Model-based design of riblets for turbulent drag reduction
Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as $10\,\%$, but their systematic design remains an open challenge. In this paper we develop a model-based framework to quantify the effect of streamwise-aligned spanwise...
Gespeichert in:
| Veröffentlicht in: | Journal of fluid mechanics Jg. 906 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
Cambridge, UK
Cambridge University Press
10.01.2021
|
| Schlagworte: | |
| ISSN: | 0022-1120, 1469-7645 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as $10\,\%$, but their systematic design remains an open challenge. In this paper we develop a model-based framework to quantify the effect of streamwise-aligned spanwise-periodic riblets on kinetic energy and skin-friction drag in turbulent channel flow. We model the effect of riblets as a volume penalization in the Navier–Stokes equations and use the statistical response of the eddy-viscosity-enhanced linearized equations to quantify the effect of background turbulence on the mean velocity and skin-friction drag. For triangular riblets, our simulation-free approach reliably predicts drag-reducing trends as well as mechanisms that lead to performance deterioration for large riblets. We investigate the effect of height and spacing on drag reduction and demonstrate a correlation between energy suppression and drag reduction for appropriately sized riblets. We also analyse the effect of riblets on drag-reduction mechanisms and turbulent flow structures including very large-scale motions. Our results demonstrate the utility of our approach in capturing the effect of riblets on turbulent flows using models that are tractable for analysis and optimization. |
|---|---|
| AbstractList | Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as $10\,\%$, but their systematic design remains an open challenge. In this paper we develop a model-based framework to quantify the effect of streamwise-aligned spanwise-periodic riblets on kinetic energy and skin-friction drag in turbulent channel flow. We model the effect of riblets as a volume penalization in the Navier–Stokes equations and use the statistical response of the eddy-viscosity-enhanced linearized equations to quantify the effect of background turbulence on the mean velocity and skin-friction drag. For triangular riblets, our simulation-free approach reliably predicts drag-reducing trends as well as mechanisms that lead to performance deterioration for large riblets. We investigate the effect of height and spacing on drag reduction and demonstrate a correlation between energy suppression and drag reduction for appropriately sized riblets. We also analyse the effect of riblets on drag-reduction mechanisms and turbulent flow structures including very large-scale motions. Our results demonstrate the utility of our approach in capturing the effect of riblets on turbulent flows using models that are tractable for analysis and optimization. Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as $10\,\%$ , but their systematic design remains an open challenge. In this paper we develop a model-based framework to quantify the effect of streamwise-aligned spanwise-periodic riblets on kinetic energy and skin-friction drag in turbulent channel flow. We model the effect of riblets as a volume penalization in the Navier–Stokes equations and use the statistical response of the eddy-viscosity-enhanced linearized equations to quantify the effect of background turbulence on the mean velocity and skin-friction drag. For triangular riblets, our simulation-free approach reliably predicts drag-reducing trends as well as mechanisms that lead to performance deterioration for large riblets. We investigate the effect of height and spacing on drag reduction and demonstrate a correlation between energy suppression and drag reduction for appropriately sized riblets. We also analyse the effect of riblets on drag-reduction mechanisms and turbulent flow structures including very large-scale motions. Our results demonstrate the utility of our approach in capturing the effect of riblets on turbulent flows using models that are tractable for analysis and optimization. |
| ArticleNumber | A7 |
| Author | Ran, Wei Jovanović, Mihailo R. Zare, Armin |
