Boundary-aware context neural network for medical image segmentation

•Propose a boundary-aware context neural network for 2D medical image segmentation.•The pyramid edge extraction module aggregates edge information with multigranularity.•The multi-task learning module enriches the context by the different task branches.•The cross feature fusion module aims to select...

Full description

Saved in:
Bibliographic Details
Published in:Medical image analysis Vol. 78; p. 102395
Main Authors: Wang, Ruxin, Chen, Shuyuan, Ji, Chaojie, Fan, Jianping, Li, Ye
Format: Journal Article
Language:English
Published: Netherlands Elsevier B.V 01.05.2022
Elsevier BV
Subjects:
ISSN:1361-8415, 1361-8423, 1361-8423
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract •Propose a boundary-aware context neural network for 2D medical image segmentation.•The pyramid edge extraction module aggregates edge information with multigranularity.•The multi-task learning module enriches the context by the different task branches.•The cross feature fusion module aims to selectively aggregate multi-level features.•Achieving state-of-the-art performances on five medical image segmentation datasets. [Display omitted] Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
AbstractList Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
•Propose a boundary-aware context neural network for 2D medical image segmentation.•The pyramid edge extraction module aggregates edge information with multigranularity.•The multi-task learning module enriches the context by the different task branches.•The cross feature fusion module aims to selectively aggregate multi-level features.•Achieving state-of-the-art performances on five medical image segmentation datasets. [Display omitted] Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural networks (CNNs), medical image segmentation performance has advanced significantly. However, most existing CNN-based methods often produce unsatisfactory segmentation masks without accurate object boundaries. This problem is caused by the limited context information and inadequate discriminative feature maps after consecutive pooling and convolution operations. Additionally, medical images are characterized by high intra-class variation, inter-class indistinction and noise, extracting powerful context and aggregating discriminative features for fine-grained segmentation remain challenging. In this study, we formulate a boundary-aware context neural network (BA-Net) for 2D medical image segmentation to capture richer context and preserve fine spatial information, which incorporates encoder-decoder architecture. In each stage of the encoder sub-network, a proposed pyramid edge extraction module first obtains multi-granularity edge information. Then a newly designed mini multi-task learning module for jointly learning segments the object masks and detects lesion boundaries, in which a new interactive attention layer is introduced to bridge the two tasks. In this way, information complementarity between different tasks is achieved, which effectively leverages the boundary information to offer strong cues for better segmentation prediction. Finally, a cross feature fusion module acts to selectively aggregate multi-level features from the entire encoder sub-network. By cascading these three modules, richer context and fine-grain features of each stage are encoded and then delivered to the decoder. The results of extensive experiments on five datasets show that the proposed BA-Net outperforms state-of-the-art techniques.
ArticleNumber 102395
Author Ji, Chaojie
Li, Ye
Chen, Shuyuan
Wang, Ruxin
Fan, Jianping
Author_xml – sequence: 1
  givenname: Ruxin
  orcidid: 0000-0003-4772-3284
  surname: Wang
  fullname: Wang, Ruxin
  email: rx.wang@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 2
  givenname: Shuyuan
  surname: Chen
  fullname: Chen, Shuyuan
  email: sa517020@mail.ustc.edu.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 3
  givenname: Chaojie
  orcidid: 0000-0001-5502-7508
  surname: Ji
  fullname: Ji, Chaojie
  email: cj.ji@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 4
  givenname: Jianping
  surname: Fan
  fullname: Fan, Jianping
  email: jp.fan@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
– sequence: 5
  givenname: Ye
  surname: Li
  fullname: Li, Ye
  email: ye.li@siat.ac.cn
  organization: Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35231851$$D View this record in MEDLINE/PubMed
BookMark eNp9kTlPxDAQhS0E4lj4BUgoEg1NFh9J1i4oYDklJBqoLccZIy9ZG2yH49_jJUBBQTXW6HvjefN20LrzDhDaJ3hKMGmOF9MldFZNKaY0dygT9RraJqwhJa8oW_99k3oL7cS4wBjPqgpvoi1WU0Z4TbbR-ZkfXKfCR6neVIBCe5fgPRUOhqD6XNKbD0-F8aFY_aZzzy7VIxQRHpfgkkrWu120YVQfYe-7TtDD5cX9_Lq8vbu6mZ_elpphmkrDmTZdU1OqKde8Bg5VazDWigvOW6gYZl2FjQDAvCXYGCHEDGjdAp0pRdgEHY1zn4N_GSAmubRRQ98rB36IkjYrY1xgltHDP-jCD8Hl7TIlGs6FyOgEHXxTQ5vtyeeQzYUP-XOfDIgR0MHHGMBIbUfPKSjbS4LlKgu5kF9ZyFUWcswia9kf7c_4_1UnowryIV8tBBm1BaczGEAn2Xn7r_4TabmibQ
CitedBy_id crossref_primary_10_1016_j_bspc_2023_105241
crossref_primary_10_1109_TETCI_2022_3193677
crossref_primary_10_1007_s11760_025_04385_0
crossref_primary_10_1016_j_compbiomed_2024_108303
crossref_primary_10_1109_TIM_2024_3413130
crossref_primary_10_1186_s13244_024_01861_y
crossref_primary_10_1109_TIM_2024_3470962
crossref_primary_10_1016_j_bspc_2024_106059
crossref_primary_10_1016_j_compbiomed_2024_108308
crossref_primary_10_3390_sym17091506
crossref_primary_10_1016_j_eswa_2023_121319
crossref_primary_10_1016_j_compbiomed_2023_107841
crossref_primary_10_1016_j_bspc_2023_104825
crossref_primary_10_4018_IJSWIS_352853
crossref_primary_10_1016_j_neucom_2025_130217
crossref_primary_10_1109_ACCESS_2024_3402818
crossref_primary_10_1109_JBHI_2024_3400802
crossref_primary_10_1016_j_patrec_2023_08_005
crossref_primary_10_1016_j_bspc_2023_105194
crossref_primary_10_1016_j_neunet_2023_11_055
crossref_primary_10_1088_1361_6560_ad14c6
crossref_primary_10_1088_1361_6560_acd29f
