Super-resolution reconstruction of turbulent flows with machine learning

We use machine learning to perform super-resolution analysis of grossly under-resolved turbulent flow field data to reconstruct the high-resolution flow field. Two machine learning models are developed, namely, the convolutional neural network (CNN) and the hybrid downsampled skip-connection/multi-s...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of fluid mechanics Ročník 870; s. 106 - 120
Hlavní autori: Fukami, Kai, Fukagata, Koji, Taira, Kunihiko
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 10.07.2019
Predmet:
ISSN:0022-1120, 1469-7645
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract We use machine learning to perform super-resolution analysis of grossly under-resolved turbulent flow field data to reconstruct the high-resolution flow field. Two machine learning models are developed, namely, the convolutional neural network (CNN) and the hybrid downsampled skip-connection/multi-scale (DSC/MS) models. These machine learning models are applied to a two-dimensional cylinder wake as a preliminary test and show remarkable ability to reconstruct laminar flow from low-resolution flow field data. We further assess the performance of these models for two-dimensional homogeneous turbulence. The CNN and DSC/MS models are found to reconstruct turbulent flows from extremely coarse flow field images with remarkable accuracy. For the turbulent flow problem, the machine-leaning-based super-resolution analysis can greatly enhance the spatial resolution with as little as 50 training snapshot data, holding great potential to reveal subgrid-scale physics of complex turbulent flows. With the growing availability of flow field data from high-fidelity simulations and experiments, the present approach motivates the development of effective super-resolution models for a variety of fluid flows.
AbstractList We use machine learning to perform super-resolution analysis of grossly under-resolved turbulent flow field data to reconstruct the high-resolution flow field. Two machine learning models are developed, namely, the convolutional neural network (CNN) and the hybrid downsampled skip-connection/multi-scale (DSC/MS) models. These machine learning models are applied to a two-dimensional cylinder wake as a preliminary test and show remarkable ability to reconstruct laminar flow from low-resolution flow field data. We further assess the performance of these models for two-dimensional homogeneous turbulence. The CNN and DSC/MS models are found to reconstruct turbulent flows from extremely coarse flow field images with remarkable accuracy. For the turbulent flow problem, the machine-leaning-based super-resolution analysis can greatly enhance the spatial resolution with as little as 50 training snapshot data, holding great potential to reveal subgrid-scale physics of complex turbulent flows. With the growing availability of flow field data from high-fidelity simulations and experiments, the present approach motivates the development of effective super-resolution models for a variety of fluid flows.
Author Taira, Kunihiko
Fukagata, Koji
Fukami, Kai
Author_xml – sequence: 1
  givenname: Kai
  surname: Fukami
  fullname: Fukami, Kai
  email: kai.fukami@keio.jp
  organization: Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan
– sequence: 2
  givenname: Koji
  orcidid: 0000-0003-4805-238X
  surname: Fukagata
  fullname: Fukagata, Koji
  organization: Department of Mechanical Engineering, Keio University, Yokohama, 223-8522, Japan
– sequence: 3
  givenname: Kunihiko
  orcidid: 0000-0002-3762-8075
  surname: Taira
  fullname: Taira, Kunihiko
  organization: Department of Mechanical Engineering, Florida State University, Tallahassee, FL 32310, USA
BookMark eNp1kF1LwzAUhoNMcJve-QMK3tp6knZpeilDnTDwQr0uaXqyZXTJTFKG_97ODQTRq8OB5z0fz4SMrLNIyDWFjAIt7zZ6mzGgVcZycUbGtOBVWvJiNiJjAMZSShlckEkIGwCaQ1WOyeK136FPPQbX9dE4m3hUzoboe_XdOp3E3jd9hzYmunP7kOxNXCdbqdbGYtKh9NbY1SU517ILeHWqU_L--PA2X6TLl6fn-f0yVTmwmDailS2VvBJMCoWSS9mChoLTSkjBCqUBQeV5UyKfzWijuaaqRNEo0WBJZT4lN8e5O-8-egyx3rje22FlzRijHDgvxEDdHinlXQgedb3zZiv9Z02hPriqB1f1wVU9uBpw9gtXJsrD_9FL0_0Xyk4huW28aVf4c8qfgS-vAoA5
CitedBy_id crossref_primary_10_3390_fluids8070212
crossref_primary_10_1109_ACCESS_2022_3142049