| Author_xml | – sequence: 1 givenname: Wei surname: Ran fullname: Ran, Wei organization: 1Department of Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089, USA – sequence: 2 givenname: Armin orcidid: 0000-0002-3532-5767 surname: Zare fullname: Zare, Armin organization: 2Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA – sequence: 3 givenname: Mihailo R. orcidid: 0000-0002-4181-2924 surname: Jovanović fullname: Jovanović, Mihailo R. email: mihailo@usc.edu organization: 3Ming Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, CA 90089, USA |
| BookMark | eNp1kD1PwzAQhi1UJNrCxg-IxErC2YnjmA1VfElFLDBbdnyuUqVxsZ2Bf0-jIiEhmG553vfungWZDX5AQi4pFBSouNm6XcGAQSEYOyFzWtUyF3XFZ2QOwFhOKYMzsohxC0BLkGJObl-8xT43OqLNLMZuM2TeZaEzPaaYOR-yNAYz9jikzAa9yQLasU2dH87JqdN9xIvvuSTvD_dvq6d8_fr4vLpb520JLOWmQWdBS2scr50U0nAOrqLgOLWUt7UrjRWUixqFc9w13JayxArqGltRiXJJro69--A_RoxJbf0YhsNKxSreNFI2YqKuj1QbfIwBndqHbqfDp6KgJjvqYEdNdtTBzgFnv_C2S3p6KwXd9f-Fiu-Q3pnQ2Q3-nPJn4AtzVHj_ |
| CitedBy_id | crossref_primary_10_1016_j_eml_2024_102130 crossref_primary_10_1016_j_jcp_2024_113695 crossref_primary_10_3390_app131910893 crossref_primary_10_1103_PhysRevFluids_7_073903 crossref_primary_10_1146_annurev_fluid_031022_044209 crossref_primary_10_1017_jfm_2025_10339 crossref_primary_10_1017_jfm_2023_1006 crossref_primary_10_1007_s40964_023_00394_y crossref_primary_10_1017_jfm_2023_82 crossref_primary_10_1007_s40544_021_0502_8 crossref_primary_10_1016_j_oceaneng_2024_118783 crossref_primary_10_1017_jfm_2022_358 crossref_primary_10_1017_jfm_2022_897 crossref_primary_10_1017_jfm_2025_306 crossref_primary_10_1140_epje_s10189_024_00434_7 crossref_primary_10_1063_5_0276521 crossref_primary_10_1017_jfm_2021_1015 crossref_primary_10_1007_s00348_022_03517_3 crossref_primary_10_3390_sym14020342 crossref_primary_10_1002_adem_202100696 crossref_primary_10_1016_j_jcp_2023_112597 crossref_primary_10_1088_1674_1056_ada1c6 crossref_primary_10_1063_5_0269334 crossref_primary_10_3390_biomimetics10070470 crossref_primary_10_1017_jfm_2025_10365 crossref_primary_10_1121_10_0011518 crossref_primary_10_1088_2058_6272_ac72e2 crossref_primary_10_1017_jfm_2024_256 crossref_primary_10_1016_j_sna_2023_114195 crossref_primary_10_1016_j_compfluid_2024_106417 crossref_primary_10_1016_j_cja_2022_11_019 crossref_primary_10_1017_jfm_2023_1073 crossref_primary_10_1016_j_oceaneng_2024_119201 crossref_primary_10_1017_jfm_2023_39 crossref_primary_10_1017_jfm_2023_768 crossref_primary_10_1063_5_0222859 crossref_primary_10_1016_j_ijheatfluidflow_2025_109862 crossref_primary_10_1209_0295_5075_acfaba crossref_primary_10_3390_jmse9091032 |
| Cites_doi | 10.1063/1.858894 10.1109/TAC.2008.2006104 10.1137/16M1065975 10.1038/srep06650 10.1103/PhysRevFluids.4.073905 10.2514/6.1984-347 10.1017/jfm.2016.682 10.1109/CONTROL.2012.6334702 10.1146/annurev-fluid-010719-060244 10.1063/1.1398044 10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D 10.1007/978-1-4613-0185-1 10.1017/S002211200700777X 10.1109/TAC.2016.2595761 10.1017/CBO9780511840531 10.1017/S0022112089002247 10.1017/S0022112010003393 10.1017/jfm.2012.272 10.1017/S002211200300733X 10.1017/jfm.2014.209 10.1146/annurev.fluid.39.050905.110153 10.1017/jfm.2011.114 10.1063/1.1931182 10.1017/S0022112006003946 10.1146/annurev.fl.23.010191.003125 10.1007/s003480050400 10.1103/PhysRevFluids.4.093901 10.1126/science.261.5121.578 10.1038/41966 10.2514/6.1991-685 10.1017/S002211201000176X 10.1016/0017-9310(72)90076-2 10.1017/S0022112096004673 10.1017/S0022112056000342 10.1017/S0022112010003629 10.1017/S0022112005004295 10.1146/annurev-control-053018-023843 10.1017/S0022112067000308 10.1063/1.858386 10.1016/0094-4548(74)90150-7 10.1063/1.2824401 10.1098/rsta.2010.0201 10.1017/jfm.2012.511 10.1098/rsta.2010.0359 10.1016/S1440-2440(02)80032-9 10.1017/S0022112098008921 10.1017/S002211201000340X 10.1017/S0022112099005066 10.2514/3.12174 10.1249/01.MSS.0000128179.02306.57 10.12962/j20882033.v28i3.3221 10.1080/08927014.2010.542809 10.1109/CDC.2016.7799353 10.1063/1.1762382 10.1017/CBO9780511529535 10.1088/1873-7005/aadfcc 10.1063/1.1570830 10.1017/S0022112089000741 10.2514/6.1982-169 10.1007/s003480000150 10.1007/BF00404816 10.1145/365723.365727 10.1063/1.3453711 10.1080/14685240600827526 10.1017/S0022112093002575 10.1017/S0022112095000978 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2020. Published by Cambridge University Press |