crossref_primary_10_1016_j_engappai_2024_109867
crossref_primary_10_1016_j_compbiomed_2024_109009
crossref_primary_10_1016_j_neunet_2023_11_050
crossref_primary_10_1016_j_neucom_2023_126233
crossref_primary_10_1007_s10489_023_05032_2
crossref_primary_10_3390_info16060433
crossref_primary_10_1016_j_eswa_2023_120637
crossref_primary_10_3390_jimaging8060163
crossref_primary_10_1016_j_neucom_2024_129127
crossref_primary_10_1016_j_compbiomed_2023_107454
crossref_primary_10_1016_j_neucom_2025_131414
crossref_primary_10_1016_j_media_2024_103450
crossref_primary_10_1016_j_cviu_2023_103910
crossref_primary_10_3390_s23063067
crossref_primary_10_1109_ACCESS_2025_3566204
crossref_primary_10_1016_j_bspc_2024_106711
crossref_primary_10_32628_IJSRST52310631
crossref_primary_10_3390_rs15194708
crossref_primary_10_1016_j_compbiomed_2023_107624
crossref_primary_10_1016_j_compbiomed_2022_106139
crossref_primary_10_1109_JBHI_2024_3374780
crossref_primary_10_3390_diagnostics14131444
crossref_primary_10_1109_TASE_2024_3430896
crossref_primary_10_1016_j_compbiomed_2023_106891
crossref_primary_10_1016_j_eswa_2025_128764
crossref_primary_10_4103_ATMR_ATMR_27_25
crossref_primary_10_1016_j_bbe_2025_05_002
crossref_primary_10_1007_s11042_024_19195_8
crossref_primary_10_1109_TIM_2023_3293880
crossref_primary_10_1016_j_cropro_2024_106762
crossref_primary_10_1109_ACCESS_2024_3355542
crossref_primary_10_1016_j_bspc_2024_106567
crossref_primary_10_1016_j_media_2025_103615
crossref_primary_10_1016_j_bspc_2025_108405
crossref_primary_10_1016_j_ymeth_2025_04_016
crossref_primary_10_1016_j_bspc_2023_105330
crossref_primary_10_1016_j_patcog_2025_111637
crossref_primary_10_1109_TIM_2024_3500060
crossref_primary_10_1002_mp_17928
crossref_primary_10_3390_electronics13244986
crossref_primary_10_1007_s13042_023_01950_2
crossref_primary_10_1016_j_imavis_2023_104694
crossref_primary_10_1109_TMI_2025_3556482
crossref_primary_10_1016_j_patcog_2024_111302
crossref_primary_10_3233_IDA_230298
crossref_primary_10_1016_j_cmpb_2024_108280
crossref_primary_10_1016_j_imavis_2023_104811
crossref_primary_10_4103_jmp_jmp_1_23
crossref_primary_10_1002_ima_70130
crossref_primary_10_1186_s40644_024_00711_w
crossref_primary_10_3390_app14146299
crossref_primary_10_1186_s12859_022_04882_w
crossref_primary_10_1093_psyrad_kkae013
crossref_primary_10_3390_electronics14153054
crossref_primary_10_1109_ACCESS_2022_3175858
crossref_primary_10_1109_TIM_2024_3350108
crossref_primary_10_1016_j_eswa_2025_127577
crossref_primary_10_3934_era_2025129
crossref_primary_10_1016_j_artmed_2024_103012
crossref_primary_10_1109_TMI_2023_3294975
crossref_primary_10_1007_s11517_024_03086_z
crossref_primary_10_1016_j_artmed_2025_103131
crossref_primary_10_1016_j_bspc_2025_108387
crossref_primary_10_1016_j_engappai_2022_105744
crossref_primary_10_1109_TIM_2025_3541664
crossref_primary_10_1007_s00530_025_01727_3
crossref_primary_10_1049_ipr2_12780
crossref_primary_10_1109_TMI_2025_3525673
crossref_primary_10_1016_j_compbiomed_2024_109601
crossref_primary_10_1109_LSP_2025_3526745
crossref_primary_10_1007_s10462_024_10814_2
crossref_primary_10_1038_s41598_024_70527_y
crossref_primary_10_1016_j_imavis_2024_105069
crossref_primary_10_1109_JBHI_2022_3160098
crossref_primary_10_1007_s11042_023_15505_8
crossref_primary_10_1109_TASE_2025_3550681
crossref_primary_10_1109_TGRS_2024_3367632
crossref_primary_10_1016_j_compbiomed_2022_106146
crossref_primary_10_1049_ipr2_12813
crossref_primary_10_1109_TCSVT_2023_3245883
crossref_primary_10_1109_JSEN_2025_3553904
crossref_primary_10_22399_ijcesen_1683
crossref_primary_10_1016_j_artmed_2024_102771
crossref_primary_10_1007_s40747_024_01729_0
crossref_primary_10_1007_s12530_024_09588_3
crossref_primary_10_1016_j_cmpb_2023_107849
crossref_primary_10_1140_epjp_s13360_024_05960_z
crossref_primary_10_1016_j_bspc_2024_107202
crossref_primary_10_1016_j_compbiomed_2024_109617
crossref_primary_10_1109_JBHI_2024_3404273
crossref_primary_10_1016_j_cmpb_2024_108544
crossref_primary_10_1109_JBHI_2022_3173948
crossref_primary_10_1109_TIM_2025_3551581
crossref_primary_10_1177_00220345241226871
crossref_primary_10_1016_j_eswa_2023_120764
crossref_primary_10_1016_j_compmedimag_2024_102456
crossref_primary_10_1109_TIM_2023_3244219
crossref_primary_10_1007_s11633_022_1371_y
crossref_primary_10_1016_j_health_2023_100216
crossref_primary_10_1007_s11548_022_02696_y
crossref_primary_10_1016_j_bspc_2025_108208
crossref_primary_10_1109_JSTARS_2023_3265677
crossref_primary_10_1016_j_bspc_2022_104300
crossref_primary_10_1109_JBHI_2023_3275746
crossref_primary_10_1016_j_compbiomed_2022_106206
crossref_primary_10_1016_j_neucom_2024_128417
crossref_primary_10_1016_j_bspc_2024_106638
crossref_primary_10_1038_s41598_024_67554_0
crossref_primary_10_1007_s11633_023_1479_8
crossref_primary_10_1016_j_bspc_2022_103846
crossref_primary_10_1016_j_bspc_2025_108280
Cites_doi 10.1016/j.media.2021.102196
10.1016/j.neunet.2019.08.025
10.1016/j.bspc.2021.102856
10.1016/j.media.2019.03.003
10.1109/42.929615
10.1109/TNNLS.2021.3126305
10.1016/j.media.2008.06.008
10.1109/TMI.2020.2996645
10.1016/S1361-8415(96)80007-7
10.1038/nature21056
10.1109/TBME.2017.2712771
10.1109/TPAMI.2018.2840695
10.4103/0971-6203.58777
10.1016/j.media.2019.01.012
10.1109/TMI.2020.3025308
10.1109/JSTSP.2008.2011119
10.1109/TIP.2012.2186306
10.1016/j.patcog.2012.03.002
10.1109/TMI.2016.2642839
10.1109/TMI.2003.819929
10.1109/TMI.2020.2972964
10.1109/TMI.2019.2903562
10.1016/S0031-3203(00)00023-6
10.1109/TMI.2004.837792
10.1109/TIP.2019.2946078
10.1016/j.media.2017.11.005
10.1016/j.asoc.2018.05.003
10.1109/TPAMI.2003.1182096
10.1109/JBHI.2018.2859898
10.1016/j.media.2004.01.003
10.1007/s11263-015-0816-y
10.1016/j.compbiomed.2018.07.002
10.1109/42.918473
10.1016/j.neunet.2021.03.023
10.1109/42.875204
10.1109/TMI.2013.2290491
10.1109/TMI.2004.824224
10.1016/j.compmedimag.2010.07.003
ContentType Journal Article
Copyright 2022
Copyright © 2022. Published by Elsevier B.V.