crossref_primary_10_1051_jnwpu_20254330509
crossref_primary_10_1063_5_0266052
crossref_primary_10_1016_j_compfluid_2024_106249
crossref_primary_10_1016_j_cpc_2025_109548
crossref_primary_10_1017_jfm_2021_812
crossref_primary_10_1017_jfm_2022_1088
crossref_primary_10_1038_s41467_024_53165_w
crossref_primary_10_1088_1361_6501_acc049
crossref_primary_10_1007_s10409_024_24054_x
crossref_primary_10_1038_s43588_022_00264_7
crossref_primary_10_1038_s41598_022_16463_1
crossref_primary_10_1017_dce_2022_2
crossref_primary_10_1016_j_compfluid_2024_106498
crossref_primary_10_1016_j_buildenv_2024_112253
crossref_primary_10_1017_jfm_2023_775
crossref_primary_10_3847_1538_4357_ad1c55
crossref_primary_10_1017_jfm_2025_383
crossref_primary_10_3390_s20133752
crossref_primary_10_1002_gamm_202100002
crossref_primary_10_1016_j_oceaneng_2024_118904
crossref_primary_10_1016_j_jcp_2021_110896
crossref_primary_10_1016_j_eswa_2024_125586
crossref_primary_10_1017_jfm_2024_81
crossref_primary_10_1073_pnas_2213638120
crossref_primary_10_1016_j_ast_2025_110516
crossref_primary_10_1016_j_energy_2025_136207
crossref_primary_10_1063_5_0221039
crossref_primary_10_1017_jfm_2024_211
crossref_primary_10_1016_j_commatsci_2024_112846
crossref_primary_10_1016_j_apor_2023_103776
crossref_primary_10_1016_j_engappai_2025_110079
crossref_primary_10_1016_j_cja_2021_07_027
crossref_primary_10_1088_1361_6560_ad965c
crossref_primary_10_1103_PhysRevX_10_011023
crossref_primary_10_4274_BMJ_galenos_2023_2022_8_5
crossref_primary_10_1061__ASCE_PS_1949_1204_0000696
crossref_primary_10_1145_3637491
crossref_primary_10_1007_s00162_023_00663_0
crossref_primary_10_1016_j_paerosci_2022_100823
crossref_primary_10_1007_s44270_025_00009_7
crossref_primary_10_1016_j_coastaleng_2024_104619
crossref_primary_10_1016_j_scs_2024_105607
crossref_primary_10_1016_j_jocs_2022_101906
crossref_primary_10_1016_j_oceaneng_2024_116977
crossref_primary_10_1016_j_oceaneng_2023_114597
crossref_primary_10_1051_e3sconf_202339601044
crossref_primary_10_1016_j_compfluid_2022_105379
crossref_primary_10_1088_1361_6501_ad3fd3
crossref_primary_10_1177_09544100251358759
crossref_primary_10_1063_5_0224197
crossref_primary_10_1016_j_oceaneng_2023_116099
crossref_primary_10_1016_j_physa_2022_128327
crossref_primary_10_1063_5_0190452
crossref_primary_10_1088_1361_6463_ada167
crossref_primary_10_3390_computation8010015
crossref_primary_10_1016_j_eswa_2022_117038
crossref_primary_10_2208_jscejj_24_16196
crossref_primary_10_1017_jfm_2022_1069
crossref_primary_10_1016_j_compfluid_2024_106396
crossref_primary_10_1063_5_0147472
crossref_primary_10_1080_02286203_2024_2371682
crossref_primary_10_1007_s00162_020_00528_w
crossref_primary_10_1016_j_euromechflu_2025_204372
crossref_primary_10_1016_j_physrep_2021_07_001
crossref_primary_10_1017_jfm_2022_159
crossref_primary_10_1063_5_0132326
crossref_primary_10_1016_j_oceaneng_2025_122223
crossref_primary_10_1016_j_oceaneng_2024_118326
crossref_primary_10_1038_s44172_024_00278_1
crossref_primary_10_1017_flo_2024_28
crossref_primary_10_1140_epje_s10189_023_00268_9
crossref_primary_10_1038_s41467_024_54712_1
crossref_primary_10_1016_j_jcp_2021_110199
crossref_primary_10_1016_j_oceaneng_2023_114902
crossref_primary_10_1063_5_0219162
crossref_primary_10_1016_j_cma_2022_114800
crossref_primary_10_1063_5_0126571
crossref_primary_10_1016_j_compfluid_2022_105382
crossref_primary_10_3390_fluids6090332
crossref_primary_10_1017_jfm_2021_1012
crossref_primary_10_1109_TGRS_2025_3564468
crossref_primary_10_1088_2632_2153_ada19f
crossref_primary_10_1016_j_powtec_2022_117303
crossref_primary_10_1017_jfm_2024_432
crossref_primary_10_1016_j_compfluid_2022_105707
crossref_primary_10_1063_5_0065637
crossref_primary_10_1016_j_compfluid_2020_104777
crossref_primary_10_1093_mnras_stad2596
crossref_primary_10_1007_s42791_025_00103_6
crossref_primary_10_1016_j_engappai_2023_105945
crossref_primary_10_1017_jfm_2022_174
crossref_primary_10_1186_s42774_023_00148_y
crossref_primary_10_1088_2632_2153_ad9883
crossref_primary_10_3390_math12101417
crossref_primary_10_1016_j_flowmeasinst_2025_102890
crossref_primary_10_1002_aic_18641
crossref_primary_10_1016_j_jcp_2025_113915
crossref_primary_10_1016_j_oceaneng_2024_118337
crossref_primary_10_1016_j_physd_2022_133454
crossref_primary_10_1155_er_3241787