| Copyright_xml | – notice: The Author(s), 2020. Published by Cambridge University Press |
| DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
| DOI | 10.1017/jfm.2020.722 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database (Proquest) Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database Proquest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
| DatabaseTitleList | CrossRef Research Library Prep |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1469-7645 |
| ExternalDocumentID | 10_1017_jfm_2020_722 |
| GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 29K 4.4 5GY 5VS 74X 74Y 7~V 88I 8FE 8FG 8FH 8G5 8R4 8R5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABUWG ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADOVH ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKRA AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV AZQEC BBLKV BENPR BGHMG BGLVJ BHPHI BKSAR BLZWO BMAJL BPHCQ C0O CBIIA CCPQU CCQAD CFAFE CHEAL CJCSC CS3 D-I DC4 DOHLZ DU5 DWQXO E.L EBS F5P GNUQQ GUQSH HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L6V L98 LK5 LW7 M-V M2O M2P M7R M7S NIKVX O9- OYBOY P2P P62 PCBAR PQQKQ PROAC PTHSS PYCCK Q2X RAMDC RCA RNS ROL RR0 S0W S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 AANRG AAYXX ABUFD ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFFHD AFZFC AKMAY CITATION PHGZM PHGZT PQGLB 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS PUEGO Q9U |
| ID | FETCH-LOGICAL-c302t-b8efd0a9dbf56f979b550f410f51d15c6f3bd71576e7ff5f85d393e4066ec7473 |
| IEDL.DBID | M2P |
| ISICitedReferencesCount | 57 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000588003000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1120 |
| IngestDate | Sat Aug 23 14:54:21 EDT 2025 Tue Nov 18 21:58:53 EST 2025 Sat Nov 29 04:24:26 EST 2025 Wed Mar 13 05:54:20 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | turbulence control drag reduction turbulence modelling |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c302t-b8efd0a9dbf56f979b550f410f51d15c6f3bd71576e7ff5f85d393e4066ec7473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-3532-5767 0000-0002-4181-2924 |
| PQID | 2458899877 |
| PQPubID | 34769 |
| PageCount | 38 |
| ParticipantIDs | proquest_journals_2458899877 crossref_primary_10_1017_jfm_2020_722 crossref_citationtrail_10_1017_jfm_2020_722 cambridge_journals_10_1017_jfm_2020_722 |
| PublicationCentury | 2000 |
| PublicationDate | 2021-01-10 |
| PublicationDateYYYYMMDD | 2021-01-10 |
| PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-10 day: 10 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Journal of fluid mechanics |
| PublicationTitleAlternate | J. Fluid Mech |
| PublicationYear | 2021 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2007; 39 2019; 51 2007; 589 2011; 678 2010; 664 1964; 5 2005; 534 2019; 58 2010; 663 2003; 15 1974; 1 1967; 27 1989; 46 1993; 5 2011; 369 1997; 388 2010; 22 2014; 4 2020; 3 2007; 579 1967; 10 2013; 716 2004; 36 1995; 287 2008; 20 1991; 228 1998; 363 2011; 27 2001; 13 1992; 4 1993; 255 1994; 32 1972; 15 2017; 62 2017; 812 2019; 4 1997; 338 2004; 500 2000; 28 2000; 26 2017; 28 2002; 5 2010; 368 2006; 7 2012; 707 1993; 261 1999; 389 2008; 53 2014; 749 1989; 206 2017; 59 1989; 200 1991; 23 2010; 658 2021 2000; 34 1956; 1 2001; 30 S0022112020007223_ref1 Choi (S0022112020007223_ref13) 1993; 255 S0022112020007223_ref2 S0022112020007223_ref3 S0022112020007223_ref4 Bechert (S0022112020007223_ref5) 1989; 206 S0022112020007223_ref6 S0022112020007223_ref7 S0022112020007223_ref28 S0022112020007223_ref8 S0022112020007223_ref29 Luchini (S0022112020007223_ref41) 1991; 228 S0022112020007223_ref67 S0022112020007223_ref23 S0022112020007223_ref68 S0022112020007223_ref69 Goldstein (S0022112020007223_ref24) 1998; 363 S0022112020007223_ref25 S0022112020007223_ref30 Toedtli (S0022112020007223_ref64) 2019; 4 S0022112020007223_ref31 S0022112020007223_ref32 S0022112020007223_ref33 S0022112020007223_ref70 S0022112020007223_ref71 Bensoussan (S0022112020007223_ref9) 1978 S0022112020007223_ref72 S0022112020007223_ref73 Mollendorf (S0022112020007223_ref51) 2004; 36 Lieu (S0022112020007223_ref40) 2010; 663 Del Álamo (S0022112020007223_ref17) 2004; 500 S0022112020007223_ref16 Monty (S0022112020007223_ref52) 2007; 589 S0022112020007223_ref18 S0022112020007223_ref19 