Copyright Elsevier BV May 2022
Copyright_xml – notice: 2022
– notice: Copyright © 2022. Published by Elsevier B.V.
– notice: Copyright Elsevier BV May 2022
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
DOI 10.1016/j.media.2022.102395
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Biotechnology Research Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Nursing & Allied Health Premium
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
ProQuest Health & Medical Complete (Alumni)
MEDLINE

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1361-8423
ExternalDocumentID 35231851
10_1016_j_media_2022_102395
S1361841522000470
Genre Journal Article
GroupedDBID ---
--K
--M
.~1
0R~
1B1
1~.
1~5
29M
4.4
457
4G.
53G
5GY
5VS
7-5
71M
8P~
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABBQC
ABJNI
ABLVK
ABMAC
ABMZM
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIUM
ACIWK
ACNNM
ACPRK
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AJRQY
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
BNPGV
C45
CAG
COF
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HX~
HZ~
IHE
J1W
JJJVA
KOM
LCYCR
M41
MO0
N9A
O-L
O9-
OAUVE
OVD
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SEL
SES
SEW
SPC
SPCBC
SSH
SST
SSV
SSZ
T5K
TEORI
UHS
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACIEU
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
ADVLN
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
CGR
CUY
CVF
ECM
EIF
NPM
7QO
8FD
FR3
K9.
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c302t-f83cfd6522c28c85e8e4bf00ca8988be4303d40f9ee08b10ff9997e25be27aa13
ISSN 1361-8415
1361-8423
IngestDate Thu Oct 02 09:27:25 EDT 2025
Tue Oct 07 06:40:11 EDT 2025
Thu Apr 03 07:08:22 EDT 2025
Tue Nov 18 21:39:56 EST 2025
Sat Nov 29 07:07:01 EST 2025
Fri Feb 23 02:38:49 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Convolutional neural network
Medical image segmentation
Language English
License Copyright © 2022. Published by Elsevier B.V.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c302t-f83cfd6522c28c85e8e4bf00ca8988be4303d40f9ee08b10ff9997e25be27aa13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-4772-3284
0000-0001-5502-7508
PMID 35231851
PQID 2696889952
PQPubID 2045428
ParticipantIDs proquest_miscellaneous_2635238903
proquest_journals_2696889952
pubmed_primary_35231851
crossref_citationtrail_10_1016_j_media_2022_102395
crossref_primary_10_1016_j_media_2022_102395
elsevier_sciencedirect_doi_10_1016_j_media_2022_102395
PublicationCentury 2000
PublicationDate May 2022
2022-05-00
20220501
PublicationDateYYYYMMDD 2022-05-01
PublicationDate_xml – month: 05
  year: 2022
  text: May 2022
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
– name: Amsterdam
PublicationTitle Medical image analysis
PublicationTitleAlternate Med Image Anal
PublicationYear 2022
Publisher Elsevier B.V
Elsevier BV
Publisher_xml – name: Elsevier B.V
– name: Elsevier BV
References Zhang, Fu, Dai, Shen, Pang, Shao (bib0057) 2019
Carballido-Gamio, Belongie, Majumdar (bib0009) 2004; 23
Zhao, Liu, Fan, Cao, Yang, Cheng (bib0061) 2019
Grau, Mewes, Alcaniz, Kikinis, Warfield (bib0025) 2004; 23
Yu, Chen, Dou, Qin, Heng (bib0056) 2016; 36
Ganster, Pinz, Rohrer, Wildling, Binder, Kittler (bib0024) 2001; 20
Acosta, Simon, Monge, Commandeur, Bassirou, Cazoulat, De Crevoisier, Haigron (bib0001) 2011
Wang, Zhao, Ning, Qian (bib0050) 2020
Xue, Xu, Huang (bib0055) 2018
Guo, Yang, Yuan (bib0028) 2021; 73
McInerney, Terzopoulos (bib0037) 1996; 1
Bazin, Pham (bib0004) 2018; 12
Cherukuri, BG, Bala, Monga (bib0014) 2019; 29
Silveira, Nascimento, Marques, Marçal, Mendonça, Yamauchi, Maeda, Rozeira (bib0046) 2009; 3
Long, Shelhamer, Darrell (bib0036) 2015
Wang, He, Nie, Zhou, Gao, Shen (bib0051) 2019; 54
Ashour, Guo, Kucukkulahli, Erdogmus, Polat (bib0002) 2018; 69
Hu, Hoffman, Reinhardt (bib0031) 2001; 20
Sarker, Rashwan, Akram, Banu, Saleh, Singh, Chowdhury, Abdulwahab, Romani, Radeva (bib0043) 2018
Stirenko, Kochura, Alienin, Rokovyi, Gordienko, Gang, Zeng (bib0047) 2018
Jha, Smedsrud, Riegler, Halvorsen, de Lange, Johansen, Johansen (bib0033) 2020
Gridach (bib0026) 2021; 140
Wang, Zuluaga, Li, Pratt, Patel, Aertsen, Doel, David, Deprest, Ourselin (bib0049) 2018; 41
Russakovsky, Deng, Su, Krause, Satheesh, Ma, Huang, Karpathy, Khosla, Bernstein (bib0041) 2016; 115
Candemir, Jaeger, Palaniappan, Musco, Singh, Xue, Karargyris, Antani, Thoma, McDonald (bib0007) 2013; 33
Nguyen, Worring, Van Den Boomgaard (bib0039) 2003; 25
Codella, Gutman, Celebi, Helba, Marchetti, Dusza, Kalloo, Liopyris, Mishra, Kittler (bib0016) 2018
Bazin, Pham (bib0003) 2007
He, Zhang, Ren, Sun (bib0029) 2016
Sanchez-Gonzalez, Garcia-Zapirain, Sierra-Sosa, Elmaghraby (bib0042) 2018; 100
Ronneberger, Fischer, Brox (bib0040) 2015
Wang, Ji, Zhang, Li (bib63) 2021; 33
Bernal, Sánchez, Vilarino (bib0005) 2012; 45
Tsai, Wells, Tempany, Grimson, Willsky (bib0048) 2004; 8