crossref_primary_10_1016_j_energy_2024_134076
crossref_primary_10_1103_PhysRevFluids_6_050501
crossref_primary_10_1063_5_0167876
crossref_primary_10_1016_j_engappai_2024_108161
crossref_primary_10_1080_17455030_2023_2265506
crossref_primary_10_1016_j_cherd_2023_06_044
crossref_primary_10_1017_jfm_2021_697
crossref_primary_10_1038_s41467_022_28957_7
crossref_primary_10_1103_PhysRevFluids_6_050504
crossref_primary_10_1016_j_cma_2024_117023
crossref_primary_10_1016_j_cma_2025_117782
crossref_primary_10_1088_1873_7005_acd7a0
crossref_primary_10_1016_j_cnsns_2024_107911
crossref_primary_10_1017_jfm_2020_1028
crossref_primary_10_1016_j_cma_2025_118072
crossref_primary_10_1016_j_ijmultiphaseflow_2023_104512
crossref_primary_10_1016_j_proci_2024_105638
crossref_primary_10_1063_5_0264594
crossref_primary_10_1080_00102202_2022_2041624
crossref_primary_10_1016_j_buildenv_2021_108597
crossref_primary_10_1007_s10044_024_01409_2
crossref_primary_10_1038_s42256_022_00572_7
crossref_primary_10_1038_s41598_023_29525_9
crossref_primary_10_1016_j_egyr_2024_08_047
crossref_primary_10_1016_j_jestch_2024_101794
crossref_primary_10_1017_jfm_2023_972
crossref_primary_10_1063_5_0253222
crossref_primary_10_1016_j_cma_2024_116965
crossref_primary_10_1063_5_0235192
crossref_primary_10_1016_j_camwa_2023_11_018
crossref_primary_10_1016_j_applthermaleng_2022_119633
crossref_primary_10_1039_D5DD00073D
crossref_primary_10_1038_s42256_021_00402_2
crossref_primary_10_1063_5_0008889
crossref_primary_10_1016_j_pecs_2022_101010
crossref_primary_10_1016_j_proci_2022_07_244
crossref_primary_10_3390_math12071028
crossref_primary_10_1016_j_taml_2025_100604
crossref_primary_10_1140_epje_s10189_023_00321_7
crossref_primary_10_1007_s42979_024_02602_0
crossref_primary_10_1016_j_buildenv_2025_113535
crossref_primary_10_1016_j_proci_2022_07_128
crossref_primary_10_1063_5_0266302
crossref_primary_10_1007_s00466_023_02434_4
crossref_primary_10_1080_19942060_2024_2370927
crossref_primary_10_3390_math12081188
crossref_primary_10_3390_s24237445
crossref_primary_10_1007_s10409_021_01143_6
crossref_primary_10_1016_j_cja_2023_06_031
crossref_primary_10_1016_j_oceaneng_2025_122474
crossref_primary_10_1017_jfm_2024_49
crossref_primary_10_1063_5_0230056
crossref_primary_10_1115_1_4069140
crossref_primary_10_1016_j_rineng_2024_103597
crossref_primary_10_1016_j_energy_2023_129405
crossref_primary_10_1016_j_eswa_2025_127500
crossref_primary_10_1007_s11082_024_07149_1
crossref_primary_10_1016_j_physd_2024_134086
crossref_primary_10_1002_nme_7310
crossref_primary_10_1016_j_ast_2023_108684
crossref_primary_10_1038_s41598_022_07515_7
crossref_primary_10_1016_j_compfluid_2022_105611
crossref_primary_10_1063_5_0274979
crossref_primary_10_1017_jfm_2025_10211
crossref_primary_10_3389_fonc_2022_850731
crossref_primary_10_1016_j_cherd_2025_01_014
crossref_primary_10_1016_j_jocs_2023_102120
crossref_primary_10_3390_w13040423
crossref_primary_10_1007_s00521_020_05461_x
crossref_primary_10_1016_j_cageo_2024_105599
crossref_primary_10_1063_5_0231805
crossref_primary_10_1016_j_ast_2022_107636
crossref_primary_10_1002_jcp_30569
crossref_primary_10_1016_j_compfluid_2022_105738
crossref_primary_10_1140_epje_s10189_023_00285_8
crossref_primary_10_1016_j_cej_2024_150072
crossref_primary_10_3390_app13126891
crossref_primary_10_1017_jfm_2023_716
crossref_primary_10_1016_j_jcp_2024_113708
crossref_primary_10_1016_j_oceaneng_2025_120401
crossref_primary_10_3390_computation12010004
crossref_primary_10_1016_j_jcp_2023_112537
crossref_primary_10_1109_ACCESS_2025_3602021
crossref_primary_10_1063_5_0215681
crossref_primary_10_1017_jfm_2023_154
crossref_primary_10_1063_5_0056569
crossref_primary_10_1007_s42979_021_00867_3
crossref_primary_10_1017_dce_2025_15
crossref_primary_10_1145_3747872
crossref_primary_10_1016_j_oceaneng_2025_120871
crossref_primary_10_1007_s11242_023_01961_1
crossref_primary_10_2514_1_J061375
crossref_primary_10_1007_s10409_023_23247_x
crossref_primary_10_1016_j_apor_2022_103173
crossref_primary_10_1109_LSP_2024_3451310
crossref_primary_10_1063_5_0221568
crossref_primary_10_1109_ACCESS_2020_2993562
crossref_primary_10_1017_dce_2022_37
crossref_primary_10_1007_s11071_025_10976_w
crossref_primary_10_1063_5_0187783
crossref_primary_10_1038_s42256_024_00938_z
crossref_primary_10_1063_5_0218499