S0022112020007223_ref56 S0022112020007223_ref57 S0022112020007223_ref58 S0022112020007223_ref14 S0022112020007223_ref15 S0022112020007223_ref63 Schmid (S0022112020007223_ref59) 2001 S0022112020007223_ref21 S0022112020007223_ref65 S0022112020007223_ref66 S0022112020007223_ref60 S0022112020007223_ref61 S0022112020007223_ref62 Pope (S0022112020007223_ref55) 2000 Gad-el Hak (S0022112020007223_ref20) 2000 S0022112020007223_ref49 Hwang (S0022112020007223_ref27) 2010; 664 S0022112020007223_ref45 S0022112020007223_ref47 S0022112020007223_ref48 S0022112020007223_ref53 S0022112020007223_ref10 S0022112020007223_ref54 S0022112020007223_ref11 Hutchins (S0022112020007223_ref26) 2007; 579 S0022112020007223_ref50 Marusic (S0022112020007223_ref44) 2010; 22 García-Mayoral (S0022112020007223_ref22) 2011; 678 McComb (S0022112020007223_ref46) 1991 S0022112020007223_ref38 S0022112020007223_ref39 S0022112020007223_ref34 S0022112020007223_ref35 S0022112020007223_ref36 S0022112020007223_ref37 S0022112020007223_ref42 S0022112020007223_ref43 Chavarin (S0022112020007223_ref12) 2019; 58 |
| References_xml | – volume: 23 start-page: 601 issue: 1 year: 1991 end-page: 639 article-title: Coherent motions in the turbulent boundary layer publication-title: Annu. Rev. Fluid Mech. – volume: 534 start-page: 145 year: 2005 end-page: 183 article-title: Componentwise energy amplification in channel flows publication-title: J. Fluid Mech. – volume: 812 start-page: 636 year: 2017 end-page: 680 article-title: Colour of turbulence publication-title: J. Fluid Mech. – volume: 363 start-page: 115 year: 1998 end-page: 151 article-title: Secondary flow induced by riblets publication-title: J. Fluid Mech. – volume: 20 start-page: 014101 (11 pages) issue: 1 year: 2008 article-title: Turbulence suppression in channel flows by small amplitude transverse wall oscillations publication-title: Phys. Fluids – volume: 15 start-page: 301 issue: 2 year: 1972 end-page: 314 article-title: The prediction of laminarization with a two-equation model of turbulence publication-title: Intl J. Heat Mass Transfer – volume: 34 start-page: 651 issue: 8 year: 2000 end-page: 684 article-title: Fictitious domain approach for numerical modelling of Navier–Stokes equations publication-title: Intl J. Numer. Meth. Fluids – volume: 28 issue: 3 year: 2017 article-title: An investigation into the drag increase on roughen surface due to marine fouling growth publication-title: IPTEK J. Technol. Sci. – year: 2021 article-title: From bypass transition to flow control and data-driven turbulence modeling: an input-output viewpoint publication-title: Annu. Rev. Fluid Mech. – volume: 39 start-page: 383 year: 2007 end-page: 417 article-title: A linear systems approach to flow control publication-title: Annu. Rev. Fluid Mech. – volume: 261 start-page: 578 year: 1993 end-page: 584 article-title: Hydrodynamic stability without eigenvalues publication-title: Science – volume: 36 start-page: 1029 issue: 6 year: 2004 end-page: 1035 article-title: Effect of swim suit design on passive drag publication-title: Med. Sci. Sports Exer. – volume: 228 start-page: 87 year: 1991 end-page: 109 article-title: Resistance of a grooved surface to parallel flow and cross-flow publication-title: J. Fluid Mech. – volume: 5 start-page: 1499 year: 1964 end-page: 1504 article-title: Partial differential equations with periodic coefficients and Bloch waves in crystals publication-title: J. Math. Phys. – volume: 32 start-page: 1781 issue: 9 year: 1994 end-page: 1790 article-title: Turbulent drag reduction mechanism above a riblet surface publication-title: AIAA J. – volume: 678 start-page: 317 year: 2011 end-page: 347 article-title: Hydrodynamic stability and breakdown of the viscous regime over riblets publication-title: J. Fluid Mech. – volume: 10 start-page: 1880 issue: 9 year: 1967 end-page: 1889 article-title: Viscous sublayer and adjacent wall region in turbulent pipe flow publication-title: Phys. Fluids – volume: 13 start-page: 3258 issue: 11 year: 2001 end-page: 3269 article-title: Energy amplification in channel flows with stochastic excitation publication-title: Phys. Fluids – volume: 53 start-page: 2266 issue: 10 year: 2008 end-page: 2279 article-title: Frequency analysis and norms of distributed spatially periodic systems publication-title: IEEE Trans. Autom. Control – volume: 51 start-page: 011410 issue: 1 year: 2019 article-title: The control of near-wall turbulence through surface texturing publication-title: Fluid Dyn. Res. – volume: 27 start-page: 87 issue: 1 year: 2011 end-page: 98 article-title: Economic impact of biofouling on a naval surface ship publication-title: Biofouling – volume: 4 start-page: 6650 year: 2014 article-title: Modeling how shark and dolphin skin patterns control transitional wall-turbulence vorticity patterns using spatiotemporal phase reset mechanisms publication-title: Sci. Rep. – volume: 4 start-page: 1637 year: 1992 end-page: 1650 article-title: Three-dimensional optimal perturbations in viscous shear flow publication-title: Phys. Fluids A – volume: 369 start-page: 1412 issue: 1940 year: 2011 end-page: 1427 article-title: Drag reduction by riblets publication-title: Phil. Trans. R. Soc. A – volume: 663 start-page: 70 year: 2010 end-page: 99 article-title: Controlling the onset of turbulence by streamwise traveling waves. Part 1: receptivity analysis publication-title: J. Fluid Mech. – volume: 255 start-page: 503 year: 1993 end-page: 539 article-title: Direct numerical simulation of turbulent flow over riblets publication-title: J. Fluid Mech. – volume: 7 start-page: 1 year: 2006 end-page: 22 article-title: DNS of turbulent channel flows with two- and three-dimensional roughness publication-title: J. Turbul. – volume: 206 start-page: 105 year: 1989 end-page: 129 article-title: The viscous flow on surfaces with longitudinal ribs publication-title: J. Fluid Mech. – volume: 5 start-page: 2600 issue: 11 year: 1993 end-page: 2609 article-title: Stochastic forcing of the linearized Navier–Stokes equations publication-title: Phys. Fluids A – volume: 46 start-page: 183 issue: 3 year: 1989 end-page: 196 article-title: Résumé of important results presented at the third turbulent drag reduction working party publication-title: Appl. Sci. Res. – volume: 500 start-page: 135 issue: 1 year: 2004 end-page: 144 article-title: Scaling of the energy spectra of turbulent channels publication-title: J. Fluid Mech. – volume: 62 start-page: 1368 issue: 3 year: 2017 end-page: 1383 article-title: Low-complexity modeling of partially available second-order statistics: theory and an efficient matrix completion algorithm publication-title: IEEE Trans. Autom. Control – volume: 200 start-page: 509 issue: 41 year: 1989 article-title: Characteristic-eddy decomposition of turbulence in a channel publication-title: J. Fluid Mech. – volume: 664 start-page: 51 year: 2010 end-page: 73 article-title: Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow publication-title: J. Fluid Mech. – volume: 663 start-page: 100 year: 2010 end-page: 119 article-title: Controlling the onset of turbulence by streamwise traveling waves. Part 2: direct numerical simulations publication-title: J. Fluid Mech. – volume: 389 start-page: 335 year: 1999 end-page: 359 article-title: The autonomous cycle of near-wall turbulence publication-title: J. Fluid Mech. – volume: 4 start-page: 093901 issue: 9 year: 2019 article-title: Stochastic receptivity analysis of boundary layer flow publication-title: Phys. Rev. Fluids – volume: 28 start-page: 403 issue: 5 year: 2000 end-page: 412 article-title: Experiments with three-dimensional riblets as an idealized model of shark skin publication-title: Exp. Fluids – volume: 15 start-page: 41 issue: 6 year: 2003 end-page: 44 article-title: Spectra of the very large anisotropic scales in turbulent channels publication-title: Phys. Fluids – volume: 26 start-page: 465 issue: 4 year: 2000 end-page: 519 article-title: A MATLAB differentiation matrix suite publication-title: ACM Trans. Math. Softw. – volume: 22 start-page: 065103 issue: 6 year: 2010 article-title: Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues publication-title: Phys. Fluids – volume: 5 start-page: 115 issue: 2 year: 2002 end-page: 123 article-title: Comparison of buoyancy, passive and net active drag forces between Fastskin and standard swimsuits publication-title: J. Sci. Med. Sport – volume: 58 start-page: 1 year: 2019 end-page: 11 article-title: Resolvent analysis for turbulent channel flow with riblets publication-title: AIAA J. – volume: 589 start-page: 147 year: 2007 end-page: 156 article-title: Large-scale features in