Fu, Liu, Tian, Li, Bao, Fang, Lu (bib0022) 2019
Zhang, Zhang, Peng, Xue, Sun (bib0058) 2018
Zhao, Shi, Qi, Wang, Jia (bib0060) 2017
Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv
Cao, Zheng, Xiang, Ding, Sun, Yang, Liu, Dai (bib0008) 2021; 69
Zhou, He, Huang, Liu, Zhu, Cui, Shao (bib0062) 2019
Xie, Zhang, Lu, Shen, Xia (bib0053) 2021; 40
Drozdzal, Chartrand, Vorontsov, Shakeri, Di Jorio, Tang, Romero, Bengio, Pal, Kadoury (bib0019) 2018; 44
Chung, Sapiro (bib0015) 2000; 19
Dalca, Guttag, Sabuncu (bib0017) 2018
Xie, Jiang, Tsui (bib0052) 2005; 24
Fumero, Alayón, Sanchez, Sigut, Gonzalez-Hernandez (bib0023) 2011
Milletari, Navab, Ahmadi (bib0038) 2016
Sharma, Aggarwal (bib0045) 2010; 35
Chen, Helm, Joshi, Brady (bib0011) 2011
Esteva, Kuprel, Novoa, Ko, Swetter, Blau, Thrun (bib0020) 2017; 542
Fan, Zhou, Ji, Zhou, Chen, Fu, Shen, Shao (bib0021) 2020; 39
Li, He, Zhou, Yu, Ni, Chen, Wang, Lei (bib0035) 2018; 23
Chen, Udupa, Bagci, Zhuge, Yao (bib0013) 2012; 21
Chen, Wang, Shi, Liu, Yu (bib0012) 2018
Gu, Cheng, Fu, Zhou, Hao, Zhao, Zhang, Gao, Liu (bib0027) 2019; 38
He, Xie (bib0030) 2012
Ding, Goshtasby (bib0018) 2001; 34
Xie, Zhang, Xia, Shen (bib0054) 2020; 39
Ibtehaz, Rahman (bib0032) 2020; 121
Bi, Kim, Ahn, Kumar, Fulham, Feng (bib0006) 2017; 64
Schlemper, Oktay, Schaap, Heinrich, Kainz, Glocker, Rueckert (bib0044) 2019; 53
Jiang, Trundle, Ren (bib0034) 2010; 34
Zhao, Balakrishnan, Durand, Guttag, Dalca (bib0059) 2019
Chen (10.1016/j.media.2022.102395_bib0012) 2018
Candemir (10.1016/j.media.2022.102395_bib0007) 2013; 33
Xue (10.1016/j.media.2022.102395_bib0055) 2018
Sarker (10.1016/j.media.2022.102395_bib0043) 2018
Dalca (10.1016/j.media.2022.102395_bib0017) 2018
Cherukuri (10.1016/j.media.2022.102395_bib0014) 2019; 29
Sharma (10.1016/j.media.2022.102395_bib0045) 2010; 35
Zhao (10.1016/j.media.2022.102395_bib0060) 2017
Acosta (10.1016/j.media.2022.102395_bib0001) 2011
10.1016/j.media.2022.102395_bib0010
Grau (10.1016/j.media.2022.102395_bib0025) 2004; 23
Bazin (10.1016/j.media.2022.102395_bib0003) 2007
Esteva (10.1016/j.media.2022.102395_bib0020) 2017; 542
Fu (10.1016/j.media.2022.102395_bib0022) 2019
McInerney (10.1016/j.media.2022.102395_bib0037) 1996; 1
Ganster (10.1016/j.media.2022.102395_bib0024) 2001; 20
Fan (10.1016/j.media.2022.102395_bib0021) 2020; 39
Schlemper (10.1016/j.media.2022.102395_bib0044) 2019; 53
Hu (10.1016/j.media.2022.102395_bib0031) 2001; 20
Wang (10.1016/j.media.2022.102395_bib0051) 2019; 54
Bi (10.1016/j.media.2022.102395_bib0006) 2017; 64
Zhang (10.1016/j.media.2022.102395_bib0057) 2019
Wang (10.1016/j.media.2022.102395_bib0050) 2020
Cao (10.1016/j.media.2022.102395_bib0008) 2021; 69
Long (10.1016/j.media.2022.102395_bib0036) 2015
Zhou (10.1016/j.media.2022.102395_bib0062) 2019
Drozdzal (10.1016/j.media.2022.102395_bib0019) 2018; 44
Stirenko (10.1016/j.media.2022.102395_bib0047) 2018
Li (10.1016/j.media.2022.102395_bib0035) 2018; 23
Nguyen (10.1016/j.media.2022.102395_bib0039) 2003; 25
Bernal (10.1016/j.media.2022.102395_bib0005) 2012; 45
Chen (10.1016/j.media.2022.102395_bib0013) 2012; 21
Xie (10.1016/j.media.2022.102395_bib0054) 2020; 39
Ibtehaz (10.1016/j.media.2022.102395_bib0032) 2020; 121
Xie (10.1016/j.media.2022.102395_bib0053) 2021; 40
He (10.1016/j.media.2022.102395_bib0030) 2012
Silveira (10.1016/j.media.2022.102395_bib0046) 2009; 3
Gu (10.1016/j.media.2022.102395_bib0027) 2019; 38
Zhao (10.1016/j.media.2022.102395_bib0059) 2019
Jiang (10.1016/j.media.2022.102395_bib0034) 2010; 34
Ashour (10.1016/j.media.2022.102395_bib0002) 2018; 69
Russakovsky (10.1016/j.media.2022.102395_bib0041) 2016; 115
Fumero (10.1016/j.media.2022.102395_bib0023) 2011
Wang (10.1016/j.media.2022.102395_bib0049) 2018; 41
Codella (10.1016/j.media.2022.102395_bib0016) 2018
Milletari (10.1016/j.media.2022.102395_bib0038) 2016
Zhang (10.1016/j.media.2022.102395_bib0058) 2018
Wang (10.1016/j.media.2022.102395_bib63) 2021; 33
Chen (10.1016/j.media.2022.102395_bib0011) 2011
Sanchez-Gonzalez (10.1016/j.media.2022.102395_bib0042) 2018; 100
Bazin (10.1016/j.media.2022.102395_bib0004) 2018; 12
Tsai (10.1016/j.media.2022.102395_bib0048) 2004; 8
Jha (10.1016/j.media.2022.102395_bib0033) 2020
Chung (10.1016/j.media.2022.102395_bib0015) 2000; 19
Xie (10.1016/j.media.2022.102395_bib0052) 2005; 24
Yu (10.1016/j.media.2022.102395_bib0056) 2016; 36
Ding (10.1016/j.media.2022.102395_bib0018) 2001; 34
Ronneberger (10.1016/j.media.2022.102395_bib0040) 2015
Guo (10.1016/j.media.2022.102395_bib0028) 2021; 73
He (10.1016/j.media.2022.102395_bib0029) 2016
Zhao (10.1016/j.media.2022.102395_bib0061) 2019
Carballido-Gamio (10.1016/j.media.2022.102395_bib0009) 2004; 23
Gridach (10.1016/j.media.2022.102395_bib0026) 2021; 140
References_xml – volume: 34
  start-page: 617
  year: 2010
  end-page: 631
  ident: bib0034
  article-title: Medical image analysis with artificial neural networks
  publication-title: Comput. Med. Imaging Graph.
