RankMap: A Framework for Distributed Learning From Dense Data Sets

This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and dense data sets. Our framework exploits data structure to scalably factorize it into an ensemble of lower rank subspaces. The factorization c...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:IEEE transaction on neural networks and learning systems Jg. 29; H. 7; S. 2717 - 2730
Hauptverfasser: Mirhoseini, Azalia, Dyer, Eva L., Songhori, Ebrahim M., Baraniuk, Richard, Koushanfar, Farinaz
Format: Journal Article
Sprache:Englisch
Veröffentlicht: United States IEEE 01.07.2018
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Schlagworte:
ISSN:2162-237X, 2162-2388, 2162-2388
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and dense data sets. Our framework exploits data structure to scalably factorize it into an ensemble of lower rank subspaces. The factorization creates sparse low-dimensional representations of the data, a property which is leveraged to devise effective mapping and scheduling of iterative learning algorithms on the distributed computing machines. We provide two APIs, one matrix-based and one graph-based, which facilitate automated adoption of the framework for performing several contemporary learning applications. To demonstrate the utility of RankMap, we solve sparse recovery and power iteration problems on various real-world data sets with up to 1.8 billion nonzeros. Our evaluations are performed on Amazon EC2 and IBM iDataPlex servers using up to 244 cores. The results demonstrate up to two orders of magnitude improvements in memory usage, execution speed, and bandwidth compared with the best reported prior work, while achieving the same level of learning accuracy.
AbstractList This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and dense data sets. Our framework exploits data structure to scalably factorize it into an ensemble of lower rank subspaces. The factorization creates sparse low-dimensional representations of the data, a property which is leveraged to devise effective mapping and scheduling of iterative learning algorithms on the distributed computing machines. We provide two APIs, one matrix-based and one graph-based, which facilitate automated adoption of the framework for performing several contemporary learning applications. To demonstrate the utility of RankMap, we solve sparse recovery and power iteration problems on various real-world data sets with up to 1.8 billion nonzeros. Our evaluations are performed on Amazon EC2 and IBM iDataPlex servers using up to 244 cores. The results demonstrate up to two orders of magnitude improvements in memory usage, execution speed, and bandwidth compared with the best reported prior work, while achieving the same level of learning accuracy.This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and dense data sets. Our framework exploits data structure to scalably factorize it into an ensemble of lower rank subspaces. The factorization creates sparse low-dimensional representations of the data, a property which is leveraged to devise effective mapping and scheduling of iterative learning algorithms on the distributed computing machines. We provide two APIs, one matrix-based and one graph-based, which facilitate automated adoption of the framework for performing several contemporary learning applications. To demonstrate the utility of RankMap, we solve sparse recovery and power iteration problems on various real-world data sets with up to 1.8 billion nonzeros. Our evaluations are performed on Amazon EC2 and IBM iDataPlex servers using up to 244 cores. The results demonstrate up to two orders of magnitude improvements in memory usage, execution speed, and bandwidth compared with the best reported prior work, while achieving the same level of learning accuracy.
This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and dense data sets. Our framework exploits data structure to scalably factorize it into an ensemble of lower rank subspaces. The factorization creates sparse low-dimensional representations of the data, a property which is leveraged to devise effective mapping and scheduling of iterative learning algorithms on the distributed computing machines. We provide two APIs, one matrix-based and one graph-based, which facilitate automated adoption of the framework for performing several contemporary learning applications. To demonstrate the utility of RankMap, we solve sparse recovery and power iteration problems on various real-world data sets with up to 1.8 billion nonzeros. Our evaluations are performed on Amazon EC2 and IBM iDataPlex servers using up to 244 cores. The results demonstrate up to two orders of magnitude improvements in memory usage, execution speed, and bandwidth compared with the best reported prior work, while achieving the same level of learning accuracy.
Author Dyer, Eva L.
Koushanfar, Farinaz
Baraniuk, Richard
Mirhoseini, Azalia
Songhori, Ebrahim M.
