Boundary-aware context neural network for medical image segmentation
•Propose a boundary-aware context neural network for 2D medical image segmentation.•The pyramid edge extraction module aggregates edge information with multigranularity.•The multi-task learning module enriches the context by the different task branches.•The cross feature fusion module aims to select...
Saved in:
| Published in: | Medical image analysis Vol. 78; p. 102395 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Netherlands
Elsevier B.V
01.05.2022
Elsevier BV |
| Subjects: | |
| ISSN: | 1361-8415, 1361-8423, 1361-8423 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | •Propose a boundary-aware context neural network for 2D medical image segmentation.•The pyramid edge extraction module aggregates edge information with multigranularity.•The multi-task learning module enriches the context by the different task branches.•The cross feature fusion module aims to selectively aggregate multi-level features.•Achieving state-of-the-art performances on five medical image segmentation datasets.
[Display omitted]
Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques. |
|---|---|
| AbstractList | Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques. Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques. •Propose a boundary-aware context neural network for 2D medical image segmentation.•The pyramid edge extraction module aggregates edge information with multigranularity.•The multi-task learning module enriches the context by the different task branches.•The cross feature fusion module aims to selectively aggregate multi-level features.•Achieving state-of-the-art performances on five medical image segmentation datasets. [Display omitted] Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques. |
| ArticleNumber | 102395 |
| Author | Ji, Chaojie Li, Ye Chen, Shuyuan Wang, Ruxin Fan, Jianping |
| Author_xml | – sequence: 1 givenname: Ruxin orcidid: 0000-0003-4772-3284 surname: Wang fullname: Wang, Ruxin email: rx.wang@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China – sequence: 2 givenname: Shuyuan surname: Chen fullname: Chen, Shuyuan email: sa517020@mail.ustc.edu.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China – sequence: 3 givenname: Chaojie orcidid: 0000-0001-5502-7508 surname: Ji fullname: Ji, Chaojie email: cj.ji@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China – sequence: 4 givenname: Jianping surname: Fan fullname: Fan, Jianping email: jp.fan@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China – sequence: 5 givenname: Ye surname: Li fullname: Li, Ye email: ye.li@siat.ac.cn organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35231851$$D View this record in MEDLINE/PubMed |
| BookMark | eNp9kTlPxDAQhS0E4lj4BUgoEg1NFh9J1i4oYDklJBqoLccZIy9ZG2yH49_jJUBBQTXW6HvjefN20LrzDhDaJ3hKMGmOF9MldFZNKaY0dygT9RraJqwhJa8oW_99k3oL7cS4wBjPqgpvoi1WU0Z4TbbR-ZkfXKfCR6neVIBCe5fgPRUOhqD6XNKbD0-F8aFY_aZzzy7VIxQRHpfgkkrWu120YVQfYe-7TtDD5cX9_Lq8vbu6mZ_elpphmkrDmTZdU1OqKde8Bg5VazDWigvOW6gYZl2FjQDAvCXYGCHEDGjdAp0pRdgEHY1zn4N_GSAmubRRQ98rB36IkjYrY1xgltHDP-jCD8Hl7TIlGs6FyOgEHXxTQ5vtyeeQzYUP-XOfDIgR0MHHGMBIbUfPKSjbS4LlKgu5kF9ZyFUWcswia9kf7c_4_1UnowryIV8tBBm1BaczGEAn2Xn7r_4TabmibQ |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2023_105241 crossref_primary_10_1109_TETCI_2022_3193677 crossref_primary_10_1007_s11760_025_04385_0 crossref_primary_10_1016_j_compbiomed_2024_108303 crossref_primary_10_1109_TIM_2024_3413130 crossref_primary_10_1186_s13244_024_01861_y crossref_primary_10_1109_TIM_2024_3470962 crossref_primary_10_1016_j_bspc_2024_106059 crossref_primary_10_1016_j_compbiomed_2024_108308 crossref_primary_10_3390_sym17091506 crossref_primary_10_1016_j_eswa_2023_121319 crossref_primary_10_1016_j_compbiomed_2023_107841 crossref_primary_10_1016_j_bspc_2023_104825 crossref_primary_10_4018_IJSWIS_352853 crossref_primary_10_1016_j_neucom_2025_130217 crossref_primary_10_1109_ACCESS_2024_3402818 crossref_primary_10_1109_JBHI_2024_3400802 crossref_primary_10_1016_j_patrec_2023_08_005 crossref_primary_10_1016_j_bspc_2023_105194 crossref_primary_10_1016_j_neunet_2023_11_055 crossref_primary_10_1088_1361_6560_ad14c6 crossref_primary_10_1088_1361_6560_acd29f crossref_primary_10_1016_j_engappai_2024_109867 crossref_primary_10_1016_j_compbiomed_2024_109009 crossref_primary_10_1016_j_neunet_2023_11_050 crossref_primary_10_1016_j_neucom_2023_126233 crossref_primary_10_1007_s10489_023_05032_2 crossref_primary_10_3390_info16060433 crossref_primary_10_1016_j_eswa_2023_120637 crossref_primary_10_3390_jimaging8060163 crossref_primary_10_1016_j_neucom_2024_129127 crossref_primary_10_1016_j_compbiomed_2023_107454 crossref_primary_10_1016_j_neucom_2025_131414 crossref_primary_10_1016_j_media_2024_103450 crossref_primary_10_1016_j_cviu_2023_103910 crossref_primary_10_3390_s23063067 crossref_primary_10_1109_ACCESS_2025_3566204 crossref_primary_10_1016_j_bspc_2024_106711 crossref_primary_10_32628_IJSRST52310631 crossref_primary_10_3390_rs15194708 crossref_primary_10_1016_j_compbiomed_2023_107624 crossref_primary_10_1016_j_compbiomed_2022_106139 crossref_primary_10_1109_JBHI_2024_3374780 crossref_primary_10_3390_diagnostics14131444 crossref_primary_10_1109_TASE_2024_3430896 crossref_primary_10_1016_j_compbiomed_2023_106891 crossref_primary_10_1016_j_eswa_2025_128764 crossref_primary_10_4103_ATMR_ATMR_27_25 crossref_primary_10_1016_j_bbe_2025_05_002 crossref_primary_10_1007_s11042_024_19195_8 crossref_primary_10_1109_TIM_2023_3293880 crossref_primary_10_1016_j_cropro_2024_106762 crossref_primary_10_1109_ACCESS_2024_3355542 crossref_primary_10_1016_j_bspc_2024_106567 crossref_primary_10_1016_j_media_2025_103615 crossref_primary_10_1016_j_bspc_2025_108405 crossref_primary_10_1016_j_ymeth_2025_04_016 crossref_primary_10_1016_j_bspc_2023_105330 crossref_primary_10_1016_j_patcog_2025_111637 crossref_primary_10_1109_TIM_2024_3500060 