– volume: 23
  start-page: 447
  year: 2004
  end-page: 458
  ident: bib0025
  article-title: Improved watershed transform for medical image segmentation using prior information
  publication-title: IEEE Trans. Med. Imaging
– volume: 8
  start-page: 429
  year: 2004
  end-page: 445
  ident: bib0048
  article-title: Mutual information in coupled multi-shape model for medical image segmentation
  publication-title: Med. Image Anal.
– volume: 21
  start-page: 2035
  year: 2012
  end-page: 2046
  ident: bib0013
  article-title: Medical image segmentation by combining graph cuts and oriented active appearance models
  publication-title: IEEE Trans. Image Process.
– volume: 20
  start-page: 223
  year: 2001
  end-page: 239
  ident: bib0024
  article-title: Automated melanoma recognition
  publication-title: IEEE Trans. Med. Imaging
– start-page: 1126
  year: 2018
  end-page: 1129
  ident: bib0012
  article-title: A multi-task framework with feature passing module for skin lesion classification and segmentation
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging
– volume: 41
  start-page: 1559
  year: 2018
  end-page: 1572
  ident: bib0049
  article-title: DeepIGeoS: a deep interactive geodesic framework for medical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 1616
  year: 2020
  end-page: 1619
  ident: bib0050
  article-title: AEC-Net: attention and edge constraint network for medical image segmentation
  publication-title: Proceedings of the Annual International Conference of the IEEE Engineering in Medicine & Biology Society
– volume: 35
  start-page: 3
  year: 2010
  end-page: 14
  ident: bib0045
  article-title: Automated medical image segmentation techniques
  publication-title: J. Med. Phys.
– volume: 73
  start-page: 102196
  year: 2021
  ident: bib0028
  article-title: Dynamic-weighting hierarchical segmentation network for medical images
  publication-title: Med. Image Anal.
– volume: 54
  start-page: 168
  year: 2019
  end-page: 178
  ident: bib0051
  article-title: CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation
  publication-title: Med. Image Anal.
– start-page: 330
  year: 2012
  end-page: 341
  ident: bib0030
  article-title: Automatic skin lesion segmentation based on texture analysis and supervised learning
  publication-title: Proceedings of the Asian Conference on Computer Vision
– start-page: 8779
  year: 2019
  end-page: 8788
  ident: bib0061
  article-title: EGNet: edge guidance network for salient object detection
  publication-title: Proceedings of the IEEE International Conference on Computer Vision
– volume: 53
  start-page: 197
  year: 2019
  end-page: 207
  ident: bib0044
  article-title: Attention gated networks: learning to leverage salient regions in medical images
  publication-title: Med. Image Anal.
– volume: 36
  start-page: 994
  year: 2016
  end-page: 1004
  ident: bib0056
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Trans. Med. Imaging
– volume: 140
  start-page: 274
  year: 2021
  end-page: 281
  ident: bib0026
  article-title: PyDiNet: pyramid dilated network for medical image segmentation
  publication-title: Neural Netw.
– start-page: 3431
  year: 2015
  end-page: 3440
  ident: bib0036
  article-title: Fully convolutional networks for semantic segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 39
  start-page: 2626
  year: 2020
  end-page: 2637
  ident: bib0021
  article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT images
  publication-title: IEEE Trans. Med. Imaging
– volume: 100
  start-page: 152
  year: 2018
  end-page: 164
  ident: bib0042
  article-title: Automatized colon polyp segmentation via contour region analysis
  publication-title: Comput. Biol. Med.
– start-page: 422
  year: 2018
  end-page: 428
  ident: bib0047
  article-title: Chest X-ray analysis of tuberculosis by deep learning with segmentation and augmentation
  publication-title: Proceedings of the IEEE International Conference on Electronics and Nanotechnology
– volume: 115
  start-page: 211
  year: 2016
  end-page: 252
  ident: bib0041
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
– volume: 39
  start-page: 2482
  year: 2020
  end-page: 2493
  ident: bib0054
  article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification
  publication-title: IEEE Trans. Med. Imaging
– volume: 33
  start-page: 577
  year: 2013
  end-page: 590
  ident: bib0007
  article-title: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration
  publication-title: IEEE Trans. Med. Imaging
– start-page: 8543
  year: 2019
  end-page: 8553
  ident: bib0059
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 38
  start-page: 2281
  year: 2019
  end-page: 2292
  ident: bib0027
  article-title: CE-Net: context encoder network for 2D medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
– volume: 44
  start-page: 1
  year: 2018
  end-page: 13
  ident: bib0019
  article-title: Learning normalized inputs for iterative estimation in medical image segmentation
  publication-title: Med. Image Anal.
– volume: 69
  start-page: 426
  year: 2018
  end-page: 434
  ident: bib0002
  article-title: A hybrid dermoscopy images segmentation approach based on neutrosophic clustering and histogram estimation
  publication-title: Appl. Soft. Comput.
– volume: 3
  start-page: 35
  year: 2009
  end-page: 45
  ident: bib0046
  article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images
  publication-title: IEEE J. Sel. Top. Signal Process.
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib0020
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– volume: 64
  start-page: 2065
  year: 2017
  end-page: 2074
  ident: bib0006
  article-title: Dermoscopic image segmentation via multistage fully convolutional networks
  publication-title: IEEE Trans. Biomed. Eng.