Author_xml – sequence: 1
  givenname: Azalia
  orcidid: 0000-0002-2440-0944
  surname: Mirhoseini
  fullname: Mirhoseini, Azalia
  email: azalia@google.com
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
– sequence: 2
  givenname: Eva L.
  surname: Dyer
  fullname: Dyer, Eva L.
  email: evaLdyer@gmail.com
  organization: Department of Physical Medicine and Rehabilitation, Northwestern University, Chicago, IL, USA
– sequence: 3
  givenname: Ebrahim M.
  surname: Songhori
  fullname: Songhori, Ebrahim M.
  email: ebrahim@rice.edu
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
– sequence: 4
  givenname: Richard
  surname: Baraniuk
  fullname: Baraniuk, Richard
  email: richb@rice.edu
  organization: Department of Electrical and Computer Engineering, Rice University, Houston, TX, USA
– sequence: 5
  givenname: Farinaz
  surname: Koushanfar
  fullname: Koushanfar, Farinaz
  email: farinaz@ucsd.edu
  organization: Department of Electrical and Computer Engineering, University of California at San Diego, La Jolla, CA, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/28534788$$D View this record in MEDLINE/PubMed
BookMark eNpdkU1Lw0AQhhepWK39AwoS8OIldXc22Q9vtbUqVAVbwduyTSaS2iR1N0H890Zbe3AuM4fnHYZ5jkinrEok5ITRAWNUX84fH6ezAVAmBiA4ixXbI4fABITAlersZvnaJX3vl7QtQWMR6QPSBRXzSCp1SK6fbfn-YNdXwTCYOFvgZ-Xeg6xywTj3tcsXTY1pMEXryrx8a5GqCMZYegzGtrbBDGt_TPYzu_LY3_YeeZnczEd34fTp9n40nIYJp1CHi1QnEYNUp8IupLQgaKIpZTTlHESCGY-sAtRWZMDjFJSSOmU8iTKK0nLKe-Ris3ftqo8GfW2K3Ce4WtkSq8YbpimTsWx3tuj5P3RZNa5srzNAYw0ghWItdbalmkWBqVm7vLDuy_x9pwVgAySu8t5htkMYNT8WzK8F82PBbC20odNNKEfEXUBqTiMm-DcKgX9M
CODEN ITNNAL
Cites_doi 10.1145/2461912.2461914
10.1137/120866580
10.1109/TIT.2010.2040894
10.2307/1267351
10.1109/34.927464
10.1198/106186006X113430
10.1137/S1064827596304058
10.1109/ICDE.2011.5767930
10.1002/cpa.20042
10.1137/S1064827596304010
10.1007/s00041-008-9045-x
10.1109/ICCV.2001.937679
10.1109/ICCV.2011.6126254
10.1109/TPAMI.2013.57
10.1109/TPAMI.2004.1262185
10.1145/1327452.1327492
10.1145/1807167.1807184
10.1137/080716542
10.1109/TPAMI.2002.1039204
10.1145/1109557.1109681
10.1117/12.173207
10.1109/TSP.2006.881199
10.1162/neco.2007.19.10.2756
10.1023/B:MACH.0000033113.59016.96
10.1016/0024-3795(72)90013-4
10.1109/JPROC.2010.2044470
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2018
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
DOI 10.1109/TNNLS.2016.2631581
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Calcium & Calcified Tissue Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Neurosciences Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
Materials Research Database
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Materials Business File
Aerospace Database
Engineered Materials Abstracts
Biotechnology Research Abstracts
Chemoreception Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Civil Engineering Abstracts
Aluminium Industry Abstracts
Electronics & Communications Abstracts
Ceramic Abstracts
Neurosciences Abstracts
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Solid State and Superconductivity Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Corrosion Abstracts
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
Materials Research Database
PubMed

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 2162-2388
EndPage 2730
ExternalDocumentID 28534788
10_1109_TNNLS_2016_2631581
7930416
Genre orig-research
Research Support, U.S. Gov't, Non-P.H.S
Journal Article
GrantInformation_xml – fundername: National Science Foundation
  grantid: 1649423