crossref_primary_10_1002_mp_17928 crossref_primary_10_3390_electronics13244986 crossref_primary_10_1007_s13042_023_01950_2 crossref_primary_10_1016_j_imavis_2023_104694 crossref_primary_10_1109_TMI_2025_3556482 crossref_primary_10_1016_j_patcog_2024_111302 crossref_primary_10_3233_IDA_230298 crossref_primary_10_1016_j_cmpb_2024_108280 crossref_primary_10_1016_j_imavis_2023_104811 crossref_primary_10_4103_jmp_jmp_1_23 crossref_primary_10_1002_ima_70130 crossref_primary_10_1186_s40644_024_00711_w crossref_primary_10_3390_app14146299 crossref_primary_10_1186_s12859_022_04882_w crossref_primary_10_1093_psyrad_kkae013 crossref_primary_10_3390_electronics14153054 crossref_primary_10_1109_ACCESS_2022_3175858 crossref_primary_10_1109_TIM_2024_3350108 crossref_primary_10_1016_j_eswa_2025_127577 crossref_primary_10_3934_era_2025129 crossref_primary_10_1016_j_artmed_2024_103012 crossref_primary_10_1109_TMI_2023_3294975 crossref_primary_10_1007_s11517_024_03086_z crossref_primary_10_1016_j_artmed_2025_103131 crossref_primary_10_1016_j_bspc_2025_108387 crossref_primary_10_1016_j_engappai_2022_105744 crossref_primary_10_1109_TIM_2025_3541664 crossref_primary_10_1007_s00530_025_01727_3 crossref_primary_10_1049_ipr2_12780 crossref_primary_10_1109_TMI_2025_3525673 crossref_primary_10_1016_j_compbiomed_2024_109601 crossref_primary_10_1109_LSP_2025_3526745 crossref_primary_10_1007_s10462_024_10814_2 crossref_primary_10_1038_s41598_024_70527_y crossref_primary_10_1016_j_imavis_2024_105069 crossref_primary_10_1109_JBHI_2022_3160098 crossref_primary_10_1007_s11042_023_15505_8 crossref_primary_10_1109_TASE_2025_3550681 crossref_primary_10_1109_TGRS_2024_3367632 crossref_primary_10_1016_j_compbiomed_2022_106146 crossref_primary_10_1049_ipr2_12813 crossref_primary_10_1109_TCSVT_2023_3245883 crossref_primary_10_1109_JSEN_2025_3553904 crossref_primary_10_22399_ijcesen_1683 crossref_primary_10_1016_j_artmed_2024_102771 crossref_primary_10_1007_s40747_024_01729_0 crossref_primary_10_1007_s12530_024_09588_3 crossref_primary_10_1016_j_cmpb_2023_107849 crossref_primary_10_1140_epjp_s13360_024_05960_z crossref_primary_10_1016_j_bspc_2024_107202 crossref_primary_10_1016_j_compbiomed_2024_109617 crossref_primary_10_1109_JBHI_2024_3404273 crossref_primary_10_1016_j_cmpb_2024_108544 crossref_primary_10_1109_JBHI_2022_3173948 crossref_primary_10_1109_TIM_2025_3551581 crossref_primary_10_1177_00220345241226871 crossref_primary_10_1016_j_eswa_2023_120764 crossref_primary_10_1016_j_compmedimag_2024_102456 crossref_primary_10_1109_TIM_2023_3244219 crossref_primary_10_1007_s11633_022_1371_y crossref_primary_10_1016_j_health_2023_100216 crossref_primary_10_1007_s11548_022_02696_y crossref_primary_10_1016_j_bspc_2025_108208 crossref_primary_10_1109_JSTARS_2023_3265677 crossref_primary_10_1016_j_bspc_2022_104300 crossref_primary_10_1109_JBHI_2023_3275746 crossref_primary_10_1016_j_compbiomed_2022_106206 crossref_primary_10_1016_j_neucom_2024_128417 crossref_primary_10_1016_j_bspc_2024_106638 crossref_primary_10_1038_s41598_024_67554_0 crossref_primary_10_1007_s11633_023_1479_8 crossref_primary_10_1016_j_bspc_2022_103846 crossref_primary_10_1016_j_bspc_2025_108280 |
| Cites_doi | 10.1016/j.media.2021.102196 10.1016/j.neunet.2019.08.025 10.1016/j.bspc.2021.102856 10.1016/j.media.2019.03.003 10.1109/42.929615 10.1109/TNNLS.2021.3126305 10.1016/j.media.2008.06.008 10.1109/TMI.2020.2996645 10.1016/S1361-8415(96)80007-7 10.1038/nature21056 10.1109/TBME.2017.2712771 10.1109/TPAMI.2018.2840695 10.4103/0971-6203.58777 10.1016/j.media.2019.01.012 10.1109/TMI.2020.3025308 10.1109/JSTSP.2008.2011119 10.1109/TIP.2012.2186306 10.1016/j.patcog.2012.03.002 10.1109/TMI.2016.2642839 10.1109/TMI.2003.819929 10.1109/TMI.2020.2972964 10.1109/TMI.2019.2903562 10.1016/S0031-3203(00)00023-6 10.1109/TMI.2004.837792 10.1109/TIP.2019.2946078 10.1016/j.media.2017.11.005 10.1016/j.asoc.2018.05.003 10.1109/TPAMI.2003.1182096 10.1109/JBHI.2018.2859898 10.1016/j.media.2004.01.003 10.1007/s11263-015-0816-y 10.1016/j.compbiomed.2018.07.002 10.1109/42.918473 10.1016/j.neunet.2021.03.023 10.1109/42.875204 10.1109/TMI.2013.2290491 10.1109/TMI.2004.824224 10.1016/j.compmedimag.2010.07.003 |
| ContentType | Journal Article |
| Copyright | 2022 Copyright © 2022. Published by Elsevier B.V. Copyright Elsevier BV May 2022 |
| Copyright_xml | – notice: 2022 – notice: Copyright © 2022. Published by Elsevier B.V. – notice: Copyright Elsevier BV May 2022 |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
| DOI | 10.1016/j.media.2022.102395 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Biotechnology Research Abstracts Technology Research Database Engineering Research Database ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium Engineering Research Database Biotechnology Research Abstracts Technology Research Database Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic ProQuest Health & Medical Complete (Alumni) MEDLINE |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1361-8423 |
| ExternalDocumentID | 35231851 10_1016_j_media_2022_102395 S1361841522000470 |
| Genre | Journal Article |
| GroupedDBID | --- --K --M .~1 0R~ 1B1 1~. 1~5 29M 4.4 457 4G. 53G 5GY 5VS 7-5 71M 8P~ AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABBQC ABJNI ABLVK ABMAC ABMZM ABXDB ABYKQ ACDAQ ACGFS ACIUM ACIWK ACNNM ACPRK ACRLP ACZNC ADBBV ADEZE ADJOM ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AFXIZ AGHFR AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV AJRQY ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ANZVX AOUOD ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV C45 CAG COF CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HX~ HZ~ IHE J1W JJJVA KOM LCYCR M41 MO0 N9A O-L O9- OAUVE OVD OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SEL SES SEW SPC SPCBC SSH SST SSV SSZ T5K TEORI UHS ~G- 9DU AATTM AAXKI AAYWO AAYXX ABWVN ACIEU ACLOT ACRPL ACVFH ADCNI ADNMO ADVLN AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD CGR CUY CVF ECM EIF NPM 7QO 8FD FR3 K9. NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c302t-f83cfd6522c28c85e8e4bf00ca8988be4303d40f9ee08b10ff9997e25be27aa13 |