– start-page: 1966
  year: 2011
  end-page: 1969
  ident: bib0001
  article-title: Evaluation of multi-atlas-based segmentation of CTscans in prostate cancer radiotherapy
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging
– start-page: 442
  year: 2019
  end-page: 450
  ident: bib0057
  article-title: ET-Net: a generic edge-attention guidance network for medical image segmentation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 2881
  year: 2017
  end-page: 2890
  ident: bib0060
  article-title: Pyramid scene parsing network
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1
  year: 2011
  end-page: 6
  ident: bib0023
  article-title: RIM-ONE: an open retinal image database for optic nerve evaluation
  publication-title: Proceedings of the International Symposium on Computer-based Medical Systems
– start-page: 269
  year: 2018
  end-page: 284
  ident: bib0058
  article-title: ExFuse: enhancing feature fusion for semantic segmentation
  publication-title: Proceedings of the European Conference on Computer Vision
– volume: 23
  start-page: 36
  year: 2004
  end-page: 44
  ident: bib0009
  article-title: Normalized cuts in 3-D for spinal MRI segmentation
  publication-title: IEEE Trans. Med. Imaging
– start-page: 451
  year: 2020
  end-page: 462
  ident: bib0033
  article-title: Kvasir-SEG: a segmented polyp dataset
  publication-title: Proceedings of the International Conference on Multimedia Modeling
– start-page: 565
  year: 2016
  end-page: 571
  ident: bib0038
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
  publication-title: Proceedings of the International Conference on 3D Vision
– volume: 25
  start-page: 330
  year: 2003
  end-page: 342
  ident: bib0039
  article-title: Watersnakes: energy-driven watershed segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– start-page: 94
  year: 2007
  end-page: 101
  ident: bib0003
  article-title: Statistical and topological atlas based brain image segmentation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 23
  start-page: 527
  year: 2018
  end-page: 537
  ident: bib0035
  article-title: Dense deconvolutional network for skin lesion segmentation
  publication-title: IEEE J. Biomed. Health Inform.
– volume: 40
  start-page: 286
  year: 2021
  end-page: 296
  ident: bib0053
  article-title: SESV: accurate medical image segmentation by predicting and correcting errors
  publication-title: IEEE Trans. Med. Imaging
– start-page: 168
  year: 2018
  end-page: 172
  ident: bib0016
  article-title: Skin lesion analysis toward melanoma detection: achallenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging
– volume: 24
  start-page: 45
  year: 2005
  end-page: 57
  ident: bib0052
  article-title: Segmentation of kidney from ultrasound images based on texture and shape priors
  publication-title: IEEE Trans. Med. Imaging
– volume: 45
  start-page: 3166
  year: 2012
  end-page: 3182
  ident: bib0005
  article-title: Towards automatic polyp detection with a polyp appearance model
  publication-title: Pattern Recognit.
– volume: 121
  start-page: 74
  year: 2020
  end-page: 87
  ident: bib0032
  article-title: Multiresunet: rethinking the U-Net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
– volume: 12
  start-page: 616
  year: 2018
  end-page: 625
  ident: bib0004
  article-title: Homeomorphic brain image segmentation with topological and statistical atlases
  publication-title: Med. Image Anal.
– start-page: 2079
  year: 2019
  end-page: 2088
  ident: bib0062
  article-title: Collaborative learning of semi-supervised segmentation and classification for medical images
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– volume: 69
  start-page: 102856
  year: 2021
  ident: bib0008
  article-title: Edge and neighborhood guidance network for 2D medical image segmentation
  publication-title: Biomed. Signal Process. Control
– volume: 29
  start-page: 2552
  year: 2019
  end-page: 2567
  ident: bib0014
  article-title: Deep retinal image segmentation with regularization under geometric priors
  publication-title: IEEE Trans. Image Process.
– start-page: 770
  year: 2016
  end-page: 778
  ident: bib0029
  article-title: Deep residual learning for image recognition
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– reference: Chen, L.-C., Papandreou, G., Schroff, F., Adam, H., 2017. Rethinking atrous convolution for semantic image segmentation. arXiv:
– volume: 20
  start-page: 490
  year: 2001
  end-page: 498
  ident: bib0031
  article-title: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images
  publication-title: IEEE Trans. Med. Imaging
– volume: 1
  start-page: 91
  year: 1996
  end-page: 108
  ident: bib0037
  article-title: Deformable models in medical image analysis: a survey
  publication-title: Med. Image Anal.
– start-page: 21
  year: 2018
  end-page: 29
  ident: bib0043
  article-title: SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– start-page: 3146
  year: 2019
  end-page: 3154
  ident: bib0022
  article-title: Dual attention network for scene segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 9290
  year: 2018
  end-page: 9299
  ident: bib0017
  article-title: Anatomical priors in convolutional networks for unsupervised biomedical segmentation
  publication-title: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 1978
  year: 2011
  end-page: 1981
  ident: bib0011
  article-title: Random walk-based automated segmentation for the prognosis of malignant pleural mesothelioma
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging
– volume: 34
  start-page: 721
  year: 2001
  end-page: 725
  ident: bib0018
  article-title: On the canny edge detector
  publication-title: Pattern Recognit.
– volume: 33
  start-page: 12
  year: 2021
  end-page: 24
  ident: bib63
  article-title: Focus, fusion, and rectify: context-aware learning for COVID-19 lung infection segmentation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– start-page: 859
  year: 2018
  end-page: 863
  ident: bib0055
  article-title: Adversarial learning with multi-scale loss for skin lesion segmentation
  publication-title: Proceedings of the IEEE International Symposium on Biomedical Imaging
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0040
  article-title: U-Net: convolutional networks for biomedical image segmentation
  publication-title: Proceedings of the International Conference on Medical Image Computing and Computer-Assisted Intervention
– volume: 19
  start-page: 763
  year: 2000
  end-page: 767
  ident: bib0015
  article-title: Segmenting skin lesions with partial-differential-equations-based image processing algorithms
  publication-title: IEEE Trans. Med. Imaging
– start-page: 2881
  year: 2017
  ident: 10.1016/j.media.2022.102395_bib0060
  article-title: Pyramid scene parsing network
– start-page: 234
  year: 2015
  ident: 10.1016/j.media.2022.102395_bib0040
  article-title: U-Net: convolutional networks for biomedical image segmentation
– start-page: 1978
  year: 2011
  ident: 10.1016/j.media.2022.102395_bib0011
  article-title: Random walk-based automated segmentation for the prognosis of malignant pleural mesothelioma
– volume: 73
  start-page: 102196
  year: 2021
  ident: 10.1016/j.media.2022.102395_bib0028
  article-title: Dynamic-weighting hierarchical segmentation network for medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2021.102196
– volume: 121
  start-page: 74
  year: 2020
  ident: 10.1016/j.media.2022.102395_bib0032
  article-title: Multiresunet: rethinking the U-Net architecture for multimodal biomedical image segmentation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.08.025
– volume: 69
  start-page: 102856
  year: 2021
  ident: 10.1016/j.media.2022.102395_bib0008
  article-title: Edge and neighborhood guidance network for 2D medical image segmentation
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2021.102856
– start-page: 1
  year: 2011
  ident: 10.1016/j.media.2022.102395_bib0023
  article-title: RIM-ONE: an open retinal image database for optic nerve evaluation
– volume: 54
  start-page: 168
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0051
  article-title: CT male pelvic organ segmentation using fully convolutional networks with boundary sensitive representation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.03.003
– volume: 20
  start-page: 490
  year: 2001
  ident: 10.1016/j.media.2022.102395_bib0031
  article-title: Automatic lung segmentation for accurate quantitation of volumetric X-ray CT images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.929615
– volume: 33
  start-page: 12
  issue: 1
  year: 2021
  ident: 10.1016/j.media.2022.102395_bib63
  article-title: Focus, fusion, and rectify: context-aware learning for COVID-19 lung infection segmentation
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3126305
– volume: 12
  start-page: 616
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0004
  article-title: Homeomorphic brain image segmentation with topological and statistical atlases
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2008.06.008
– volume: 39
  start-page: 2626
  issue: 8
  year: 2020
  ident: 10.1016/j.media.2022.102395_bib0021
  article-title: Inf-Net: automatic COVID-19 lung infection segmentation from CT images
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2996645
– volume: 1
  start-page: 91
  year: 1996
  ident: 10.1016/j.media.2022.102395_bib0037
  article-title: Deformable models in medical image analysis: a survey
  publication-title: Med. Image Anal.