  funderid: 10.13039/100000001
– fundername: Office of Naval Research
  grantid: N00014-11-1-0885
  funderid: 10.13039/100000006
GroupedDBID 0R~
4.4
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACIWK
ACPRK
AENEX
AFRAH
AGQYO
AGSQL
AHBIQ
AKJIK
AKQYR
ALMA_UNASSIGNED_HOLDINGS
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
EBS
EJD
IFIPE
IPLJI
JAVBF
M43
MS~
O9-
OCL
PQQKQ
RIA
RIE
RNS
AAYXX
CITATION
NPM
RIG
7QF
7QO
7QP
7QQ
7QR
7SC
7SE
7SP
7SR
7TA
7TB
7TK
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
P64
7X8
ID FETCH-LOGICAL-c302t-bd9c412d9d6ab77a260c90010d3326cef34a82e9a6f235d28879d13c4f0e7a303
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000436420400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2162-237X
2162-2388
IngestDate Sun Sep 28 11:52:48 EDT 2025
Sun Nov 09 08:31:08 EST 2025
Thu Jan 02 23:00:28 EST 2025
Sat Nov 29 01:39:57 EST 2025
Wed Aug 27 06:31:22 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 7
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-bd9c412d9d6ab77a260c90010d3326cef34a82e9a6f235d28879d13c4f0e7a303
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-2440-0944
PMID 28534788
PQID 2059227681
PQPubID 85436
PageCount 14
ParticipantIDs pubmed_primary_28534788
proquest_journals_2059227681
crossref_primary_10_1109_TNNLS_2016_2631581
proquest_miscellaneous_1901757900
ieee_primary_7930416
PublicationCentury 2000
PublicationDate 2018-07-01
PublicationDateYYYYMMDD 2018-07-01
PublicationDate_xml – month: 07
  year: 2018
  text: 2018-07-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Piscataway
PublicationTitle IEEE transaction on neural networks and learning systems
PublicationTitleAbbrev TNNLS
PublicationTitleAlternate IEEE Trans Neural Netw Learn Syst
PublicationYear 2018
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref13
ref15
ref14
guennebaud (ref27) 2015
ref11
zaharia (ref49) 2012
drineas (ref16) 2005; 6
journée (ref30) 2010; 11
ref19
starck (ref45) 2002; 11
(ref1) 2014
(ref3) 0
ref51
ref46
low (ref34) 2010
ref47
liu (ref33) 2015; 16
ref41
recht (ref42) 2011
nodelman (ref39) 2012
dyer (ref18) 2013; 14
gittens (ref24) 2013
ref8
(ref2) 0
ref7
davis (ref12) 1994; 33
ref9
rubinstein (ref43) 2008; 40
ref4
ref6
ref5
ref35
ref37
ref36
ref31
ref32
pham (ref40) 2015
dyer (ref17) 2015
fine (ref20) 2002; 2
cortes (ref10) 2010
ref23
ref22
ref21
ref28
ref29
zaharia (ref50) 2010
montgomery (ref38) 2015
gonzalez (ref25) 2012
rudi (ref44) 2015
gray (ref26) 2001
yedidia (ref48) 2000
References_xml – volume: 11
  start-page: 517
  year: 2010
  ident: ref30
  article-title: Generalized power method for sparse principal component analysis
  publication-title: J Mach Learn Res
– ident: ref36
  doi: 10.1145/2461912.2461914
– ident: ref37
  doi: 10.1137/120866580
– ident: ref5
  doi: 10.1109/TIT.2010.2040894
– volume: 11
  start-page: 670
  year: 2002
  ident: ref45
  article-title: The curvelet transform for image denoising
  publication-title: IEEE Trans Electron Packag Manuf
– ident: ref29
  doi: 10.2307/1267351
– ident: ref22
  doi: 10.1109/34.927464
– ident: ref51
  doi: 10.1198/106186006X113430
– ident: ref8
  doi: 10.1137/S1064827596304058
– ident: ref23
  doi: 10.1109/ICDE.2011.5767930
– start-page: 753
  year: 2015
  ident: ref40
  article-title: Robust sketching for multiple square-root LASSO problems
  publication-title: Proc AISTATS
– volume: 6
  start-page: 2153
  year: 2005
  ident: ref16
  article-title: On the Nyström method for approximating a Gram matrix for improved kernel-based learning
  publication-title: J Mach Learn Res