turbulent pipe and channel flows publication-title: J. Fluid Mech. – volume: 707 start-page: 205 year: 2012 end-page: 240 article-title: Model-based design of transverse wall oscillations for turbulent drag reduction publication-title: J. Fluid Mech. – volume: 59 start-page: 423 issue: 2 year: 2017 end-page: 446 article-title: Block operators and spectral discretizations publication-title: SIAM Rev. – volume: 579 start-page: 1 year: 2007 end-page: 28 article-title: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers publication-title: J. Fluid Mech. – volume: 658 start-page: 336 year: 2010 end-page: 382 article-title: A critical-layer framework for turbulent pipe flow publication-title: J. Fluid Mech. – volume: 388 start-page: 753 issue: 6644 year: 1997 article-title: Turbulent drag reduction by passive mechanisms publication-title: Nature – volume: 338 start-page: 59 year: 1997 end-page: 87 article-title: Experiments on drag-reducing surfaces and their optimization with an adjustable geometry publication-title: J. Fluid Mech. – volume: 749 start-page: 597 year: 2014 end-page: 626 article-title: Opposition control within the resolvent analysis framework publication-title: J. Fluid Mech. – volume: 287 start-page: 317 year: 1995 end-page: 348 article-title: Regeneration mechanisms of near-wall turbulence structures publication-title: J. Fluid Mech. – volume: 368 start-page: 4775 issue: 1929 year: 2010 end-page: 4806 article-title: Shark-skin surfaces for fluid-drag reduction in turbulent flow: a review publication-title: Phil. Trans. R. Soc. A – volume: 3 start-page: 195 year: 2020 end-page: 219 article-title: Stochastic dynamical modeling of turbulent flows publication-title: Annu. Rev. Control Robot. Auton. Syst. – volume: 4 start-page: 073905 issue: 7 year: 2019 article-title: Predicting the response of turbulent channel flow to varying-phase opposition control: resolvent analysis as a tool for flow control design publication-title: Phys. Rev. Fluids – volume: 30 start-page: 153 issue: 2 year: 2001 end-page: 166 article-title: Flow field analysis of a turbulent boundary layer over a riblet surface publication-title: Exp. Fluids – volume: 1 start-page: 131 year: 1974 end-page: 137 article-title: Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc publication-title: Lett. Heat Mass Transfer – volume: 1 start-page: 521 issue: 5 year: 1956 end-page: 539 article-title: Outline of a theory of turbulent shear flow publication-title: J. Fluid Mech. – volume: 716 start-page: R3 year: 2013 article-title: On the logarithmic region in wall turbulence publication-title: J. Fluid Mech. – volume: 27 start-page: 253 issue: 2 year: 1967 end-page: 272 article-title: Stability of turbulent channel flow with application to Malkus's theory publication-title: J. Fluid Mech. – ident: S0022112020007223_ref19 doi: 10.1063/1.858894 – ident: S0022112020007223_ref18 doi: 10.1109/TAC.2008.2006104 – ident: S0022112020007223_ref1 doi: 10.1137/16M1065975 – ident: S0022112020007223_ref4 doi: 10.1038/srep06650 – volume: 4 start-page: 073905 year: 2019 ident: S0022112020007223_ref64 article-title: Predicting the response of turbulent channel flow to varying-phase opposition control: resolvent analysis as a tool for flow control design publication-title: Phys. Rev. Fluids doi: 10.1103/PhysRevFluids.4.073905 – ident: S0022112020007223_ref67 doi: 10.2514/6.1984-347 – ident: S0022112020007223_ref73 doi: 10.1017/jfm.2016.682 – ident: S0022112020007223_ref35 doi: 10.1109/CONTROL.2012.6334702 – ident: S0022112020007223_ref33 doi: 10.1146/annurev-fluid-010719-060244 – ident: S0022112020007223_ref3 doi: 10.1063/1.1398044 – ident: S0022112020007223_ref36 doi: 10.1002/1097-0363(20001230)34:8<651::AID-FLD61>3.0.CO;2-D – volume-title: Stability and Transition in Shear Flows year: 2001 ident: S0022112020007223_ref59 doi: 10.1007/978-1-4613-0185-1 – volume: 589 start-page: 147 year: 2007 ident: S0022112020007223_ref52 article-title: Large-scale features in turbulent pipe and channel flows publication-title: J. Fluid Mech. doi: 10.1017/S002211200700777X – ident: S0022112020007223_ref70 doi: 10.1109/TAC.2016.2595761 – volume-title: Turbulent Flows year: 2000 ident: S0022112020007223_ref55 doi: 10.1017/CBO9780511840531 – volume: 206 start-page: 105 year: 1989 ident: S0022112020007223_ref5 article-title: The viscous flow on surfaces with longitudinal ribs publication-title: J. Fluid Mech. doi: 10.1017/S0022112089002247 – ident: S0022112020007223_ref48 doi: 10.1017/S0022112010003393 – volume-title: The Physics of Fluid Turbulence year: 1991 ident: S0022112020007223_ref46 – ident: S0022112020007223_ref49 doi: 10.1017/jfm.2012.272 – volume: 500 start-page: 135 year: 2004 ident: S0022112020007223_ref17 article-title: Scaling of the energy spectra of turbulent channels publication-title: J. Fluid Mech. doi: 10.1017/S002211200300733X – ident: S0022112020007223_ref42 doi: 10.1017/jfm.2014.209 – ident: S0022112020007223_ref37 doi: 10.1146/annurev.fluid.39.050905.110153 – volume: 678 start-page: 317 year: 2011 ident: S0022112020007223_ref22 article-title: Hydrodynamic stability and breakdown of the viscous regime over riblets publication-title: J. Fluid Mech. doi: 10.1017/jfm.2011.114 – ident: S0022112020007223_ref53 doi: 10.1063/1.1931182 – volume: 579 start-page: 1 year: 2007 ident: S0022112020007223_ref26 article-title: Evidence of very long meandering features in the logarithmic region of turbulent boundary layers publication-title: J. Fluid Mech. doi: 10.1017/S0022112006003946 – ident: S0022112020007223_ref58 doi: 10.1146/annurev.fl.23.010191.003125 – ident: S0022112020007223_ref6 doi: 10.1007/s003480050400 – ident: S0022112020007223_ref56 doi: 10.1103/PhysRevFluids.4.093901 – ident: S0022112020007223_ref65 doi: 10.1126/science.261.5121.578 – ident: S0022112020007223_ref61 doi: 10.1038/41966 – ident: S0022112020007223_ref63 doi: 10.2514/6.1991-685 – ident: S0022112020007223_ref47 doi: 10.1017/S002211201000176X – volume-title: Asymptotic Analysis for Periodic Structures year: 1978 ident: S0022112020007223_ref9 – ident: S0022112020007223_ref30 doi: 10.1016/0017-9310(72)90076-2 – ident: S0022112020007223_ref7 doi: 10.1017/S0022112096004673 – ident: S0022112020007223_ref43 doi: 10.1017/S0022112056000342 – volume: 664 start-page: 51 year: 2010 ident: S0022112020007223_ref27 article-title: Linear non-normal energy amplification of harmonic and stochastic forcing in the turbulent channel flow publication-title: J. Fluid Mech. doi: 10.1017/S0022112010003629 – ident: S0022112020007223_ref34 doi: 10.1017/S0022112005004295 – ident: S0022112020007223_ref71 doi: 10.1146/annurev-control-053018-023843 – ident: S0022112020007223_ref57 doi: 10.1017/S0022112067000308 – ident: S0022112020007223_ref10 doi: 10.1063/1.858386 – ident: S0022112020007223_ref38 doi: 10.1016/0094-4548(74)90150-7 – ident: S0022112020007223_ref32 doi: 10.1063/1.2824401 – ident: S0022112020007223_ref15 doi: 10.1098/rsta.2010.0201 – ident: S0022112020007223_ref28 – ident: S0022112020007223_ref45 doi: 10.1017/jfm.2012.511 – ident: S0022112020007223_ref21 doi: 10.1098/rsta.2010.0359 – ident: S0022112020007223_ref8 doi: 10.1016/S1440-2440(02)80032-9 – volume: 363 start-page: 115 year: 1998 ident: S0022112020007223_ref24 article-title: Secondary flow induced by riblets publication-title: J. Fluid Mech. doi: 10.1017/S0022112098008921 – volume: 663 start-page: 100 year: 2010 ident: S0022112020007223_ref40 article-title: Controlling the onset of turbulence by streamwise traveling waves. Part 2: direct numerical simulations publication-title: J. Fluid Mech. doi: 10.1017/S002211201000340X – ident: S0022112020007223_ref11 – ident: S0022112020007223_ref29 doi: 10.1017/S0022112099005066 – ident: S0022112020007223_ref62 doi: 10.2514/3.12174 – volume: 36 start-page: 1029 year: 2004 ident: S0022112020007223_ref51 article-title: Effect of swim suit design on passive drag publication-title: Med. Sci. Sports Exer. doi: 10.1249/01.MSS.0000128179.02306.57 – ident: S0022112020007223_ref69 doi: 10.12962/j20882033.v28i3.3221 – ident: S0022112020007223_ref60 doi: 10.1080/08927014.2010.542809 – ident: S0022112020007223_ref72 doi: 10.1109/CDC.2016.7799353 – ident: S0022112020007223_ref2 doi: 10.1063/1.1762382 – volume: 58 start-page: 1 year: 2019 ident: S0022112020007223_ref12 article-title: Resolvent analysis for turbulent channel flow with riblets publication-title: AIAA J. – volume-title: Flow Control: Passive, Active, and Reactive Flow Management year: 2000 ident: S0022112020007223_ref20 doi: 10.1017/CBO9780511529535 – ident: S0022112020007223_ref23 doi: 10.1088/1873-7005/aadfcc – ident: S0022112020007223_ref16 doi: 