  doi: 10.1016/S1361-8415(96)80007-7
– volume: 542
  start-page: 115
  year: 2017
  ident: 10.1016/j.media.2022.102395_bib0020
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– start-page: 269
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0058
  article-title: ExFuse: enhancing feature fusion for semantic segmentation
– volume: 64
  start-page: 2065
  year: 2017
  ident: 10.1016/j.media.2022.102395_bib0006
  article-title: Dermoscopic image segmentation via multistage fully convolutional networks
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2017.2712771
– volume: 41
  start-page: 1559
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0049
  article-title: DeepIGeoS: a deep interactive geodesic framework for medical image segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2840695
– start-page: 8779
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0061
  article-title: EGNet: edge guidance network for salient object detection
– start-page: 451
  year: 2020
  ident: 10.1016/j.media.2022.102395_bib0033
  article-title: Kvasir-SEG: a segmented polyp dataset
– volume: 35
  start-page: 3
  year: 2010
  ident: 10.1016/j.media.2022.102395_bib0045
  article-title: Automated medical image segmentation techniques
  publication-title: J. Med. Phys.
  doi: 10.4103/0971-6203.58777
– volume: 53
  start-page: 197
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0044
  article-title: Attention gated networks: learning to leverage salient regions in medical images
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.01.012
– volume: 40
  start-page: 286
  issue: 1
  year: 2021
  ident: 10.1016/j.media.2022.102395_bib0053
  article-title: SESV: accurate medical image segmentation by predicting and correcting errors
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.3025308
– start-page: 1126
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0012
  article-title: A multi-task framework with feature passing module for skin lesion classification and segmentation
– start-page: 168
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0016
  article-title: Skin lesion analysis toward melanoma detection: achallenge at the 2017 international symposium on biomedical imaging (ISBI), hosted by the international skin imaging collaboration (ISIC)
– volume: 3
  start-page: 35
  year: 2009
  ident: 10.1016/j.media.2022.102395_bib0046
  article-title: Comparison of segmentation methods for melanoma diagnosis in dermoscopy images
  publication-title: IEEE J. Sel. Top. Signal Process.
  doi: 10.1109/JSTSP.2008.2011119
– start-page: 3146
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0022
  article-title: Dual attention network for scene segmentation
– volume: 21
  start-page: 2035
  year: 2012
  ident: 10.1016/j.media.2022.102395_bib0013
  article-title: Medical image segmentation by combining graph cuts and oriented active appearance models
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2012.2186306
– volume: 45
  start-page: 3166
  year: 2012
  ident: 10.1016/j.media.2022.102395_bib0005
  article-title: Towards automatic polyp detection with a polyp appearance model
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2012.03.002
– start-page: 330
  year: 2012
  ident: 10.1016/j.media.2022.102395_bib0030
  article-title: Automatic skin lesion segmentation based on texture analysis and supervised learning
– start-page: 442
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0057
  article-title: ET-Net: a generic edge-attention guidance network for medical image segmentation
– start-page: 859
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0055
  article-title: Adversarial learning with multi-scale loss for skin lesion segmentation
– volume: 36
  start-page: 994
  year: 2016
  ident: 10.1016/j.media.2022.102395_bib0056
  article-title: Automated melanoma recognition in dermoscopy images via very deep residual networks
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2016.2642839
– volume: 23
  start-page: 36
  year: 2004
  ident: 10.1016/j.media.2022.102395_bib0009
  article-title: Normalized cuts in 3-D for spinal MRI segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2003.819929
– volume: 39
  start-page: 2482
  issue: 7
  year: 2020
  ident: 10.1016/j.media.2022.102395_bib0054
  article-title: A mutual bootstrapping model for automated skin lesion segmentation and classification
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2020.2972964
– start-page: 1966
  year: 2011
  ident: 10.1016/j.media.2022.102395_bib0001
  article-title: Evaluation of multi-atlas-based segmentation of CTscans in prostate cancer radiotherapy
– volume: 38
  start-page: 2281
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0027
  article-title: CE-Net: context encoder network for 2D medical image segmentation
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2019.2903562
– volume: 34
  start-page: 721
  issue: 3
  year: 2001
  ident: 10.1016/j.media.2022.102395_bib0018
  article-title: On the canny edge detector
  publication-title: Pattern Recognit.
  doi: 10.1016/S0031-3203(00)00023-6
– volume: 24
  start-page: 45
  year: 2005
  ident: 10.1016/j.media.2022.102395_bib0052
  article-title: Segmentation of kidney from ultrasound images based on texture and shape priors
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.837792
– start-page: 2079
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0062
  article-title: Collaborative learning of semi-supervised segmentation and classification for medical images
– start-page: 8543
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0059
  article-title: Data augmentation using learned transformations for one-shot medical image segmentation
– volume: 29
  start-page: 2552
  year: 2019
  ident: 10.1016/j.media.2022.102395_bib0014
  article-title: Deep retinal image segmentation with regularization under geometric priors
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2946078
– start-page: 770
  year: 2016
  ident: 10.1016/j.media.2022.102395_bib0029
  article-title: Deep residual learning for image recognition
– volume: 44
  start-page: 1
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0019
  article-title: Learning normalized inputs for iterative estimation in medical image segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2017.11.005
– volume: 69
  start-page: 426
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0002
  article-title: A hybrid dermoscopy images segmentation approach based on neutrosophic clustering and histogram estimation
  publication-title: Appl. Soft. Comput.
  doi: 10.1016/j.asoc.2018.05.003
– volume: 25
  start-page: 330
  year: 2003
  ident: 10.1016/j.media.2022.102395_bib0039
  article-title: Watersnakes: energy-driven watershed segmentation
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2003.1182096
– volume: 23
  start-page: 527
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0035
  article-title: Dense deconvolutional network for skin lesion segmentation
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2018.2859898
– volume: 8
  start-page: 429
  year: 2004
  ident: 10.1016/j.media.2022.102395_bib0048
  article-title: Mutual information in coupled multi-shape model for medical image segmentation
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2004.01.003
– ident: 10.1016/j.media.2022.102395_bib0010
– volume: 115
  start-page: 211
  year: 2016
  ident: 10.1016/j.media.2022.102395_bib0041
  article-title: Imagenet large scale visual recognition challenge
  publication-title: Int. J. Comput. Vis.
  doi: 10.1007/s11263-015-0816-y
– volume: 100
  start-page: 152
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0042
  article-title: Automatized colon polyp segmentation via contour region analysis
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.07.002
– volume: 20
  start-page: 223
  year: 2001
  ident: 10.1016/j.media.2022.102395_bib0024
  article-title: Automated melanoma recognition
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.918473
– volume: 140
  start-page: 274
  year: 2021
  ident: 10.1016/j.media.2022.102395_bib0026
  article-title: PyDiNet: pyramid dilated network for medical image segmentation
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.03.023
– volume: 19
  start-page: 763
  year: 2000
  ident: 10.1016/j.media.2022.102395_bib0015
  article-title: Segmenting skin lesions with partial-differential-equations-based image processing algorithms
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/42.875204
– volume: 33
  start-page: 577
  year: 2013
  ident: 10.1016/j.media.2022.102395_bib0007
  article-title: Lung segmentation in chest radiographs using anatomical atlases with nonrigid registration
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2013.2290491
– start-page: 3431
  year: 2015
  ident: 10.1016/j.media.2022.102395_bib0036
  article-title: Fully convolutional networks for semantic segmentation
– start-page: 21
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0043
  article-title: SLSDeep: skin lesion segmentation based on dilated residual and pyramid pooling networks
– start-page: 9290
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0017
  article-title: Anatomical priors in convolutional networks for unsupervised biomedical segmentation
– start-page: 565
  year: 2016
  ident: 10.1016/j.media.2022.102395_bib0038
  article-title: V-Net: fully convolutional neural networks for volumetric medical image segmentation
– volume: 23
  start-page: 447
  year: 2004
  ident: 10.1016/j.media.2022.102395_bib0025
  article-title: Improved watershed transform for medical image segmentation using prior information
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2004.824224
– volume: 34
  start-page: 617
  year: 2010
  ident: 10.1016/j.media.2022.102395_bib0034
  article-title: Medical image analysis with artificial neural networks
  publication-title: Comput. Med. Imaging Graph.
  doi: 10.1016/j.compmedimag.2010.07.003
– start-page: 422
  year: 2018
  ident: 10.1016/j.media.2022.102395_bib0047
  article-title: Chest X-ray analysis of tuberculosis by deep learning with segmentation and augmentation
– start-page: 94
  year: 2007
  ident: 10.1016/j.media.2022.102395_bib0003
  article-title: Statistical and topological atlas based brain image segmentation
– start-page: 1616
  year: 2020
  ident: 10.1016/j.media.2022.102395_bib0050
  article-title: AEC-Net: attention and edge constraint network for medical image segmentation
SSID ssj0007440
Score 2.6747053
Snippet •Propose a boundary-aware context neural network for 2D medical image segmentation.•The pyramid edge extraction module aggregates edge information with...
Medical image segmentation can provide a reliable basis for further clinical analysis and disease diagnosis. With the development of convolutional neural...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 102395
SubjectTerms Artificial neural networks
Boundaries
Coders
Complementarity
Context
Convolutional neural network
Deep learning
Encoders-Decoders
Feature extraction
Feature maps
Humans
Image processing
Image Processing, Computer-Assisted - methods
Image Processing, Computer-Assisted - standards
Image segmentation
Learning
Masks
Medical image segmentation
Medical imaging
Modules
Neural networks
Neural Networks, Computer
Production methods
Spatial data
Title Boundary-aware context neural network for medical image segmentation
URI https://dx.doi.org/10.1016/j.media.2022.102395
https://www.ncbi.nlm.nih.gov/pubmed/35231851
https://www.proquest.com/docview/2696889952
https://www.proquest.com/docview/2635238903
Volume 78
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1361-8423
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0007440
  issn: 1361-8415
  databaseCode: AIEXJ
  dateStart: 20161201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1bb9MwFD5iHULwgGDcCmMKEm-QynEuth_H2ASVNiE2pL5FudgjFU2rtoHu33N8Sdqp2gRIvESV48Suzxf7O_a5ALyN41xJ5LF-LkpUUBKW-xlT0o9jSphIkNNJZZJNsLMzPhqJLy5d6sKkE2B1zVcrMfuvosYyFLZ2nf0LcXcvxQL8jULHK4odr38k-A8mUdL8ys9-GasuHX5qtXynA1eiOGpr9m2sCyfukKaaaMOdhbycOEekepOynl6rlbkgJuuNeDtZfG1WVYezI-fycf69uWrW8BtW7oB_Oq46PJ3YHdghwnTWLqNuFwIV2M7mz26NbbnHmNk0TAKfR9ZfcyA3y6yTcTsF2yw-W7O53VgYD4wTzUA3ayJNiHi9eHUmhef6xbotqp2PIkZ2YJeyWPAe7B5-Ph4Nu_VZh0S03ni2c20sKmP1t9XUTXzlJn3E8JKLR_DQKRTeoQXCY7gj6z14sBFmcg_unToDiifw8To6PIcOz6LDc-jwEB2eQ4dn5O5touMpfDs5vjj65LtEGn4RErr0FQ8LVSY4NAXlBY8ll1GuCCkyLjjPZYQ8poyIElISngdEKVQbmKRxLinLsiB8Br16WssX4JEkC1hZllEmULeWYY4MsYxCGepAfhFVfaDtcKWFizKvk538SFtzwnFqxjjVY5zaMe7D--6hmQ2ycnv1pJVD6nii5X8pAuf2B_dbqaXui12kVIeH4kLEtA9vuts4yeqTs6yW00bXwf-H1J6EfXhupd11VN9B0hu8_NdevYL76y9qH3rLeSNfw93i57JazA9gh434gcPwb13FqtQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Boundary-aware+context+neural+network+for+medical+image+segmentation&rft.jtitle=Medical+image+analysis&rft.au=Wang%2C+Ruxin&rft.au=Chen%2C+Shuyuan&rft.au=Ji%2C+Chaojie&rft.au=Fan%2C+Jianping&rft.date=2022-05-01&rft.pub=Elsevier+B.V&rft.issn=1361-8415&rft.eissn=1361-8423&rft.volume=78&rft_id=info:doi/10.1016%2Fj.media.2022.102395&rft.externalDocID=S1361841522000470
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1361-8415&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1361-8415&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1361-8415&client=summon