– start-page: 17
  year: 2012
  ident: ref25
  article-title: PowerGraph: Distributed graph-parallel computation on natural graphs
  publication-title: Proc OSDI
– volume: 2
  start-page: 243
  year: 2002
  ident: ref20
  article-title: Efficient SVM training using low-rank kernel representations
  publication-title: J Mach Learn Res
– ident: ref11
  doi: 10.1002/cpa.20042
– year: 2012
  ident: ref39
  publication-title: Expectation Maximization and Complex Duration Distributions for Continuous Time Bayesian Networks
– ident: ref9
  doi: 10.1137/S1064827596304010
– ident: ref7
  doi: 10.1007/s00041-008-9045-x
– start-page: 693
  year: 2011
  ident: ref42
  article-title: HOGWILD: A lock-free approach to parallelizing stochastic gradient descent
  publication-title: Proc NIPS
– ident: ref31
  doi: 10.1109/ICCV.2001.937679
– ident: ref28
  doi: 10.1109/ICCV.2011.6126254
– ident: ref19
  doi: 10.1109/TPAMI.2013.57
– ident: ref21
  doi: 10.1109/TPAMI.2004.1262185
– start-page: 521
  year: 2001
  ident: ref26
  article-title: 'N-body' problems in statistical learning
  publication-title: Proc NIPS
– ident: ref13
  doi: 10.1145/1327452.1327492
– ident: ref35
  doi: 10.1145/1807167.1807184
– year: 2015
  ident: ref17
  publication-title: Self-Expressive Decompositions for Matrix Approximation and Clustering
– ident: ref6
  doi: 10.1137/080716542
– ident: ref41
  doi: 10.1109/TPAMI.2002.1039204
– ident: ref14
  doi: 10.1145/1109557.1109681
– volume: 33
  start-page: 2183
  year: 1994
  ident: ref12
  article-title: Adaptive time-frequency decompositions
  publication-title: Opt Eng
  doi: 10.1117/12.173207
– year: 2014
  ident: ref1
  publication-title: Hyperspectral Remote Sensing Scenes
– ident: ref4
  doi: 10.1109/TSP.2006.881199
– volume: 14
  start-page: 2487
  year: 2013
  ident: ref18
  article-title: Greedy feature selection for subspace clustering
  publication-title: J Mach Learn Res
– ident: ref32
  doi: 10.1162/neco.2007.19.10.2756
– volume: 40
  start-page: 1
  year: 2008
  ident: ref43
  article-title: Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit
  publication-title: CS Technion
– volume: 16
  start-page: 285
  year: 2015
  ident: ref33
  article-title: An asynchronous parallel stochastic coordinate descent algorithm
  publication-title: J Mach Learn Res
– year: 2015
  ident: ref38
  publication-title: Introduction to Linear Regression Analysis
– ident: ref15
  doi: 10.1023/B:MACH.0000033113.59016.96
– start-page: 113
  year: 2010
  ident: ref10
  article-title: On the impact of kernel approximation on learning accuracy
  publication-title: Proc TAISTATS
– year: 0
  ident: ref3
  publication-title: Rankmap APIs
– start-page: 689
  year: 2000
  ident: ref48
  article-title: Generalized belief propagation
  publication-title: Proc NIPS
– start-page: 567
  year: 2013
  ident: ref24
  article-title: Revisiting the Nyström method for improved large-scale machine learning
  publication-title: Proc ICML
– start-page: 1657
  year: 2015
  ident: ref44
  article-title: Less is more: Nyström computational regularization
  publication-title: Proc NIPS
– start-page: 340
  year: 2010
  ident: ref34
  article-title: GraphLab: A new parallel framework for machine learning
  publication-title: Proc UAI
– year: 0
  ident: ref2
  publication-title: The Light Field Archive
– ident: ref46
  doi: 10.1016/0024-3795(72)90013-4
– ident: ref47
  doi: 10.1109/JPROC.2010.2044470
– year: 2015
  ident: ref27
  publication-title: Eigen C++ template library for linear algebra
– start-page: 2