10.1063/1.1570830 – volume: 228 start-page: 87 year: 1991 ident: S0022112020007223_ref41 article-title: Resistance of a grooved surface to parallel flow and cross-flow publication-title: J. Fluid Mech. – ident: S0022112020007223_ref50 doi: 10.1017/S0022112089000741 – ident: S0022112020007223_ref66 doi: 10.2514/6.1982-169 – ident: S0022112020007223_ref39 doi: 10.1007/s003480000150 – ident: S0022112020007223_ref31 – ident: S0022112020007223_ref14 doi: 10.1007/BF00404816 – ident: S0022112020007223_ref68 doi: 10.1145/365723.365727 – volume: 22 start-page: 065103 year: 2010 ident: S0022112020007223_ref44 article-title: Wall-bounded turbulent flows at high Reynolds numbers: recent advances and key issues publication-title: Phys. Fluids doi: 10.1063/1.3453711 – ident: S0022112020007223_ref54 doi: 10.1080/14685240600827526 – volume: 255 start-page: 503 year: 1993 ident: S0022112020007223_ref13 article-title: Direct numerical simulation of turbulent flow over riblets publication-title: J. Fluid Mech. doi: 10.1017/S0022112093002575 – ident: S0022112020007223_ref25 doi: 10.1017/S0022112095000978 |
| SSID | ssj0013097 |
| Score | 2.5766437 |
| Snippet | Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as $10\,\%$, but their... Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as $10\,\%$ , but their... Both experiments and direct numerical simulations have been used to demonstrate that riblets can reduce turbulent drag by as much as \(10\,\%\), but their... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Channel flow Computational fluid dynamics Direct numerical simulation Drag Drag reduction Experiments Flow structures Fluid mechanics Friction Friction drag JFM Papers Kinetic energy Mathematical models Navier-Stokes equations Optimization Performance degradation Riblets Simulation Skin Skin friction Trends Turbulence Turbulence models Turbulent flow Velocity Viscosity Vortices |
| Title | Model-based design of riblets for turbulent drag reduction |
| URI | https://www.cambridge.org/core/product/identifier/S0022112020007223/type/journal_article https://www.proquest.com/docview/2458899877 |
| Volume | 906 |
| WOSCitedRecordID | wos000588003000001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1469-7645 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: PCBAR dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1469-7645 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1469-7645 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: Research Library customDbUrl: eissn: 1469-7645 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241211 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV05T8MwFH7ilGDgKCBueQAxoIATN3HNggCBWCgRh4RYosQHKkItJIXfz3upS2GAhcWLLSXyZ7_D_vw9gB2VuJZySYEI5C5ohiYPFEm46shpZwU3Qui62IRst1sPDyr1B26Vp1UObWJtqE1P0xn5YURPKjE3kPL49S2gqlF0u-pLaIzDJEY2IVG6rqJ0dIvAlRyqhWNcwT3xnSSjnx09Q4_4gaSyuSNZhZ_u6ad1rl3Oxfx_f3YB5nywyU4Gq2MRxmy3AfM-8GR-W1cNmP2mStiA6ZoVqqslOKJKaS8BeTrDTM31YD3Hyk6BaFcM412GHqt4J8_FTJk_sZKUYAnrZbi_OL87uwx8sYVACx71g6JlneG5MoWLE6ekKjB3cc2Quzg0YawTJwojQ0xPrHQudq3YCCUsxgOJ1ZiTiBWY6Pa6dhWYwmnXCLKIhG6SHL9MEpWrJLcxz9GErMHe13xnfstU2YBuJjNEJiNkMkRmDfaHaGTaa5ZT6YyXX0bvfo1-HWh1_DJuc4ja6PMjyNb_7t6AmYh4LZyogJsw0S_f7RZM6Y9-pyq3YfL0vJ3ebNNCvK7blFp5i20aP2J_enZ6cvMJLKTnzg |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB3RtBXtoaEBBG2APRRxqEzXu7HXW6mqEBCBoBEHKnEz9n5UIJSAnbTqn-pv7IxjJ-UANw49e2XLnqeZWe-b9wA-6Ngn2sc5RiDzQS-0WaBJwtUIb7yT3EppKrMJNRgkFxf6bAH-NLMwRKtscmKVqO3I0D_yT4JGKnFvoNTX27uAXKPodLWx0JjC4sT9_oVbtvLL8QHGd1uI_uH5_lFQuwoERnIxDvLEecszbXMfxV4rnWOT7nsh91Fow8jEXuZWhdiHO-V95JPISi0dFr7YGWy-Jd73GTzvkbIYUQXF2fzUgmvVqJNjH8Nroj1JVF97GnsXfFeRTe9cxuF-ObxfDaoS12__bx9nCd7UzTTbm6L_LSy4YQfadWPN6rRVduD1P6qLHXhZsV5NuQyfyQnuJqBKbpmtuCxs5FlxlSOaS4b9PMOKnE-oMjNbZD9YQUq3hOUV-P4kb7YKreFo6NaAaQyzQRBLIU2P7AZUHOtMx5mLeIYpch12ZvFN65RQplM6nUoRCSkhIUUkrMPHJvqpqTXZyRrk5oHV27PVt1MtkgfWdRuUzB8_h8i7xy9vweLR-bfT9PR4cPIeXgni8HCiPXahNS4mbgNemJ_jq7LYrMDP4PKpAfUXlWI_VQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Model-based+design+of+riblets+for+turbulent+drag+reduction&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Wei%2C+Ran&rft.au=Zare%2C+Armin&rft.au=Jovanovi%C4%87%2C+Mihailo+R&rft.date=2021-01-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=906&rft_id=info:doi/10.1017%2Fjfm.2020.722 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |