An Improved Spectral Graph Partitioning Algorithm for Mapping Parallel Computations
Efficient use of a distributed memory parallel computer requires that the computational load be balanced across processors in a way that minimizes interprocessor communication. A new domain mapping algorithm is presented that extends recent work in which ideas from spectral graph theory have been ap...
Saved in:
| Published in: | SIAM journal on scientific computing Vol. 16; no. 2; pp. 452 - 469 |
|---|---|
| Main Authors: | , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Philadelphia, PA
Society for Industrial and Applied Mathematics
01.03.1995
|
| Subjects: | |
| ISSN: | 1064-8275, 1095-7197 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Efficient use of a distributed memory parallel computer requires that the computational load be balanced across processors in a way that minimizes interprocessor communication. A new domain mapping algorithm is presented that extends recent work in which ideas from spectral graph theory have been applied to this problem. The generalization of spectral graph bisection involves a novel use of multiple eigenvectors to allow for division of a computation into four or eight parts at each stage of a recursive decomposition. The resulting method is suitable for scientific computations like irregular finite elements or differences performed on hypercube or mesh architecture machines. Experimental results confirm that the new method provides better decompositions arrived at more economically and robustly than with previous spectral methods. This algorithm allows for arbitrary nonnegative weights on both vertices and edges to model inhomogeneous computation and communication. A new spectral lower bound for graph bisection is also presented. |
|---|---|
| Bibliography: | ObjectType-Article-1 SourceType-Scholarly Journals-1 content type line 14 |
| ISSN: | 1064-8275 1095-7197 |
| DOI: | 10.1137/0916028 |