crossref_primary_10_1088_1361_6501_ad4dc2
crossref_primary_10_1063_5_0274755
crossref_primary_10_1016_j_compfluid_2022_105312
crossref_primary_10_1016_j_physd_2020_132409
crossref_primary_10_1016_j_oceaneng_2023_116036
crossref_primary_10_1080_19942060_2024_2407005
crossref_primary_10_1007_s00162_021_00586_8
crossref_primary_10_1063_5_0172722
crossref_primary_10_1109_TVT_2020_3044175
crossref_primary_10_3390_su141911996
crossref_primary_10_1186_s42774_024_00195_z
crossref_primary_10_1016_j_engappai_2025_110463
crossref_primary_10_1016_j_trc_2025_105313
crossref_primary_10_1016_j_buildenv_2021_108315
crossref_primary_10_1007_s00348_023_03629_4
crossref_primary_10_1016_j_cryogenics_2025_104142
crossref_primary_10_1016_j_jglr_2020_08_018
crossref_primary_10_1016_j_cma_2024_117339
crossref_primary_10_1017_jfm_2020_725
crossref_primary_10_1088_1873_7005_ade8a2
crossref_primary_10_1063_5_0273777
crossref_primary_10_1109_MCSE_2023_3264340
crossref_primary_10_1016_j_ijheatmasstransfer_2024_126208
crossref_primary_10_1016_j_jfluidstructs_2024_104066
crossref_primary_10_3389_frwa_2023_1137110
crossref_primary_10_1007_s00162_023_00657_y
crossref_primary_10_1016_j_combustflame_2025_114469
crossref_primary_10_1016_j_oceaneng_2023_113693
crossref_primary_10_1007_s00348_025_04020_1
crossref_primary_10_1016_j_buildenv_2023_110613
crossref_primary_10_1016_j_ast_2022_107328
crossref_primary_10_1063_5_0110491
crossref_primary_10_1017_jfm_2019_822
crossref_primary_10_1103_8t52_mtb9
crossref_primary_10_3390_sym15091692
crossref_primary_10_3390_fluids9110258
crossref_primary_10_1016_j_cja_2025_103741
crossref_primary_10_1016_j_compfluid_2024_106420
crossref_primary_10_1016_j_buildenv_2023_111157
crossref_primary_10_1016_j_ast_2020_106123
crossref_primary_10_1017_jfm_2023_269
crossref_primary_10_3390_fluids9080173
crossref_primary_10_1016_j_buildenv_2022_108966
crossref_primary_10_1088_1742_6596_3056_1_012004
crossref_primary_10_3390_jmse12091597
crossref_primary_10_1016_j_physd_2024_134283
crossref_primary_10_1063_5_0074724
crossref_primary_10_1016_j_jcp_2024_113239
crossref_primary_10_1016_j_ast_2025_110116
crossref_primary_10_1029_2021WR030163
crossref_primary_10_1007_s00521_021_06784_z
crossref_primary_10_1016_j_jobe_2023_107620
crossref_primary_10_1088_1742_6596_2449_1_012032
crossref_primary_10_1007_s00521_022_07838_6
crossref_primary_10_1016_j_compfluid_2021_104962
crossref_primary_10_1016_j_compfluid_2023_105971
crossref_primary_10_1007_s00348_024_03778_0
crossref_primary_10_1016_j_paerosci_2025_101130
crossref_primary_10_1017_dce_2023_20
crossref_primary_10_1017_jfm_2019_814
crossref_primary_10_1007_s00162_019_00512_z
crossref_primary_10_1088_1873_7005_ade338
crossref_primary_10_3390_fluids6120436
crossref_primary_10_1080_19942060_2024_2399672
crossref_primary_10_1016_j_paerosci_2024_101046
crossref_primary_10_1038_s43588_024_00643_2
crossref_primary_10_1109_TVCG_2022_3214420
crossref_primary_10_1017_jfm_2019_254
crossref_primary_10_1038_s41598_021_92965_8
crossref_primary_10_1007_s42241_023_0042_y
crossref_primary_10_3390_fluids10090226
crossref_primary_10_3390_jmse9121367
crossref_primary_10_1016_j_energy_2025_134644
crossref_primary_10_1088_1742_6596_2694_1_012009
crossref_primary_10_1109_ACCESS_2024_3512873
crossref_primary_10_3390_s23084150
crossref_primary_10_1007_s11431_023_2622_x
crossref_primary_10_3390_math12070998
crossref_primary_10_1063_5_0216747
crossref_primary_10_1063_5_0127808
crossref_primary_10_1016_j_energy_2022_123390
crossref_primary_10_1016_j_jppr_2024_02_002
crossref_primary_10_1016_j_tsep_2025_103404
crossref_primary_10_1016_j_expthermflusci_2024_111241
crossref_primary_10_1088_1873_7005_abb91d
crossref_primary_10_1016_j_jcp_2024_112804
crossref_primary_10_1016_j_jcp_2021_110484
crossref_primary_10_1063_5_0030040
crossref_primary_10_1080_14685248_2022_2060508
crossref_primary_10_1016_j_oceaneng_2023_114759
crossref_primary_10_3390_jmse10070918
crossref_primary_10_3390_jmse13091761
crossref_primary_10_1115_1_4068438
crossref_primary_10_1103_PhysRevFluids_8_094605
crossref_primary_10_1080_22797254_2022_2163707
crossref_primary_10_3390_atmos15010060
crossref_primary_10_1007_s11071_025_11773_1
crossref_primary_10_1103_PhysRevFluids_6_094607
crossref_primary_10_1016_j_ast_2023_108740
