Oracles for Distances Avoiding a Failed Node or Link

We consider the problem of preprocessing an edge-weighted directed graph $G$ to answer queries that ask for the length and first hop of a shortest path from any given vertex $x$ to any given vertex $y$ avoiding any given vertex or edge. As a natural application, this problem models routing in networ...

Full description

Saved in:
Bibliographic Details
Published in:SIAM journal on computing Vol. 37; no. 5; pp. 1299 - 1318
Main Authors: Demetrescu, Camil, Thorup, Mikkel, Chowdhury, Rezaul Alam, Ramachandran, Vijaya
Format: Journal Article
Language:English
Published: Philadelphia, PA Society for Industrial and Applied Mathematics 01.01.2008
Subjects:
ISSN:0097-5397, 1095-7111
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We consider the problem of preprocessing an edge-weighted directed graph $G$ to answer queries that ask for the length and first hop of a shortest path from any given vertex $x$ to any given vertex $y$ avoiding any given vertex or edge. As a natural application, this problem models routing in networks subject to node or link failures. We describe a deterministic oracle with constant query time for this problem that uses $O(n^2\log n)$ space, where $n$ is the number of vertices in $G$. The construction time for our oracle is $O(mn^{2} + n^{3}\log n)$. However, if one is willing to settle for $\Theta (n^{2.5})$ space, we can improve the preprocessing time to $O(mn^{1.5}+n^{2.5}\log n)$ while maintaining the constant query time. Our algorithms can find the shortest path avoiding a failed node or link in time proportional to the length of the path.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ISSN:0097-5397
1095-7111
DOI:10.1137/S0097539705429847