| ISSN | 1361-8415 1361-8423 |
| IngestDate | Thu Oct 02 09:27:25 EDT 2025 Tue Oct 07 06:40:11 EDT 2025 Thu Apr 03 07:08:22 EDT 2025 Tue Nov 18 21:39:56 EST 2025 Sat Nov 29 07:07:01 EST 2025 Fri Feb 23 02:38:49 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Deep learning Convolutional neural network Medical image segmentation |
| Language | English |
| License | Copyright © 2022. Published by Elsevier B.V. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c302t-f83cfd6522c28c85e8e4bf00ca8988be4303d40f9ee08b10ff9997e25be27aa13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-4772-3284 0000-0001-5502-7508 |
| PMID | 35231851 |
| PQID | 2696889952 |
| PQPubID | 2045428 |
| ParticipantIDs | proquest_miscellaneous_2635238903 proquest_journals_2696889952 pubmed_primary_35231851 crossref_citationtrail_10_1016_j_media_2022_102395 crossref_primary_10_1016_j_media_2022_102395 elsevier_sciencedirect_doi_10_1016_j_media_2022_102395 |
| PublicationCentury | 2000 |
| PublicationDate | May 2022 2022-05-00 20220501 |
| PublicationDateYYYYMMDD | 2022-05-01 |
| PublicationDate_xml | – month: 05 year: 2022 text: May 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Netherlands |
| PublicationPlace_xml | – name: Netherlands – name: Amsterdam |
| PublicationTitle | Medical image analysis |
| PublicationTitleAlternate | Med Image Anal |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier BV |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier BV |
| References | Zhang, Fu, Dai, Shen, Pang, Shao (bib0057) 2019 Carballido-Gamio, Belongie, Majumdar (bib0009) 2004; 23 Zhao, Liu, Fan, Cao, Yang, Cheng (bib0061) 2019 Grau, Mewes, Alcaniz, Kikinis, Warfield (bib0025) 2004; 23 Yu, Chen, Dou, Qin, Heng (bib0056) 2016; 36 Ganster, Pinz, Rohrer, Wildling, Binder, Kittler (bib0024) 2001; 20 Acosta, Simon, Monge, Commandeur, Bassirou, Cazoulat, De Crevoisier, Haigron (bib0001) 2011 Wang, Zhao, Ning, Qian (bib0050) 2020 Xue, Xu, Huang (bib0055) 2018 Guo, Yang, Yuan (bib0028) 2021; 73 McInerney, Terzopoulos (bib0037) 1996; 1 Bazin, Pham (bib0004) 2018; 12 Cherukuri, BG, Bala, Monga (bib0014) 2019; 29 Silveira, Nascimento, Marques, Marçal, Mendonça, Yamauchi, Maeda, Rozeira (bib0046) 2009; 3 Long, Shelhamer, Darrell (bib0036) 2015 Wang, He, Nie, Zhou, Gao, Shen (bib0051) 2019; 54 Ashour, Guo, Kucukkulahli, Erdogmus, Polat (bib0002) 2018; 69 Hu, Hoffman, Reinhardt (bib0031) 2001; 20 Sarker, Rashwan, Akram, Banu, Saleh, Singh, Chowdhury, Abdulwahab, Romani, Radeva (bib0043) 2018 Stirenko, Kochura, Alienin, Rokovyi, Gordienko, Gang, Zeng (bib0047) 2018 Jha, Smedsrud, Riegler, Halvorsen, de Lange, Johansen, Johansen (bib0033) 2020 Gridach (bib0026) 2021; 140 Wang, Zuluaga, Li, Pratt, Patel, Aertsen, Doel, David, Deprest, Ourselin (bib0049) 2018; 41 Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0041) 2016; 115 Candemir, Jaeger, Palaniappan, Musco, Singh, Xue, Karargyris, Antani, Thoma, McDonald (bib0007) 2013; 33 Nguyen, Worring, Van Den Boomgaard (bib0039) 2003; 25 Codella, Gutman, Celebi, Helba, Marchetti, Dusza, Kalloo, Liopyris, Mishra, Kittler (bib0016) 2018 Bazin, Pham (bib0003) 2007 He, Zhang, Ren, Sun (bib0029) 2016 Sanchez-Gonzalez, Garcia-Zapirain, Sierra-Sosa, Elmaghraby (bib0042) 2018; 100 Ronneberger, Fischer, Brox (bib0040) 2015 Wang, Ji, Zhang, Li (bib63) 2021; 33 Bernal, Sánchez, Vilarino (bib0005) 2012; 45 Tsai, Wells, Tempany, Grimson, Willsky (bib0048) 2004; 8 Fu, Liu, Tian, Li, Bao, Fang, Lu (bib0022) 2019 Zhang, Zhang, Peng, Xue, Sun (bib0058) 2018 Zhao, Shi, Qi, Wang, Jia (bib0060) 2017 Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv Cao, Zheng, Xiang, Ding, Sun, Yang, Liu, Dai (bib0008) 2021; 69 Zhou, He, Huang, Liu, Zhu, Cui, Shao (bib0062) 2019 Xie, Zhang, Lu, Shen, Xia (bib0053) 2021; 40 Drozdzal, Chartrand, Vorontsov, Shakeri, Di Jorio, Tang, Romero, Bengio, Pal, Kadoury (bib0019) 2018; 44 Chung, Sapiro (bib0015) 2000; 19 Dalca, Guttag, Sabuncu (bib0017) 2018 Xie, Jiang, Tsui (bib0052) 2005; 24 Fumero, Alayón, Sanchez, Sigut, Gonzalez-Hernandez (bib0023) 2011 Milletari, Navab, Ahmadi (bib0038) 2016 Sharma, Aggarwal (bib0045) 2010; 35 Chen, Helm, Joshi, Brady (bib0011) 2011 Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib0020) 2017; 542 Fan, Zhou, Ji, Zhou, Chen, Fu, Shen, Shao (bib0021) 2020; 39 Li, He, Zhou, Yu, Ni, Chen, Wang, Lei (bib0035) 2018; 23 Chen, Udupa, Bagci, Zhuge, Yao (bib0013) 2012; 21 Chen, Wang, Shi, Liu, Yu (bib0012) 2018 Gu, Cheng, Fu, Zhou, Hao, Zhao, Zhang, Gao, Liu (bib0027) 2019; 38 He, Xie (bib0030) 2012 Ding, Goshtasby (bib0018) 2001; 34 Xie, Zhang, Xia, Shen (bib0054) 2020; 39 Ibtehaz, Rahman (bib0032) 2020; 121 Bi, Kim, Ahn, Kumar, Fulham, Feng (bib0006) 2017; 64 Schlemper, Oktay, Schaap, Heinrich, Kainz, Glocker, Rueckert (bib0044) 2019; 53 Jiang, Trundle, Ren (bib0034) 2010; 34 Zhao, Balakrishnan, Durand, Guttag, Dalca (bib0059) 2019 Chen (10.1016/j.media.2022.102395_bib0012) 2018 Candemir (10.1016/j.media.2022.102395_bib0007) 2013; 33 Xue (10.1016/j.media.2022.102395_bib0055) 2018 Sarker (10.1016/j.media.2022.102395_bib0043) 2018 Dalca (10.1016/j.media.2022.102395_bib0017) 2018 Cherukuri (10.1016/j.media.2022.102395_bib0014) 2019; 29 Sharma (10.1016/j.media.2022.102395_bib0045) 2010; 35 Zhao (10.1016/j.media.2022.102395_bib0060) 2017 Acosta (10.1016/j.media.2022.102395_bib0001) 2011 10.1016/j.media.2022.102395_bib0010 Grau (10.1016/j.media.2022.102395_bib0025) 2004; 23 Bazin (10.1016/j.media.2022.102395_bib0003) 2007 Esteva (10.1016/j.media.2022.102395_bib0020) 2017; 542 Fu (10.1016/j.media.2022.102395_bib0022) 2019 McInerney (10.1016/j.media.2022.102395_bib0037) 1996; 1 Ganster (10.1016/j.media.2022.102395_bib0024) 2001; 20 Fan (10.1016/j.media.2022.102395_bib0021) 2020; 39 Schlemper (10.1016/j.media.2022.102395_bib0044) 2019; 53 Hu (10.1016/j.media.2022.102395_bib0031) 2001; 20 Wang (10.1016/j.media.2022.102395_bib0051) 2019; 54 Bi (10.1016/j.media.2022.102395_bib0006) 2017; 64 Zhang (10.1016/j.media.2022.102395_bib0057) 2019 Wang (10.1016/j.media.2022.102395_bib0050) 2020 Cao (10.1016/j.media.2022.102395_bib0008) 2021; 69 Long (10.1016/j.media.2022.102395_bib0036) 2015 Zhou (10.1016/j.media.2022.102395_bib0062) 2019 Drozdzal (10.1016/j.media.2022.102395_bib0019) 2018; 44 Stirenko (10.1016/j.media.2022.102395_bib0047) 2018 Li (10.1016/j.media.2022.102395_bib0035) 2018; 23 Nguyen (10.1016/j.media.2022.102395_bib0039) 2003; 25 Bernal (10.1016/j.media.2022.102395_bib0005) 2012; 45 Chen (10.1016/j.media.2022.102395_bib0013) 2012; 21 Xie (10.1016/j.media.2022.102395_bib0054) 2020; 39 Ibtehaz (10.1016/j.media.2022.102395_bib0032) 2020; 121 Xie (10.1016/j.media.2022.102395_bib0053) 2021; 40 He (10.1016/j.media.2022.102395_bib0030) 2012 Silveira (10.1016/j.media.2022.102395_bib0046) 2009; 3 Gu (10.1016/j.media.2022.102395_bib0027) 2019; 38 Zhao (10.1016/j.media.2022.102395_bib0059) 2019 Jiang (10.1016/j.media.2022.102395_bib0034) 2010; 34 Ashour (10.1016/j.media.2022.102395_bib0002) 2018; 69 Russakovsky (10.1016/j.media.2022.102395_bib0041) 2016; 115 Fumero (10.1016/j.media.2022.102395_bib0023) 2011 Wang (10.1016/j.media.2022.102395_bib0049) 2018; 41 Codella (10.1016/j.media.2022.102395_bib0016) 2018 Milletari (10.1016/j.media.2022.102395_bib0038) 2016 Zhang (10.1016/j.media.2022.102395_bib0058) 2018 Wang (10.1016/j.media.2022.102395_bib63) 2021; 33 Chen (10.1016/j.media.2022.102395_bib0011) 2011 Sanchez-Gonzalez (10.1016/j.media.2022.102395_bib0042) 2018; 100 Bazin (10.1016/j.media.2022.102395_bib0004) 2018; 12 Tsai (10.1016/j.media.2022.102395_bib0048) 2004; 8 Jha (10.1016/j.media.2022.102395_bib0033) 2020 Chung (10.1016/j.media.2022.102395_bib0015) 2000; 19 Xie (10.1016/j.media.2022.102395_bib0052) 2005; 24 Yu (10.1016/j.media.2022.102395_bib0056) 2016; 36 Ding (10.1016/j.media.2022.102395_bib0018) 2001; 34 Ronneberger (10.1016/j.media.2022.102395_bib0040) 2015 Guo (10.1016/j.media.2022.102395_bib0028) 2021; 73 He (10.1016/j.media.2022.102395_bib0029) 2016 Zhao (10.1016/j.media.2022.102395_bib0061) 2019 Carballido-Gamio (10.1016/j.media.2022.102395_bib0009) 2004; 23 Gridach (10.1016/j.media.2022.102395_bib0026) 2021; 140 |
| References_xml | – volume: 34 start-page: 617 year: 2010 end-page: 631 ident: bib0034 article-title: Medical image analysis with artificial neural networks publication-title: Comput. Med. Imaging Graph. – volume: 23 start-page: 447 year: 2004 end-page: 458 ident: bib0025 article-title: Improved watershed transform for medical image segmentation using prior information publication-title: IEEE Trans. Med. Imaging – volume: 8 start-page: 429 year: 2004 end-page: 445 ident: bib0048 article-title: Mutual information in coupled multi-shape model for medical image segmentation publication-title: Med. Image Anal. – volume: 21 start-page: 2035 year: 2012 end-page: 2046 ident: bib0013 article-title: Medical image segmentation by combining graph cuts and oriented active appearance models publication-title: IEEE Trans. Image Process. – volume: 20 start-page: 223 year: 2001 end-page: 239 ident: bib0024 article-title: Automated melanoma recognition publication-title: IEEE Trans. Med. Imaging – start-page: 1126 year: 2018 end-page: 1129 ident: bib0012 article-title: A multi-task framework with feature passing module for skin lesion classification and segmentation publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging – volume: 41 start-page: 1559 year: 2018 end-page: 1572 ident: bib0049 article-title: DeepIGeoS: a deep interactive geodesic framework for medical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 1616 year: 2020 end-page: 1619 ident: bib0050 article-title: AEC-Net: attention and edge constraint network for medical image segmentation publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society – volume: 35 start-page: 3 year: 2010 end-page: 14 ident: bib0045 article-title: Automated medical image segmentation techniques publication-title: J. Med. Phys. – volume: 73 start-page: 102196 year: 2021 ident: bib0028 article-title: Dynamic-weighting hierarchical segmentation network for medical images publication-title: Med. Image Anal. – volume: 54 start-page: 168 year: 2019 end-page: 178 ident: bib0051 article-title: CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation publication-title: Med. Image Anal. – start-page: 330 year: 2012 end-page: 341 ident: bib0030 article-title: Automatic skin lesion segmentation based on texture analysis and supervised learning publication-title: Proceedings of the Asian Conference on Computer Vision – start-page: 8779 year: 2019 end-page: 8788 ident: bib0061 article-title: EGNet: edge guidance network for salient object detection publication-title: Proceedings of the IEEE International Conference on Computer Vision – volume: 53 start-page: 197 year: 2019 end-page: 207 ident: bib0044 article-title: Attention gated networks: learning to leverage salient regions in medical images publication-title: Med. Image Anal. – volume: 36 start-page: 994 year: 2016 end-page: 1004 ident: bib0056 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Trans. Med. Imaging – volume: 140 start-page: 274 year: 2021 end-page: 281 ident: bib0026 article-title: PyDiNet: pyramid dilated network for medical image segmentation publication-title: Neural Netw. – start-page: 3431 year: 2015 end-page: 3440 ident: bib0036 article-title: Fully convolutional networks for semantic segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 39 start-page: 2626 year: 2020 end-page: 2637 ident: bib0021 article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT images publication-title: IEEE Trans. Med. Imaging – volume: 100 start-page: 152 year: 2018 end-page: 164 ident: bib0042 article-title: Automatized colon polyp segmentation via contour region analysis publication-title: Comput. Biol. Med. – start-page: 422 year: 2018 end-page: 428 ident: bib0047 article-title: Chest X-ray analysis of tuberculosis by deep learning with segmentation and augmentation publication-title: Proceedings of the IEEE International Conference on Electronics and Nanotechnology – volume: 115 start-page: 211 year: 2016 end-page: 252 ident: bib0041 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. – volume: 39 start-page: 2482 year: 2020 end-page: 2493 ident: bib0054 article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification publication-title: IEEE Trans. Med. Imaging – volume: 33 start-page: 577 year: 2013 end-page: 590 ident: bib0007 article-title: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration publication-title: IEEE Trans. Med. Imaging – start-page: 8543 year: 2019 end-page: 8553 ident: bib0059 article-title: Data augmentation using learned transformations for one-shot medical image segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 38 start-page: 2281 year: 2019 end-page: 2292 ident: bib0027 article-title: CE-Net: context encoder network for 2D medical image segmentation publication-title: IEEE Trans. Med. Imaging – volume: 44 start-page: 1 year: 2018 end-page: 13 ident: bib0019 article-title: Learning normalized inputs for iterative estimation in medical image segmentation publication-title: Med. Image Anal. – volume: 69 start-page: 426 year: 2018 end-page: 434 ident: bib0002 article-title: A hybrid dermoscopy images segmentation approach based on neutrosophic clustering and histogram estimation publication-title: Appl. Soft. Comput. – volume: 3 start-page: 35 year: 2009 end-page: 45 ident: bib0046 article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images publication-title: IEEE J. Sel. Top. Signal Process. – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib0020 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – volume: 64 start-page: 2065 year: 2017 end-page: 2074 ident: bib0006 article-title: Dermoscopic image segmentation via multistage fully convolutional networks publication-title: IEEE Trans. Biomed. Eng. – start-page: 1966 year: 2011 end-page: 1969 ident: bib0001 article-title: Evaluation of multi-atlas-based segmentation of CTscans in prostate cancer radiotherapy publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging – start-page: 442 year: 2019 end-page: 450 ident: bib0057 article-title: ET-Net: a generic edge-attention guidance network for medical image segmentation publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 2881 year: 2017 end-page: 2890 ident: bib0060 article-title: Pyramid scene parsing network publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1 year: 2011 end-page: 6 ident: bib0023 article-title: RIM-ONE: an open retinal image database for optic nerve evaluation publication-title: Proceedings of the International Symposium on Computer-based Medical Systems – start-page: 269 year: 2018 end-page: 284 ident: bib0058 article-title: ExFuse: enhancing feature fusion for semantic segmentation publication-title: Proceedings of the European Conference on Computer Vision – volume: 23 start-page: 36 year: 2004 end-page: 44 ident: bib0009 article-title: Normalized cuts in 3-D for spinal MRI segmentation publication-title: IEEE Trans. Med. Imaging – start-page: 451 year: 2020 end-page: 462 ident: bib0033 article-title: Kvasir-SEG: a segmented polyp dataset publication-title: Proceedings of the International Conference on Multimedia Modeling – start-page: 565 year: 2016 end-page: 571 ident: bib0038 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation publication-title: Proceedings of the International Conference on 3D Vision – volume: 25 start-page: 330 year: 2003 end-page: 342 ident: bib0039 article-title: Watersnakes: energy-driven watershed segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – start-page: 94 year: 2007 end-page: 101 ident: bib0003 article-title: Statistical and topological atlas based brain image segmentation publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 23 start-page: 527 year: 2018 end-page: 537 ident: bib0035 article-title: Dense deconvolutional network for skin lesion segmentation publication-title: IEEE J. Biomed. Health Inform. – volume: 40 start-page: 286 year: 2021 end-page: 296 ident: bib0053 article-title: SESV: accurate medical image segmentation by predicting and correcting errors publication-title: IEEE Trans. Med. Imaging – start-page: 168 year: 2018 end-page: 172 ident: bib0016 article-title: Skin lesion analysis toward melanoma detection: achallenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC) publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging – volume: 24 start-page: 45 year: 2005 end-page: 57 ident: bib0052 article-title: Segmentation of kidney from ultrasound images based on texture and shape priors publication-title: IEEE Trans. Med. Imaging – volume: 45 start-page: 3166 year: 2012 end-page: 3182 ident: bib0005 article-title: Towards automatic polyp detection with a polyp appearance model publication-title: Pattern Recognit. – volume: 121 start-page: 74 year: 2020 end-page: 87 ident: bib0032 article-title: Multiresunet: rethinking the U-Net architecture for multimodal biomedical image segmentation publication-title: Neural Netw. – volume: 12 start-page: 616 year: 2018 end-page: 625 ident: bib0004 article-title: Homeomorphic brain image segmentation with topological and statistical atlases publication-title: Med. Image Anal. – start-page: 2079 year: 2019 end-page: 2088 ident: bib0062 article-title: Collaborative learning of semi-supervised segmentation and classification for medical images publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – volume: 69 start-page: 102856 year: 2021 ident: bib0008 article-title: Edge and neighborhood guidance network for 2D medical image segmentation publication-title: Biomed. Signal Process. Control – volume: 29 start-page: 2552 year: 2019 end-page: 2567 ident: bib0014 article-title: Deep retinal image segmentation with regularization under geometric priors publication-title: IEEE Trans. Image Process. – start-page: 770 year: 2016 end-page: 778 ident: bib0029 article-title: Deep residual learning for image recognition publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – reference: Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv: – volume: 20 start-page: 490 year: 2001 end-page: 498 ident: bib0031 article-title: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images publication-title: IEEE Trans. Med. Imaging – volume: 1 start-page: 91 year: 1996 end-page: 108 ident: bib0037 article-title: Deformable models in medical image analysis: a survey publication-title: Med. Image Anal. – start-page: 21 year: 2018 end-page: 29 ident: bib0043 article-title: SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – start-page: 3146 year: 2019 end-page: 3154 ident: bib0022 article-title: Dual attention network for scene segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 9290 year: 2018 end-page: 9299 ident: bib0017 article-title: Anatomical priors in convolutional networks for unsupervised biomedical segmentation publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition – start-page: 1978 year: 2011 end-page: 1981 ident: bib0011 article-title: Random walk-based automated segmentation for the prognosis of malignant pleural mesothelioma publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging – volume: 34 start-page: 721 year: 2001 end-page: 725 ident: bib0018 article-title: On the canny edge detector publication-title: Pattern Recognit. – volume: 33 start-page: 12 year: 2021 end-page: 24 ident: bib63 article-title: Focus, fusion, and rectify: context-aware learning for COVID-19 lung infection segmentation publication-title: IEEE Trans. Neural Netw. Learn. Syst. – start-page: 859 year: 2018 end-page: 863 ident: bib0055 article-title: Adversarial learning with multi-scale loss for skin lesion segmentation publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging – start-page: 234 year: 2015 end-page: 241 ident: bib0040 article-title: U-Net: convolutional networks for biomedical image segmentation publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention – volume: 19 start-page: 763 year: 2000 end-page: 767 ident: bib0015 article-title: Segmenting skin lesions with partial-differential-equations-based image processing algorithms publication-title: IEEE Trans. Med. Imaging – start-page: 2881 year: 2017 ident: 10.1016/j.media.2022.102395_bib0060 article-title: Pyramid scene parsing network – start-page: 234 year: 2015 ident: 10.1016/j.media.2022.102395_bib0040 article-title: U-Net: convolutional networks for biomedical image segmentation – start-page: 1978 year: 2011 ident: 10.1016/j.media.2022.102395_bib0011 article-title: Random walk-based automated segmentation for the prognosis of malignant pleural mesothelioma – volume: 73 start-page: 102196 year: 2021 ident: 10.1016/j.media.2022.102395_bib0028 article-title: Dynamic-weighting hierarchical segmentation network for medical images publication-title: Med. Image Anal. doi: 10.1016/j.media.2021.102196 – volume: 121 start-page: 74 year: 2020 ident: 10.1016/j.media.2022.102395_bib0032 article-title: Multiresunet: rethinking the U-Net architecture for multimodal biomedical image segmentation publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.08.025 – volume: 69 start-page: 102856 year: 2021 ident: 10.1016/j.media.2022.102395_bib0008 article-title: Edge and neighborhood guidance network for 2D medical image segmentation publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2021.102856 – start-page: 1 year: 2011 ident: 10.1016/j.media.2022.102395_bib0023 article-title: RIM-ONE: an open retinal image database for optic nerve evaluation – volume: 54 start-page: 168 year: 2019 ident: 10.1016/j.media.2022.102395_bib0051 article-title: CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.03.003 – volume: 20 start-page: 490 year: 2001 ident: 10.1016/j.media.2022.102395_bib0031 article-title: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.929615 – volume: 33 start-page: 12 issue: 1 year: 2021 ident: 10.1016/j.media.2022.102395_bib63 article-title: Focus, fusion, and rectify: context-aware learning for COVID-19 lung infection segmentation publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3126305 – volume: 12 start-page: 616 year: 2018 ident: 10.1016/j.media.2022.102395_bib0004 article-title: Homeomorphic brain image segmentation with topological and statistical atlases publication-title: Med. Image Anal. doi: 10.1016/j.media.2008.06.008 – volume: 39 start-page: 2626 issue: 8 year: 2020 ident: 10.1016/j.media.2022.102395_bib0021 article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT images publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2996645 – volume: 1 start-page: 91 year: 1996 ident: 10.1016/j.media.2022.102395_bib0037 article-title: Deformable models in medical image analysis: a survey publication-title: Med. Image Anal. doi: 10.1016/S1361-8415(96)80007-7 – volume: 542 start-page: 115 year: 2017 ident: 10.1016/j.media.2022.102395_bib0020 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – start-page: 269 year: 2018 ident: 10.1016/j.media.2022.102395_bib0058 article-title: ExFuse: enhancing feature fusion for semantic segmentation – volume: 64 start-page: 2065 year: 2017 ident: 10.1016/j.media.2022.102395_bib0006 article-title: Dermoscopic image segmentation via multistage fully convolutional networks publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2017.2712771 – volume: 41 start-page: 1559 year: 2018 ident: 10.1016/j.media.2022.102395_bib0049 article-title: DeepIGeoS: a deep interactive geodesic framework for medical image segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2840695 – start-page: 8779 year: 2019 ident: 10.1016/j.media.2022.102395_bib0061 article-title: EGNet: edge guidance network for salient object detection – start-page: 451 year: 2020 ident: 10.1016/j.media.2022.102395_bib0033 article-title: Kvasir-SEG: a segmented polyp dataset – volume: 35 start-page: 3 year: 2010 ident: 10.1016/j.media.2022.102395_bib0045 article-title: Automated medical image segmentation techniques publication-title: J. Med. Phys. doi: 10.4103/0971-6203.58777 – volume: 53 start-page: 197 year: 2019 ident: 10.1016/j.media.2022.102395_bib0044 article-title: Attention gated networks: learning to leverage salient regions in medical images publication-title: Med. Image Anal. doi: 10.1016/j.media.2019.01.012 – volume: 40 start-page: 286 issue: 1 year: 2021 ident: 10.1016/j.media.2022.102395_bib0053 article-title: SESV: accurate medical image segmentation by predicting and correcting errors publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.3025308 – start-page: 1126 year: 2018 ident: 10.1016/j.media.2022.102395_bib0012 article-title: A multi-task framework with feature passing module for skin lesion classification and segmentation – start-page: 168 year: 2018 ident: 10.1016/j.media.2022.102395_bib0016 article-title: Skin lesion analysis toward melanoma detection: achallenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC) – volume: 3 start-page: 35 year: 2009 ident: 10.1016/j.media.2022.102395_bib0046 article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images publication-title: IEEE J. Sel. Top. Signal Process. doi: 10.1109/JSTSP.2008.2011119 – start-page: 3146 year: 2019 ident: 10.1016/j.media.2022.102395_bib0022 article-title: Dual attention network for scene segmentation – volume: 21 start-page: 2035 year: 2012 ident: 10.1016/j.media.2022.102395_bib0013 article-title: Medical image segmentation by combining graph cuts and oriented active appearance models publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2012.2186306 – volume: 45 start-page: 3166 year: 2012 ident: 10.1016/j.media.2022.102395_bib0005 article-title: Towards automatic polyp detection with a polyp appearance model publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2012.03.002 – start-page: 330 year: 2012 ident: 10.1016/j.media.2022.102395_bib0030 article-title: Automatic skin lesion segmentation based on texture analysis and supervised learning – start-page: 442 year: 2019 ident: 10.1016/j.media.2022.102395_bib0057 article-title: ET-Net: a generic edge-attention guidance network for medical image segmentation – start-page: 859 year: 2018 ident: 10.1016/j.media.2022.102395_bib0055 article-title: Adversarial learning with multi-scale loss for skin lesion segmentation – volume: 36 start-page: 994 year: 2016 ident: 10.1016/j.media.2022.102395_bib0056 article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2016.2642839 – volume: 23 start-page: 36 year: 2004 ident: 10.1016/j.media.2022.102395_bib0009 article-title: Normalized cuts in 3-D for spinal MRI segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2003.819929 – volume: 39 start-page: 2482 issue: 7 year: 2020 ident: 10.1016/j.media.2022.102395_bib0054 article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2020.2972964 – start-page: 1966 year: 2011 ident: 10.1016/j.media.2022.102395_bib0001 article-title: Evaluation of multi-atlas-based segmentation of CTscans in prostate cancer radiotherapy – volume: 38 start-page: 2281 year: 2019 ident: 10.1016/j.media.2022.102395_bib0027 article-title: CE-Net: context encoder network for 2D medical image segmentation publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2019.2903562 – volume: 34 start-page: 721 issue: 3 year: 2001 ident: 10.1016/j.media.2022.102395_bib0018 article-title: On the canny edge detector publication-title: Pattern Recognit. doi: 10.1016/S0031-3203(00)00023-6 – volume: 24 start-page: 45 year: 2005 ident: 10.1016/j.media.2022.102395_bib0052 article-title: Segmentation of kidney from ultrasound images based on texture and shape priors publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.837792 – start-page: 2079 year: 2019 ident: 10.1016/j.media.2022.102395_bib0062 article-title: Collaborative learning of semi-supervised segmentation and classification for medical images – start-page: 8543 year: 2019 ident: 10.1016/j.media.2022.102395_bib0059 article-title: Data augmentation using learned transformations for one-shot medical image segmentation – volume: 29 start-page: 2552 year: 2019 ident: 10.1016/j.media.2022.102395_bib0014 article-title: Deep retinal image segmentation with regularization under geometric priors publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2946078 – start-page: 770 year: 2016 ident: 10.1016/j.media.2022.102395_bib0029 article-title: Deep residual learning for image recognition – volume: 44 start-page: 1 year: 2018 ident: 10.1016/j.media.2022.102395_bib0019 article-title: Learning normalized inputs for iterative estimation in medical image segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2017.11.005 – volume: 69 start-page: 426 year: 2018 ident: 10.1016/j.media.2022.102395_bib0002 article-title: A hybrid dermoscopy images segmentation approach based on neutrosophic clustering and histogram estimation publication-title: Appl. Soft. Comput. doi: 10.1016/j.asoc.2018.05.003 – volume: 25 start-page: 330 year: 2003 ident: 10.1016/j.media.2022.102395_bib0039 article-title: Watersnakes: energy-driven watershed segmentation publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2003.1182096 – volume: 23 start-page: 527 year: 2018 ident: 10.1016/j.media.2022.102395_bib0035 article-title: Dense deconvolutional network for skin lesion segmentation publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2018.2859898 – volume: 8 start-page: 429 year: 2004 ident: 10.1016/j.media.2022.102395_bib0048 article-title: Mutual information in coupled multi-shape model for medical image segmentation publication-title: Med. Image Anal. doi: 10.1016/j.media.2004.01.003 – ident: 10.1016/j.media.2022.102395_bib0010 – volume: 115 start-page: 211 year: 2016 ident: 10.1016/j.media.2022.102395_bib0041 article-title: Imagenet large scale visual recognition challenge publication-title: Int. J. Comput. Vis. doi: 10.1007/s11263-015-0816-y – volume: 100 start-page: 152 year: 2018 ident: 10.1016/j.media.2022.102395_bib0042 article-title: Automatized colon polyp segmentation via contour region analysis publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2018.07.002 – volume: 20 start-page: 223 year: 2001 ident: 10.1016/j.media.2022.102395_bib0024 article-title: Automated melanoma recognition publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.918473 – volume: 140 start-page: 274 year: 2021 ident: 10.1016/j.media.2022.102395_bib0026 article-title: PyDiNet: pyramid dilated network for medical image segmentation publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.03.023 – volume: 19 start-page: 763 year: 2000 ident: 10.1016/j.media.2022.102395_bib0015 article-title: Segmenting skin lesions with partial-differential-equations-based image processing algorithms publication-title: IEEE Trans. Med. Imaging doi: 10.1109/42.875204 – volume: 33 start-page: 577 year: 2013 ident: 10.1016/j.media.2022.102395_bib0007 article-title: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2013.2290491 – start-page: 3431 year: 2015 ident: 10.1016/j.media.2022.102395_bib0036 article-title: Fully convolutional networks for semantic segmentation – start-page: 21 year: 2018 ident: 10.1016/j.media.2022.102395_bib0043 article-title: SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks – start-page: 9290 year: 2018 ident: 10.1016/j.media.2022.102395_bib0017 article-title: Anatomical priors in convolutional networks for unsupervised biomedical segmentation – start-page: 565 year: 2016 ident: 10.1016/j.media.2022.102395_bib0038 article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation – volume: 23 start-page: 447 year: 2004 ident: 10.1016/j.media.2022.102395_bib0025 article-title: Improved watershed transform for medical image segmentation using prior information publication-title: IEEE Trans. Med. Imaging doi: 10.1109/TMI.2004.824224 – volume: 34 start-page: 617 year: 2010 ident: 10.1016/j.media.2022.102395_bib0034 article-title: Medical image analysis with artificial neural networks publication-title: Comput. Med. Imaging Graph. doi: 10.1016/j.compmedimag.2010.07.003 – start-page: 422 year: 2018 ident: 10.1016/j.media.2022.102395_bib0047 article-title: Chest X-ray analysis of tuberculosis by deep learning with segmentation and augmentation – start-page: 94 year: 2007 ident: 10.1016/j.media.2022.102395_bib0003 article-title: Statistical and topological atlas based brain image segmentation – start-page: 1616 year: 2020 ident: 10.1016/j.media.2022.102395_bib0050 article-title: AEC-Net: attention and edge constraint network for medical image segmentation |
| SSID | ssj0007440 |
| Score | 2.6747053 |
| Snippet | •Propose a boundary-aware context neural network for 2D medical image segmentation.•The pyramid edge extraction module aggregates edge information with... Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural... |
| SourceID | proquest pubmed crossref elsevier |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 102395 |
| SubjectTerms | Artificial neural networks Boundaries Coders Complementarity Context Convolutional neural network Deep learning Encoders-Decoders Feature extraction Feature maps Humans Image processing Image Processing, Computer-Assisted - methods Image Processing, Computer-Assisted - standards Image segmentation Learning Masks Medical image segmentation Medical imaging Modules Neural networks Neural Networks, Computer Production methods Spatial data |
| Title | Boundary-aware context neural network for medical image segmentation |
| URI | https://dx.doi.org/10.1016/j.media.2022.102395 https://www.ncbi.nlm.nih.gov/pubmed/35231851 https://www.proquest.com/docview/2696889952 https://www.proquest.com/docview/2635238903 |
| Volume | 78 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 customDbUrl: eissn: 1361-8423 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0007440 issn: 1361-8415 databaseCode: AIEXJ dateStart: 20161201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD5iHULwgGDcCmMKEm-QynEuth_H2ASVNiE2pL5FudgjFU2rtoHu33N8Sdqp2gRIvESV48Suzxf7O_a5ALyN41xJ5LF-LkpUUBKW-xlT0o9jSphIkNNJZZJNsLMzPhqJLy5d6sKkE2B1zVcrMfuvosYyFLZ2nf0LcXcvxQL8jULHK4odr38k-A8mUdL8ys9-GasuHX5qtXynA1eiOGpr9m2sCyfukKaaaMOdhbycOEekepOynl6rlbkgJuuNeDtZfG1WVYezI-fycf69uWrW8BtW7oB_Oq46PJ3YHdghwnTWLqNuFwIV2M7mz26NbbnHmNk0TAKfR9ZfcyA3y6yTcTsF2yw-W7O53VgYD4wTzUA3ayJNiHi9eHUmhef6xbotqp2PIkZ2YJeyWPAe7B5-Ph4Nu_VZh0S03ni2c20sKmP1t9XUTXzlJn3E8JKLR_DQKRTeoQXCY7gj6z14sBFmcg_unToDiifw8To6PIcOz6LDc-jwEB2eQ4dn5O5touMpfDs5vjj65LtEGn4RErr0FQ8LVSY4NAXlBY8ll1GuCCkyLjjPZYQ8poyIElISngdEKVQbmKRxLinLsiB8Br16WssX4JEkC1hZllEmULeWYY4MsYxCGepAfhFVfaDtcKWFizKvk538SFtzwnFqxjjVY5zaMe7D--6hmQ2ycnv1pJVD6nii5X8pAuf2B_dbqaXui12kVIeH4kLEtA9vuts4yeqTs6yW00bXwf-H1J6EfXhupd11VN9B0hu8_NdevYL76y9qH3rLeSNfw93i57JazA9gh434gcPwb13FqtQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary-aware+context+neural+network+for+medical+image+segmentation&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Ruxin&rft.au=Chen%2C+Shuyuan&rft.au=Ji%2C+Chaojie&rft.au=Fan%2C+Jianping&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=78&rft_id=info:doi/10.1016%2Fj.media.2022.102395&rft.externalDocID=S1361841522000470 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon |