NCcl_fJzxfdn4VaqUb8wVajPMXH1bhj4-CV23kjX9Z6oryP1839gtWT7utLM_O2s1tWHMmXNYlrAYrk9FU78AneTvpj0e7Po4R5G8cH0_dFikR |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NTtwwEB4BbVEvpT8glkLrQzlVFokTJ_YBVavCbhHb1apdCdRLtP6TVoIs3R8QNx6B1-F1-iQdexPYEzcO3BLFGimZLzOfPWN_AF9MqqRiOqcyNYKmjDk6yB2nTMsBZ87iQxPEJvJuV5yeyt4S3NV7YXxbZR0TQ6A2I-3XyPcS34olMHrGe65qi-gdtL5d_KVeQcpXWms5jTlEju31FU7fJvtHB-jrXcZah_3vP2ilMEA1hu6IWiRASmsepcqZOEXqLLWLVcR0phV3LOOKJUoMWJI4hG7idMytEDZRvn6XJWh2GV7kOMX0874e_3OfBND8XKxPplSwPKt67iMm_XIDb3eQ2GdeZmkxGz5Q3EWiHDJda-0Zf6O38Kai16Q5_x_ewZIt38OrdpAvvsar0PCqJx-gEzp8wqYOMnKkOZvOzksSqlik6TeWkt_l6IqcDPH-59D8u7k98SdrjEl_qCwSatI7Q5Y-mIVh69B_infagJVyVNpNINyaLBY6Mha5r7JCGetkIrWS0uU8Ew3YrR1cXMzPDylC3Z_JYhEIDdiuXVpUUWRSPPizAV8DIh61UbR_dXJfrN963NhnWEVYFJ2j7vFHeO0t-GTMxDasTMczuwMv9eV0OBl_CpAmUDwxPP4Di-Ux9A |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Connection+of+Autumn+North+Asian+Snow+With+Mid%E2%80%90Winter+Tibetan+Plateau+Snow&rft.jtitle=Geophysical+research+letters&rft.au=Han%2C+Shuangze&rft.au=Ren%2C+Hong%E2%80%90Li&rft.au=Sun%2C+Jianqi&rft.au=Su%2C+Baohuang&rft.date=2025-10-28&rft.issn=0094-8276&rft.eissn=1944-8007&rft.volume=52&rft.issue=20&rft_id=info:doi/10.1029%2F2025GL118606&rft.externalDBID=n%2Fa&rft.externalDocID=10_1029_2025GL118606 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0094-8276&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0094-8276&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0094-8276&client=summon |