crossref_primary_10_1007_s00162_020_00518_y
crossref_primary_10_1016_j_ast_2022_107931
crossref_primary_10_1109_ACCESS_2024_3442189
crossref_primary_10_3390_biomedicines10092157
crossref_primary_10_1016_j_eswa_2023_120817
crossref_primary_10_1016_j_ijhydene_2023_04_311
crossref_primary_10_3390_fluids7060197
crossref_primary_10_1007_s00162_021_00580_0
crossref_primary_10_1038_s42005_025_02097_y
crossref_primary_10_1109_ACCESS_2024_3473012
crossref_primary_10_1016_j_jsv_2021_116285
crossref_primary_10_1016_j_jcp_2024_113569
crossref_primary_10_1017_jfm_2023_331
crossref_primary_10_1017_jfm_2023_573
crossref_primary_10_1002_we_70020
crossref_primary_10_1016_j_ast_2023_108198
crossref_primary_10_1017_jfm_2025_91
crossref_primary_10_1063_5_0058346
crossref_primary_10_1080_19942060_2023_2237611
crossref_primary_10_1016_j_compfluid_2023_105864
crossref_primary_10_1029_2024JD042551
crossref_primary_10_1016_j_oceaneng_2023_115313
crossref_primary_10_3744_SNAK_2022_59_2_72
crossref_primary_10_1016_j_jobe_2024_109231
crossref_primary_10_1038_s42256_025_01063_1
crossref_primary_10_3390_aerospace9020096
crossref_primary_10_1016_j_energy_2024_132828
crossref_primary_10_1016_j_ijheatfluidflow_2021_108816
crossref_primary_10_1016_j_oceaneng_2024_118089
crossref_primary_10_1063_5_0283021
crossref_primary_10_1007_s00521_021_06633_z
crossref_primary_10_1016_j_eswa_2023_121924
crossref_primary_10_1016_j_ijheatfluidflow_2022_108997
crossref_primary_10_1063_5_0230332
crossref_primary_10_1063_5_0066077
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120662
crossref_primary_10_1049_ipr2_12933
crossref_primary_10_1016_j_actaastro_2022_04_007
crossref_primary_10_1063_5_0279565
crossref_primary_10_1146_annurev_fluid_010719_060214
crossref_primary_10_1016_j_ast_2023_108287
crossref_primary_10_1016_j_ijhydene_2023_11_001
crossref_primary_10_1073_pnas_1918964117
crossref_primary_10_1016_j_oceaneng_2023_114555
crossref_primary_10_1016_j_nucengdes_2021_111113
crossref_primary_10_1016_j_cma_2025_118210
crossref_primary_10_1063_5_0286561
crossref_primary_10_1016_j_ijheatfluidflow_2025_110032
crossref_primary_10_3390_fluids8070195
crossref_primary_10_3390_pr10050860
crossref_primary_10_1007_s11082_023_06107_7
crossref_primary_10_1016_j_jweia_2024_105885
crossref_primary_10_1007_s11082_023_05375_7
crossref_primary_10_1063_5_0265738
crossref_primary_10_1016_j_ijheatfluidflow_2022_109073
crossref_primary_10_1103_8flg_k6s5
crossref_primary_10_1140_epje_s10189_023_00267_w
crossref_primary_10_1017_jfm_2020_948
crossref_primary_10_1063_5_0278268
crossref_primary_10_3390_jmse11112045
crossref_primary_10_1016_j_ces_2025_122001
crossref_primary_10_1016_j_compfluid_2023_105883
crossref_primary_10_1017_jfm_2024_592
crossref_primary_10_1016_j_ijheatfluidflow_2025_109849
crossref_primary_10_1002_fld_4815
crossref_primary_10_3390_app15010460
crossref_primary_10_1007_s00348_021_03213_8
crossref_primary_10_1103_PhysRevFluids_10_034901
crossref_primary_10_1016_j_ces_2025_121825
crossref_primary_10_1088_1361_6501_ac8dac
crossref_primary_10_1080_00207543_2025_2487205
crossref_primary_10_3390_fire7080293
crossref_primary_10_3390_en16052343
crossref_primary_10_1088_1742_6596_2634_1_012046
crossref_primary_10_1016_j_jcp_2023_111972
crossref_primary_10_1007_s11082_023_04715_x
Cites_doi 10.1109/TASSP.1981.1163711
10.2514/6.2018-1903
10.1017/jfm.2017.637
10.1017/jfm.2018.980
10.1146/annurev-fluid-010518-040547
10.2514/6.2019-1148
10.1017/jfm.2016.803
10.1017/jfm.2016.235
10.1103/PhysRevE.97.042322
10.1016/j.cma.2007.08.014
10.1109/TPAMI.2015.2439281
10.1017/jfm.2016.615
10.3390/s18030789
10.1016/S0893-6080(98)00010-0
10.1016/0305-0483(96)00010-2
10.1109/5.726791
10.1109/TCI.2016.2629284
10.1016/j.jcp.2007.03.005
10.2514/6.2018-3691
ContentType Journal Article
Copyright 2019 Cambridge University Press
Copyright_xml – notice: 2019 Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2019.238
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
ProQuest Research Library
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
DocumentTitleAlternate Super-resolution reconstruction with machine learning
K. Fukami, K. Fukagata and K. Taira
EISSN 1469-7645
EndPage 120
ExternalDocumentID 10_1017_jfm_2019_238
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GroupedDBID -2P
-DZ
-E.
-~6
-~X
.DC
.FH
09C
09E
0E1
0R~
29K
4.4
5GY
5VS
74X
74Y
7~V
88I
8FE
8FG
8FH
8G5
8R4
8R5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABUWG
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKRA
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGLWM
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
AZQEC
BBLKV
BENPR
BGHMG
BGLVJ
BHPHI
BKSAR
BLZWO
BMAJL
BPHCQ
C0O
CBIIA
CCPQU
CCQAD
CFAFE
CHEAL
CJCSC
CS3
D-I
DC4
DOHLZ
DU5
DWQXO
E.L
EBS
EJD
F5P
GNUQQ
GUQSH
HCIFZ
HG-
HST
HZ~
I.6
I.7
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L6V
L98
LK5
LW7
M-V
M2O
M2P
M7R
M7S
NIKVX
O9-
OYBOY
P2P
P62
PCBAR
PQQKQ
PROAC
PTHSS
PYCCK
Q2X
RAMDC
RCA
RNS
ROL
RR0
S0W
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZE2
ZMEZD
ZYDXJ
~02
AAYXX
ABUFD
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEHGV
AEUYN
AFFHD
AFZFC
AKMAY
CITATION
PHGZM
PHGZT
PQGLB
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c302t-b8dad1a6982a8cea6aad0f046198a824cf0e0c33b7e6551bf6f1c7e8bc8be71a3
IEDL.DBID M7S
ISICitedReferencesCount 546
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000467293100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Sat Aug 16 12:12:49 EDT 2025
Sat Nov 29 04:24:20 EST 2025
Tue Nov 18 22:18:35 EST 2025
Wed Mar 13 05:46:40 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords computational methods
wakes
homogeneous turbulence
Language English
License https://www.cambridge.org/core/terms
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-b8dad1a6982a8cea6aad0f046198a824cf0e0c33b7e6551bf6f1c7e8bc8be71a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-3762-8075
0000-0003-4805-238X
PQID 2221606648
PQPubID 34769
PageCount 15
ParticipantIDs proquest_journals_2221606648
crossref_primary_10_1017_jfm_2019_238
crossref_citationtrail_10_1017_jfm_2019_238
cambridge_journals_10_1017_jfm_2019_238
PublicationCentury 2000
PublicationDate 2019-07-10
PublicationDateYYYYMMDD 2019-07-10
PublicationDate_xml – month: 07
  year: 2019
  text: 2019-07-10
  day: 10
PublicationDecade 2010
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2019
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2010; 23
2007; 225
2018; 18
2018; 3
2019; 51
2017; 3
2016; 814
2016; 807
2016; 795
2018
2019; 861
1981; 29
1996; 24
2016; 38
2008; 197
1998; 86
2018; 97
2017; 831
1998; 11
S0022112019002386_r14
S0022112019002386_r13
S0022112019002386_r11
S0022112019002386_r10
Nair (S0022112019002386_r17) 2010
He (S0022112019002386_r6) 2016
Le (S0022112019002386_r12) 2010; 23
Leoni (S0022112019002386_r15) 2018; 3
S0022112019002386_r19
S0022112019002386_r18
S0022112019002386_r16
S0022112019002386_r25
S0022112019002386_r24
S0022112019002386_r1
S0022112019002386_r2
S0022112019002386_r23
S0022112019002386_r22
S0022112019002386_r21
S0022112019002386_r20
S0022112019002386_r7
S0022112019002386_r8
S0022112019002386_r9
S0022112019002386_r3
S0022112019002386_r4
Fukami (S0022112019002386_r5) 2018
References_xml – volume: 29
  start-page: 1153
  issue: 6
  year: 1981
  end-page: 1160
  article-title: Cubic convolution interpolation for digital image processing
  publication-title: IEEE Trans. Acoust. Speech Signal Process.