  year: 2012
  ident: ref49
  article-title: Resilient distributed datasets: A fault-tolerant abstraction for in-memory cluster computing
  publication-title: Proc NSDI
– start-page: 10
  year: 2010
  ident: ref50
  article-title: Spark: Cluster computing with working sets
  publication-title: Proc HotCloud
SSID ssj0000605649
Score 2.2625856
Snippet This paper introduces RankMap, a platform-aware end-to-end framework for efficient execution of a broad class of iterative learning algorithms for massive and...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 2717
SubjectTerms Algorithms
Computational modeling
Computer networks
Data recovery
Data structures
Datasets
Dense and big data
Distributed databases
Distributed processing
Iterative algorithms
iterative machine learning (ML)
Iterative methods
large-scale distributed computing
Learning algorithms
low rank approximation
Machine learning
Matrix decomposition
Memory
Partitioning algorithms
Signal processing algorithms
Sparse matrices
sparse matrix factorization
Subspaces
union of subspaces
Title RankMap: A Framework for Distributed Learning From Dense Data Sets
URI https://ieeexplore.ieee.org/document/7930416
https://www.ncbi.nlm.nih.gov/pubmed/28534788
https://www.proquest.com/docview/2059227681
https://www.proquest.com/docview/1901757900
Volume 29
WOSCitedRecordID wos000436420400005&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 2162-2388
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000605649
  issn: 2162-237X
  databaseCode: RIE
  dateStart: 20120101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB4B4tBLt0BblpeMxA2yOHYSx71RlhUHWFVlK-0tcpwJqiqyq90sv5-x85AqtQdukWwnzszY8409D4ALnSPpEen8cHgeRKjiwJV4CURpBWkoaVOd-2ITajpN53P9Ywuu-lgYRPTOZzhyj_4uv1jYjTsquyZZ4gQgtmFbqaSJ1erPUzjh8sSjXREmIhBSzbsYGa6vZ9Ppw5Nz5EpGIpFhnLoKMYJUlcse_5dK8jVW_g83vdqZDN434U_wsYWX7KaRhz3YwmofBl3pBtau5AP4_tNUfx7N8hu7YZPOP4sRgGVjl0nXFcHCgrXJV5-py-KFjcniRTY2tWFPWK8_w6_J3ez2PmjLKQRWclEHeaFtFIpCF4nJlTJkyVjtbMJCEoazWMrIpAK1SUoh40LQ9qOLUNqo5KgMqbovsFMtKjwEJk2CEW2M3EShi0lPDbVza0m1OUBXDuGyo2i2bLJmZN7a4DrzrMgcK7KWFUM4cKTre7ZUG8JJx4SsXVhrGhdrIchGolHnfTMtCXfPYSpcbNaZwzgqVvRvQ_jaMK9_d8fzo39_8xg-0MzSxh_3BHbq1QZPYde-1r_XqzOSu3l65uXuDd8Bzpk
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB2VFgkutFAK2xYwEjdI69j5cm8ty6pVtxGii7S3yHEmVYXIVt0sv58ZbxKpUjlwi2Q7cTy25409Mw_gkymR9IhmPxxZBhGmccAUL4GqnSINpV1mSk82keZ5Np-b7xvwZYiFQUTvfIZH_Ojv8quFW_FR2THNJUkA4glsMXNWF601nKhIQuaJx7sqTFSgdDrvo2SkOZ7l-fSaXbmSI5XoMM6YI0aRsuL88Q-UkmdZ-Tfg9Ipnsv1_Xd6BFx3AFKfrGfESNrB5Bds9eYPo1vIunP2wza8re3ciTsWk99ASBGHFmHPpMg0WVqJLv3pDVRa_xZhsXhRj21pxje3yNfycfJt9PQ86QoXAaanaoKyMi0JVmSqxZZpasmWcYauw0oTiHNY6splCY5Na6bhStAGZKtQuqiWmlpTdHmw2iwbfgtA2wYi2RmmjkKPSM0vl0jlSbgzp6hF87ke0uFvnzSi8vSFN4UVRsCiKThQj2OWhG2p2ozaCw14IRbe0ltQuNkqRlUStPg7FtCj4psM2uFgtC0Y5aZzSv43gzVp4w7t7me8__s0P8Ox8djUtphf55QE8p15ma-_cQ9hs71f4Dp66P-3t8v69n31_AfC50Po
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=RankMap%3A+A+Framework+for+Distributed+Learning+From+Dense+Data+Sets&rft.jtitle=IEEE+transaction+on+neural+networks+and+learning+systems&rft.au=Mirhoseini%2C+Azalia&rft.au=Dyer%2C+Eva+L&rft.au=Songhori%2C+Ebrahim+M&rft.au=Baraniuk%2C+Richard&rft.date=2018-07-01&rft.eissn=2162-2388&rft.volume=29&rft.issue=7&rft.spage=2717&rft_id=info:doi/10.1109%2FTNNLS.2016.2631581&rft_id=info%3Apmid%2F28534788&rft.externalDocID=28534788
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2162-237X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2162-237X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2162-237X&client=summon