On the Rate of Convergence of the Bergman-Vekua Method for the Numerical Solution of Elliptic Boundary Value Problems

We consider the Bergman-Vekua method of particular solutions for the numerical solution of elliptic boundary value problems. The rate of convergence is shown to depend on the smoothness of the solution or, equivalently for domains with smooth boundary, on the smoothness of the boundary data. For dom...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:SIAM journal on numerical analysis Ročník 11; číslo 3; s. 654 - 680
Hlavný autor: Eisenstat, Stanley C.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Philadelphia Society for Industrial and Applied Mathematics 01.06.1974
Predmet:
ISSN:0036-1429, 1095-7170
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Popis
Shrnutí:We consider the Bergman-Vekua method of particular solutions for the numerical solution of elliptic boundary value problems. The rate of convergence is shown to depend on the smoothness of the solution or, equivalently for domains with smooth boundary, on the smoothness of the boundary data. For domains with piecewise smooth boundary, the introduction of certain singular particular solutions is shown to lead to a similar dependency. A method for solving the membrane eigenvalue problem is proposed and shown to have the same rate of convergence.
Bibliografia:ObjectType-Article-1
SourceType-Scholarly Journals-1
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
ISSN:0036-1429
1095-7170
DOI:10.1137/0711053