– volume: 814
  start-page: 1
  year: 2016
  end-page: 4
  article-title: Deep learning in fluid dynamics
  publication-title: J. Fluid Mech.
– volume: 197
  start-page: 2131
  year: 2008
  end-page: 2146
  article-title: A fast immersed boundary method using a nullspace approach and multi-domain far-field boundary conditions
  publication-title: Comput. Meth. Appl. Mech. Engng
– volume: 24
  start-page: 385
  issue: 4
  year: 1996
  end-page: 397
  article-title: Effect of data standardization on neural network training
  publication-title: Omega
– volume: 23
  start-page: 1279
  year: 2010
  end-page: 1287
  article-title: Tiled convolutional neural networks
  publication-title: Adv. Neural Inform. Proc. Syst.
– volume: 18
  start-page: 1
  issue: 789
  year: 2018
  end-page: 17
  article-title: Single image super-resolution based on multi-scale competitive convolutional neural network
  publication-title: Sensors
– volume: 807
  start-page: 155
  year: 2016
  end-page: 166
  article-title: Reynolds averaged turbulence modelling using deep neural networks with embedded invariance
  publication-title: J. Fluid Mech.
– volume: 3
  start-page: 110
  issue: 1
  year: 2017
  end-page: 125
  article-title: RAISR: rapid and accurate image super resolution
  publication-title: IEEE Trans. Comput. Imaging
– volume: 97
  year: 2018
  article-title: Extreme learning machine for reduced order modeling of turbulent geophysical flows
  publication-title: Phys. Rev. E
– volume: 51
  start-page: 357
  year: 2019
  end-page: 377
  article-title: Turbulence modeling in the age of data
  publication-title: Annu. Rev. Fluid. Mech.
– year: 2018
  article-title: A synthetic turbulent inflow generator using machine learning
  publication-title: Phys. Rev. Fluids
– volume: 831
  start-page: 151
  year: 2017
  end-page: 181
  article-title: A neural network approach for the blind deconvolution of turbulent flows
  publication-title: J. Fluid Mech.
– volume: 3
  year: 2018
  article-title: Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging
  publication-title: Phys. Rev. Fluids
– volume: 11
  start-page: 761
  issue: 4
  year: 1998
  end-page: 767
  article-title: Automatic early stopping using cross validation: quantifying the criteria
  publication-title: Neural Networks
– volume: 86
  start-page: 2278
  issue: 11
  year: 1998
  end-page: 2324
  article-title: Gradient-based learning applied to document recognition
  publication-title: Proc. IEEE
– volume: 225
  start-page: 2118
  issue: 2
  year: 2007
  end-page: 2137
  article-title: The immersed boundary method: a projection approach
  publication-title: J. Comput. Phys.
– volume: 38
  start-page: 295
  issue: 2
  year: 2016
  end-page: 307
  article-title: Image super-resolution using deep convolutional networks
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 861
  start-page: 1
  issue: R4
  year: 2019
  end-page: 14
  article-title: Deep learning of mixing by two ‘atoms’ of stratified turbulence
  publication-title: J. Fluid Mech.
– volume: 795
  start-page: 1
  issue: R2
  year: 2016
  end-page: 11
  article-title: Network structure of two-dimensional decaying isotropic turbulence
  publication-title: J. Fluid Mech.
– ident: S0022112019002386_r8
  doi: 10.1109/TASSP.1981.1163711
– ident: S0022112019002386_r25
  doi: 10.2514/6.2018-1903
– ident: S0022112019002386_r16
  doi: 10.1017/jfm.2017.637
– ident: S0022112019002386_r20
  doi: 10.1017/jfm.2018.980
– ident: S0022112019002386_r4
  doi: 10.1146/annurev-fluid-010518-040547
– ident: S0022112019002386_r7
  doi: 10.2514/6.2019-1148
– volume-title: Proceedings of Computer Vision and Pattern Recognition
  year: 2016
  ident: S0022112019002386_r6
– volume: 23
  start-page: 1279
  year: 2010
  ident: S0022112019002386_r12
  article-title: Tiled convolutional neural networks
  publication-title: Adv. Neural Inform. Proc. Syst.
– ident: S0022112019002386_r11
  doi: 10.1017/jfm.2016.803
– ident: S0022112019002386_r24
  doi: 10.1017/jfm.2016.235
– ident: S0022112019002386_r21
  doi: 10.1103/PhysRevE.97.042322
– ident: S0022112019002386_r1
  doi: 10.1016/j.cma.2007.08.014
– ident: S0022112019002386_r2
  doi: 10.1109/TPAMI.2015.2439281
– ident: S0022112019002386_r14
  doi: 10.1017/jfm.2016.615
– ident: S0022112019002386_r3
  doi: 10.3390/s18030789
– ident: S0022112019002386_r18
  doi: 10.1016/S0893-6080(98)00010-0
– ident: S0022112019002386_r22
  doi: 10.1016/0305-0483(96)00010-2
– ident: S0022112019002386_r13
  doi: 10.1109/5.726791
– ident: S0022112019002386_r19
  doi: 10.1109/TCI.2016.2629284
– ident: S0022112019002386_r23
  doi: 10.1016/j.jcp.2007.03.005
– volume: 3
  year: 2018
  ident: S0022112019002386_r15
  article-title: Inferring flow parameters and turbulent configuration with physics-informed data assimilation and spectral nudging
  publication-title: Phys. Rev. Fluids
– ident: S0022112019002386_r9
– ident: S0022112019002386_r10
  doi: 10.2514/6.2018-3691
– volume-title: Proc. 27th International Conference on Machine Learning
  year: 2010
  ident: S0022112019002386_r17
– year: 2018
  ident: S0022112019002386_r5
  article-title: A synthetic turbulent inflow generator using machine learning
  publication-title: Phys. Rev. Fluids
SSID ssj0013097
Score 2.7016969
Snippet We use machine learning to perform super-resolution analysis of grossly under-resolved turbulent flow field data to reconstruct the high-resolution flow field....
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106
SubjectTerms Accuracy
Artificial intelligence
Artificial neural networks
Computational fluid dynamics
Computer simulation
Cylinders
Data
Data compression
Datasets
Fluid dynamics
Fluid flow
Fluid mechanics
Homogeneous turbulence
Image reconstruction
JFM Papers
Laminar flow
Learning algorithms
Machine learning
Neural networks
Paper machines
Performance assessment
Physics
Resolution
Reynolds number
Spatial discrimination
Spatial resolution
Training
Turbulence
Turbulence models
Turbulent flow
Two dimensional models
Title Super-resolution reconstruction of turbulent flows with machine learning
URI https://www.cambridge.org/core/product/identifier/S0022112019002386/type/journal_article
https://www.proquest.com/docview/2221606648
Volume 870
WOSCitedRecordID wos000467293100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xSnBgKSDWygcQB2RInNRxTggQiAMqFZsQl8h2bASCthCW38fjui0c4MLFlziL8sZ-4_H4DcAmHp7irJTUOnqjqW0kVKVJSbnmmkXcEbKXL745y5pNcXubt0LArQpplf050U_UZUdjjHzP8ViMznYq9rsvFKtG4e5qKKExCuOoksB86t7lcBchyrO-WrjzK6KQ-I6S0Y8Wj6HH-S7DkylDWYWf9PRzdvaUczL734-dg5ngbJKDnnXMw4hp12A2OJ4kDOuqBtPfVAlrMOmzQnW1AKeX713zSt2KPBgo8evngeYs6VjiKEu9I3UR-9T5rAgGdsmzT9E0JNSkuF-E65Pjq6NTGkovUJ1E7I0qUcoyljwXTAptJJeyjCyKs-dCCpZqG5lIJ4nKDHc-l7LcxjozQmmhTBbLZAnG2p22WQZiuFZ4T4lS9YlsqFIwqzNrlU25MOkKbA_-fhEGUFX0ks-ywuFUIE6Fw2kFdvrYFDoomGMhjadfem8Nend7yh2_9FvvYzh8_RDA1b8vr8EUPgijvXG0DmMOALMBE_rj7aF6rcP44XGzdVF3ZsnOfduqexN1batx9wUiOu2H
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9wwEB7xKCocoF1AvAo-FPWADIkTHOeAEKJFu9rtqtJuEbdgO3bVCnaXDQ_xp_iNePLYlAO9ceg5jqPEn-ebjGe-AfiMxVOcpZJaR280tIcBVWGQUq65Zh53hJzLF593om5XXFzEP6bgqaqFwbTKyibmhjodaoyRHzge89HZDsXx6IZi1yg8Xa1aaBSwaJvHB_fLlh21vrr13WXs7Fv_tEnLrgJUBx67pUqkMvUljwWTQhvJpUw9i7rjsZCChdp6xtNBoCLDnTuhLLe-joxQWigT-TJw807DbIjWP08V7NWnFl4cVerkzo_xykR7lKj-Y7Hs3Y_3GVbC1DIOL-nwJRvkFHe29L99nA-wWDrT5KRA_0eYMoMGLJWONSnNVtaAhb9UFxswl2e96mwZmr27kRnTsak2IMnjAxNNXTK0xFGyukNqJvZq-JARDFyT6zwF1ZCy58avFfj5Ju-5CjOD4cCsATFcK7wnRSn-QB6qVDCrI2uVDbkw4Tp8max2UhqILCmS66LE4SJBXCQOF-uwV2Eh0aVCOzYKuXpl9O5k9KhQJnll3FaFmfrxNWA2_n15B943-987SafVbW_CPE6KkW3f24IZtxjmE7zT97e_s_F2vhUIXL41vJ4BHXFI5w
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Super-resolution+reconstruction+of+turbulent+flows+with+machine+learning&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Fukami%2C+Kai&rft.au=Fukagata%2C+Koji&rft.au=Taira%2C+Kunihiko&rft.date=2019-07-10&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=870&rft.spage=106&rft.epage=120&rft_id=info:doi/10.1017%2Fjfm.2019.238
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon