A self-learning whale optimization algorithm based on reinforcement learning for a dual-resource flexible job shop scheduling problem

One of the key areas in which production systems researchers are working these days is to find advanced optimization algorithms to efficiently schedule activities in manufacturing systems, which requires more sophisticated models with increased computational complexity. Therefore, there has been gro...

Full description

Saved in:
Bibliographic Details
Published in:Applied soft computing Vol. 180; p. 113436
Main Authors: Manafi, Ehsan, Domenech, Bruno, Tavakkoli-Moghaddam, Reza, Ranaboldo, Matteo
Format: Journal Article
Language:English
Published: Elsevier B.V 01.08.2025
Subjects:
ISSN:1568-4946
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract One of the key areas in which production systems researchers are working these days is to find advanced optimization algorithms to efficiently schedule activities in manufacturing systems, which requires more sophisticated models with increased computational complexity. Therefore, there has been growing interest in this subject to improve the performance of meta-heuristics by incorporating reinforcement learning approaches. This paper deals with a dual-resource flexible job shop scheduling (DRFJSS) problem, in which each operation requires two resources (i.e., reconfigurable machine tool (RMT) and worker) to be processed. A mixed-integer linear programming (MILP) model is formulated to minimize the makespan. Since the proposed model cannot optimally solve most medium-sized instances, a self-learning whale optimization algorithm (SLWOA) is developed to deal efficiently with such a difficult problem. In the proposed SLWOA, an agent is trained by the state–action–reward–state–action (SARSA) algorithm to balance exploration and exploitation. The results show that the SLWOA has a stronger global search ability and faster convergence speed than the original whale optimization algorithm. [Display omitted] •Studying dual-resource scheduling in shop floors with reconfigurable machine tools.•Formulating a position-based MILP model for scheduling optimization.•Proposing a self-learning whale algorithm for large instance problems.•Designing states, actions, and rewards for reinforcement learning integration.•Developing a variable neighbourhood search to improve the local search.
AbstractList One of the key areas in which production systems researchers are working these days is to find advanced optimization algorithms to efficiently schedule activities in manufacturing systems, which requires more sophisticated models with increased computational complexity. Therefore, there has been growing interest in this subject to improve the performance of meta-heuristics by incorporating reinforcement learning approaches. This paper deals with a dual-resource flexible job shop scheduling (DRFJSS) problem, in which each operation requires two resources (i.e., reconfigurable machine tool (RMT) and worker) to be processed. A mixed-integer linear programming (MILP) model is formulated to minimize the makespan. Since the proposed model cannot optimally solve most medium-sized instances, a self-learning whale optimization algorithm (SLWOA) is developed to deal efficiently with such a difficult problem. In the proposed SLWOA, an agent is trained by the state–action–reward–state–action (SARSA) algorithm to balance exploration and exploitation. The results show that the SLWOA has a stronger global search ability and faster convergence speed than the original whale optimization algorithm. [Display omitted] •Studying dual-resource scheduling in shop floors with reconfigurable machine tools.•Formulating a position-based MILP model for scheduling optimization.•Proposing a self-learning whale algorithm for large instance problems.•Designing states, actions, and rewards for reinforcement learning integration.•Developing a variable neighbourhood search to improve the local search.
ArticleNumber 113436
Author Tavakkoli-Moghaddam, Reza
Ranaboldo, Matteo
Manafi, Ehsan
Domenech, Bruno
Author_xml – sequence: 1
  givenname: Ehsan
  surname: Manafi
  fullname: Manafi, Ehsan
  email: ehsan.manafi@upc.edu
  organization: DOPS-UPC, Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Barcelona, Spain
– sequence: 2
  givenname: Bruno
  surname: Domenech
  fullname: Domenech, Bruno
  email: bruno.domenech@upc.edu
  organization: DOPS-UPC, Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Barcelona, Spain
– sequence: 3
  givenname: Reza
  surname: Tavakkoli-Moghaddam
  fullname: Tavakkoli-Moghaddam, Reza
  email: tavakoli@ut.ac.ir
  organization: School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran
– sequence: 4
  givenname: Matteo
  surname: Ranaboldo
  fullname: Ranaboldo, Matteo
  email: matteo.ranaboldo@upc.edu
  organization: CITCEA-UPC, Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Barcelona, Spain
BookMark eNp9kMtqwzAQRbVIoUnaH-hKP2DXkm3Fhm5C6AsC3WQv9BjFMrJlJKevff-7TlO66CKrgTv3DMxZoFnve0DohmQpyQi7bVMRvUppRsuUkLzI2QzNScmqpKgLdokWMbbZVKxpNUdfaxzBmcSBCL3t9_itEQ6wH0bb2U8xWt9j4fY-2LHpsBQRNJ6iALY3PijooB_xHzxFWGB9EC4JEP1hKmDj4N3K6WbrJY6NH3BUDeiDOwJD8NOqu0IXRrgI179ziXYP97vNU7J9eXzerLeJyjM6JitRKyUko4UGqitj8qqqZC0J0wXTFStKQSUpTS2LnDKhcmmMZkoRSQpGVvkS0dNZFXyMAQwfgu1E-OAk40d3vOVHd_zojp_cTVD1D1J2_BEzBmHdefTuhML006uFwKOy0CvQNoAaufb2HP4NTv-Snw
CitedBy_id crossref_primary_10_1016_j_est_2025_118077
crossref_primary_10_3390_systems13090768
crossref_primary_10_1016_j_asoc_2025_113712
crossref_primary_10_3390_mca30040083
Cites_doi 10.1016/j.cie.2021.107557
10.1002/cpe.6658
10.1016/j.asoc.2023.110658
10.1016/j.advengsoft.2016.01.008
10.1016/j.cie.2016.10.012
10.1007/s10845-020-01697-5
10.1111/exsy.13669
10.1016/j.rcim.2024.102834
10.1080/00207543.2020.1756507
10.1016/j.swevo.2023.101414
10.1155/2021/8832251
10.1007/s10489-023-04479-7
10.1080/00207543.2016.1237795
10.1016/j.swevo.2024.101479
10.1016/j.eswa.2024.125189
10.1177/1063293X19898727
10.1080/00207543.2016.1170226
10.1016/j.cie.2020.107082
10.1016/j.swevo.2024.101658
10.1016/j.cor.2023.106456
10.1016/j.eswa.2021.114843
10.1016/j.cie.2020.106545
10.1007/s00170-015-8291-8
10.1016/j.cie.2020.106778
10.1038/s41598-021-90847-7
10.1016/j.ejor.2021.04.032
10.1016/j.jmsy.2022.01.014
10.1016/j.asoc.2022.109504
10.1080/00207543.2020.1813913
10.1016/j.asoc.2020.106416
10.1016/j.jmsy.2024.03.005
10.1016/j.asoc.2024.112601
10.1016/j.jmsy.2022.04.018
10.1080/00207543.2018.1497313
10.1080/00207543.2019.1677963
10.1016/j.ejor.2006.09.010
10.1016/j.cie.2024.109903
10.1007/s10696-022-09446-x
10.1007/s10462-017-9605-z
10.1016/j.ejor.2022.03.054
10.1016/j.enconman.2018.08.053
10.1007/s10845-022-02037-5
10.1016/j.swevo.2025.101907
10.1016/j.ins.2016.08.046
10.1016/j.cie.2022.108067
10.1016/j.asoc.2024.112148
10.1016/j.cirpj.2023.08.003
10.1016/j.eswa.2024.124779
10.1016/j.engappai.2023.107762
10.1016/j.jmsy.2021.01.001
ContentType Journal Article
Copyright 2025 The Authors
Copyright_xml – notice: 2025 The Authors
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.asoc.2025.113436
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_asoc_2025_113436
S1568494625007471
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
23M
4.4
457
4G.
53G
5GY
5VS
6I.
6J9
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAFTH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFO
ACGFS
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
ADTZH
AEBSH
AECPX
AEFWE
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGQPQ
AGUBO
AGYEJ
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
EBS
EFJIC
EFKBS
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
J1W
JJJVA
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SDF
SDG
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
UHS
UNMZH
~G-
~HD
9DU
AAYXX
ACLOT
CITATION
ID FETCH-LOGICAL-c302t-7a9ccab624de2d8ff3888b9b16d46d8645a2b15f9b4326ac3bffd6cc1b146173
ISICitedReferencesCount 4
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001511049800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1568-4946
IngestDate Tue Nov 18 22:03:43 EST 2025
Sat Nov 29 07:36:19 EST 2025
Sat Sep 20 17:14:03 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Reconfigurable manufacturing systems
Flexible job shop scheduling
Machine learning
Reinforcement learning
Meta-heuristics
Language English
License This is an open access article under the CC BY-NC license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c302t-7a9ccab624de2d8ff3888b9b16d46d8645a2b15f9b4326ac3bffd6cc1b146173
OpenAccessLink https://dx.doi.org/10.1016/j.asoc.2025.113436
ParticipantIDs crossref_primary_10_1016_j_asoc_2025_113436
crossref_citationtrail_10_1016_j_asoc_2025_113436
elsevier_sciencedirect_doi_10_1016_j_asoc_2025_113436
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Applied soft computing
PublicationYear 2025
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Jing, Yao, Liu, Zhou (bib21) 2024; 35
Gadalla, Xue (bib7) 2017; 55
Allahverdi, Soroush (bib9) 2008; 187
Hussain, Mohd Salleh, Cheng, Shi (bib11) 2019; 52
Vital-Soto, Baki, Azab (bib38) 2022
Wu, Peng, Xiao, Wu (bib41) 2021; 32
Long, Zhang, Qi, Xu, Jin, Zhou (bib29) 2022; 34
Yelles-Chaouche, Gurevsky, Brahimi, Dolgui (bib5) 2021; 59
Wauters, Verbeeck, Causmaecker, Berghe (bib13) 2013; 434
Karimi-Mamaghan, Mohammadi, Pasdeloup, Meyer (bib15) 2023; 304
Dou, Su, Zhao (bib51) 2020; 28
Chen, Wu, Wang, Tong, Yan (bib31) 2024; 90
Bortolini, Ferrari, Galizia, Regattieri (bib47) 2021; 58
Dunke, Nickel (bib36) 2022; 168
Huang, Gong, Lu (bib26) 2024; 130
Vital-Soto, Baki, Azab (bib46) 2023; 35
Dou, Li, Xia, Zhao (bib52) 2021; 59
Zheng, Wang (bib4) 2016; 54
Thürer, Zhang, Stevenson, Costa, Ma (bib34) 2020; 58
Mirjalili, Lewis (bib59) 2016; 95
Zhao, Zhang, Cao, Tang (bib14) 2021; 153
Ye, Zhang, Wang, Zeng, Wang, Zeng (bib30) 2025; 169
Wei, Tang, Li, Lei, Wang (bib45) 2024; 74
Chen, Yang, Li, Wang (bib23) 2020; 149
Kimura, Ishigaki, Tanabe (bib40) 2023, November
Vahedi-Nouri, Tavakkoli-Moghaddam, Hanzálek, Dolgui (bib58) 2023
Thürer, Stevenson, Renna (bib35) 2019; 57
Vahedi-Nouri, Tavakkoli-Moghaddam, Hanzálek, Dolgui (bib53) 2021
Fan, Zhang, Liu, Shen, Gao (bib54) 2022; 62
Gao, Pan (bib1) 2016; 372
Costa, Fernandez-Viagas, Framiñan (bib8) 2020; 146
Karimi-Mamaghan, Mohammadi, Meyer, Karimi-Mamaghan, Talbi (bib12) 2022; 296
Zhang, Yan, Song, Zhang, Guo (bib19) 2024; 133
Xu, Wang (bib33) 2024, October
Usman, Lu (bib43) 2024; 162
Zhao, Zhuang, Wang, Dong (bib17) 2024
Gu, Chen, Wang (bib20) 2023; 53
Hu, Zhang, Zhang, Li, Tang (bib55) 2024; 166
Alvarez-Alvarado, Alban-Chacon, Lamilla-Rubio, Rodriguez-Gallegos, Velásquez (bib10) 2021; 11
Zhang, Shao, Shao, Chen, Pi (bib16) 2024; 85
Ning, Cao (bib61) 2021; 2021
Ye, Bu (bib28) 2021
Dou, Li, Su (bib50) 2016; 86
Li, Huang, Niu (bib37) 2016; 102
Zhang, Deng, Lin, Gong, Han (bib2) 2021; 175
Liu, Lv, Du, Deng, Shen, Zhou (bib27) 2024; 188
Mahmoodjanloo, Tavakkoli-Moghaddama, Baboli, Bozorgi-Amiri (bib6) 2021
Li, Liao, Wang, Xiao, Cao, Guo (bib22) 2023; 146
Pang, Yang, Chen, Zhang, Mo (bib56) 2023; 46
Li, Li, Gao, Lu (bib42) 2025; 91
Mahmoodjanloo, Tavakkoli-Moghaddam, Baboli, Bozorgi-Amiri (bib49) 2020; 94
Zhuang, Zhang, Tang, Li, Wang (bib25) 2024; 258
Du, Qiao, Wang, Lu (bib3) 2021
Guo, Liu, Ling, Li, Jiang, Li, Huang (bib18) 2024; 255
Chen, Li, Xu (bib32) 2023; 83
Vahedi-Nouri, Tavakkoli-Moghaddam, Hanzálek, Dolgui (bib57) 2022; 63
Manafi, Tavakkoli-Moghaddam, Mahmoodjanloo (bib48) 2022; 128
Xiong, Zhang, Shi, He (bib60) 2018; 174
Ding, Luo, Mudassar, Yue, Meng (bib24) 2025; 94
Barak, Javanmard, Moghdani (bib44) 2024
Tan, Yuan, Wang, Zhang (bib39) 2021; 160
Thürer (10.1016/j.asoc.2025.113436_bib34) 2020; 58
Dunke (10.1016/j.asoc.2025.113436_bib36) 2022; 168
Chen (10.1016/j.asoc.2025.113436_bib32) 2023; 83
Dou (10.1016/j.asoc.2025.113436_bib52) 2021; 59
Fan (10.1016/j.asoc.2025.113436_bib54) 2022; 62
Xu (10.1016/j.asoc.2025.113436_bib33) 2024
Costa (10.1016/j.asoc.2025.113436_bib8) 2020; 146
Zheng (10.1016/j.asoc.2025.113436_bib4) 2016; 54
Alvarez-Alvarado (10.1016/j.asoc.2025.113436_bib10) 2021; 11
Gadalla (10.1016/j.asoc.2025.113436_bib7) 2017; 55
Thürer (10.1016/j.asoc.2025.113436_bib35) 2019; 57
Li (10.1016/j.asoc.2025.113436_bib22) 2023; 146
Tan (10.1016/j.asoc.2025.113436_bib39) 2021; 160
Wei (10.1016/j.asoc.2025.113436_bib45) 2024; 74
Du (10.1016/j.asoc.2025.113436_bib3) 2021
Wauters (10.1016/j.asoc.2025.113436_bib13) 2013; 434
Jing (10.1016/j.asoc.2025.113436_bib21) 2024; 35
Pang (10.1016/j.asoc.2025.113436_bib56) 2023; 46
Chen (10.1016/j.asoc.2025.113436_bib31) 2024; 90
Gu (10.1016/j.asoc.2025.113436_bib20) 2023; 53
Ning (10.1016/j.asoc.2025.113436_bib61) 2021; 2021
Xiong (10.1016/j.asoc.2025.113436_bib60) 2018; 174
Hu (10.1016/j.asoc.2025.113436_bib55) 2024; 166
Zhang (10.1016/j.asoc.2025.113436_bib19) 2024; 133
Barak (10.1016/j.asoc.2025.113436_bib44) 2024
Mahmoodjanloo (10.1016/j.asoc.2025.113436_bib6) 2021
Vahedi-Nouri (10.1016/j.asoc.2025.113436_bib53) 2021
Gao (10.1016/j.asoc.2025.113436_bib1) 2016; 372
Zhao (10.1016/j.asoc.2025.113436_bib17) 2024
Vital-Soto (10.1016/j.asoc.2025.113436_bib38) 2022
Vahedi-Nouri (10.1016/j.asoc.2025.113436_bib57) 2022; 63
Li (10.1016/j.asoc.2025.113436_bib37) 2016; 102
Mirjalili (10.1016/j.asoc.2025.113436_bib59) 2016; 95
Zhang (10.1016/j.asoc.2025.113436_bib16) 2024; 85
Li (10.1016/j.asoc.2025.113436_bib42) 2025; 91
Ye (10.1016/j.asoc.2025.113436_bib30) 2025; 169
Karimi-Mamaghan (10.1016/j.asoc.2025.113436_bib15) 2023; 304
Karimi-Mamaghan (10.1016/j.asoc.2025.113436_bib12) 2022; 296
Vital-Soto (10.1016/j.asoc.2025.113436_bib46) 2023; 35
Zhuang (10.1016/j.asoc.2025.113436_bib25) 2024; 258
Dou (10.1016/j.asoc.2025.113436_bib51) 2020; 28
Liu (10.1016/j.asoc.2025.113436_bib27) 2024; 188
Kimura (10.1016/j.asoc.2025.113436_bib40) 2023
Chen (10.1016/j.asoc.2025.113436_bib23) 2020; 149
Wu (10.1016/j.asoc.2025.113436_bib41) 2021; 32
Vahedi-Nouri (10.1016/j.asoc.2025.113436_bib58) 2023
Ye (10.1016/j.asoc.2025.113436_bib28) 2021
Yelles-Chaouche (10.1016/j.asoc.2025.113436_bib5) 2021; 59
Zhao (10.1016/j.asoc.2025.113436_bib14) 2021; 153
Ding (10.1016/j.asoc.2025.113436_bib24) 2025; 94
Zhang (10.1016/j.asoc.2025.113436_bib2) 2021; 175
Mahmoodjanloo (10.1016/j.asoc.2025.113436_bib49) 2020; 94
Long (10.1016/j.asoc.2025.113436_bib29) 2022; 34
Dou (10.1016/j.asoc.2025.113436_bib50) 2016; 86
Bortolini (10.1016/j.asoc.2025.113436_bib47) 2021; 58
Huang (10.1016/j.asoc.2025.113436_bib26) 2024; 130
Usman (10.1016/j.asoc.2025.113436_bib43) 2024; 162
Allahverdi (10.1016/j.asoc.2025.113436_bib9) 2008; 187
Hussain (10.1016/j.asoc.2025.113436_bib11) 2019; 52
Manafi (10.1016/j.asoc.2025.113436_bib48) 2022; 128
Guo (10.1016/j.asoc.2025.113436_bib18) 2024; 255
References_xml – volume: 52
  start-page: 2191
  year: 2019
  end-page: 2233
  ident: bib11
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
– volume: 94
  year: 2025
  ident: bib24
  article-title: A novel deep self-learning method for flexible job-shop scheduling problems with multiplicity: deep reinforcement learning assisted the fluid master-apprentice evolutionary algorithm
  publication-title: Swarm Evolut. Comput.
– volume: 162
  year: 2024
  ident: bib43
  article-title: Job-shop scheduling with limited flexible workers considering ergonomic factors using an improved multi-objective discrete jaya algorithm
  publication-title: Comput. Oper. Res.
– volume: 62
  start-page: 650
  year: 2022
  end-page: 667
  ident: bib54
  article-title: An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules
  publication-title: J. Manuf. Syst.
– volume: 130
  year: 2024
  ident: bib26
  article-title: An enhanced memetic algorithm with hierarchical heuristic neighborhood search for type-2 Green fuzzy flexible job shop scheduling
  publication-title: Eng. Appl. Artif. Intell.
– volume: 90
  year: 2024
  ident: bib31
  article-title: A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources
  publication-title: Swarm Evolut. Comput.
– volume: 133
  year: 2024
  ident: bib19
  article-title: Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times
  publication-title: Eng. Appl. Artif. Intell.
– volume: 55
  start-page: 1440
  year: 2017
  end-page: 1454
  ident: bib7
  article-title: Recent advances in research on reconfigurable machine tools: a literature review
  publication-title: Int. J. Prod. Res.
– start-page: 2642
  year: 2021
  end-page: 2649
  ident: bib28
  article-title: A Self-learning harris hawks optimization algorithm for flexible job shop scheduling with setup times and resource constraints
  publication-title: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– volume: 255
  year: 2024
  ident: bib18
  article-title: The marriage of operations research and reinforcement learning: integration of NEH into Q-learning algorithm for the permutation flowshop scheduling problem
  publication-title: Expert Syst. Appl.
– volume: 160
  year: 2021
  ident: bib39
  article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: an application from casting workshop
  publication-title: Comput. Ind. Eng.
– volume: 166
  year: 2024
  ident: bib55
  article-title: Flexible assembly job shop scheduling problem considering reconfigurable machine: a cooperative co-evolutionary matheuristic algorithm
  publication-title: Appl. Soft Comput.
– volume: 153
  year: 2021
  ident: bib14
  article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 35
  start-page: 626
  year: 2023
  end-page: 668
  ident: bib46
  article-title: A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility
  publication-title: Flex. Serv. Manuf. J.
– start-page: 535
  year: 2021
  end-page: 543
  ident: bib53
  article-title: Integrated workforce allocation and scheduling in a reconfigurable manufacturing system considering cloud manufacturing
  publication-title: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems: IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 5–9, 2021, Proceedings, Part II
– volume: 304
  start-page: 1296
  year: 2023
  end-page: 1330
  ident: bib15
  article-title: Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur. J. Oper. Res.
– volume: 85
  year: 2024
  ident: bib16
  article-title: MRLM: a meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects
  publication-title: Swarm Evolut. Comput.
– volume: 149
  year: 2020
  ident: bib23
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Comput. Ind. Eng.
– volume: 188
  year: 2024
  ident: bib27
  article-title: Multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation
  publication-title: Comput. Ind. Eng.
– volume: 32
  start-page: 707
  year: 2021
  end-page: 728
  ident: bib41
  article-title: An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading
  publication-title: J. Intell. Manuf.
– volume: 54
  start-page: 5554
  year: 2016
  end-page: 5566
  ident: bib4
  article-title: A knowledge-guided fruit Fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem
  publication-title: Int. J. Prod. Res.
– year: 2024
  ident: bib44
  article-title: Dual resource constrained flexible job shop scheduling with sequence-dependent setup time
  publication-title: Expert Syst.
– volume: 59
  start-page: 3975
  year: 2021
  end-page: 3995
  ident: bib52
  article-title: A multi-objective particle swarm optimisation for integrated configuration design and scheduling in reconfigurable manufacturing system
  publication-title: Int. J. Prod. Res.
– volume: 94
  year: 2020
  ident: bib49
  article-title: Flexible job shop scheduling problem with reconfigurable machine tools: an improved differential evolution algorithm
  publication-title: Appl. Soft Comput.
– volume: 91
  year: 2025
  ident: bib42
  article-title: Multi-agent deep reinforcement learning for dynamic reconfigurable shop scheduling considering batch processing and worker cooperation
  publication-title: Robot. Comput. Integr. Manuf.
– volume: 296
  start-page: 393
  year: 2022
  end-page: 422
  ident: bib12
  article-title: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art
  publication-title: Eur. J. Oper. Res.
– year: 2024
  ident: bib17
  article-title: An iterative greedy algorithm with Q-Learning mechanism for the multiobjective distributed No-Idle permutation flowshop scheduling
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 28
  start-page: 32
  year: 2020
  end-page: 46
  ident: bib51
  article-title: Mixed integer programming models for concurrent configuration design and scheduling in a reconfigurable manufacturing system
  publication-title: Concurr. Eng.
– start-page: 1
  year: 2022
  end-page: 43
  ident: bib38
  article-title: A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility
  publication-title: Flex. Serv. Manuf. J.
– volume: 58
  start-page: 6336
  year: 2020
  end-page: 6349
  ident: bib34
  article-title: Worker assignment in dual resource constrained assembly job shops with worker heterogeneity: an assessment by simulation
  publication-title: Int. J. Prod. Res.
– volume: 434
  start-page: 433
  year: 2013
  end-page: 452
  ident: bib13
  article-title: Boosting metaheuristic search using reinforcement learning
  publication-title: Hybrid Metaheuristics, Studies in Computational Intelligence
– volume: 175
  year: 2021
  ident: bib2
  article-title: A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect
  publication-title: Expert Syst. Appl.
– volume: 57
  start-page: 931
  year: 2019
  end-page: 947
  ident: bib35
  article-title: Workload control in dual-resource constrained high-variety shops: an assessment by simulation
  publication-title: Int. J. Prod. Res.
– volume: 74
  start-page: 264
  year: 2024
  end-page: 290
  ident: bib45
  article-title: An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: an application for machining workshop
  publication-title: J. Manuf. Syst.
– volume: 372
  start-page: 655
  year: 2016
  end-page: 676
  ident: bib1
  article-title: A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem
  publication-title: Inf. Sci.
– volume: 34
  year: 2022
  ident: bib29
  article-title: A self-learning artificial bee colony algorithm based on reinforcement learning for a flexible job-shop scheduling problem
  publication-title: Concurr. Comput. Pract. Exp.
– volume: 146
  year: 2023
  ident: bib22
  article-title: A reinforcement learning-artificial bee colony algorithm for flexible job-shop scheduling problem with lot streaming
  publication-title: Appl. Soft Comput.
– volume: 86
  start-page: 1945
  year: 2016
  end-page: 1962
  ident: bib50
  article-title: Bi-objective optimization of integrating configuration generation and scheduling for reconfigurable flow lines using NSGA-II
  publication-title: Int. J. Adv. Manuf. Technol.
– start-page: 108
  year: 2024, October
  end-page: 116
  ident: bib33
  article-title: A Self-Learning NSGA-III approach for Many-Objective flexible job shop scheduling problem based on reinforcement learning
  publication-title: International Workshop of Advanced Manufacturing and Automation
– volume: 146
  year: 2020
  ident: bib8
  article-title: Solving the hybrid flow shop scheduling problem with limited human resource constraint
  publication-title: Comput. Ind. Eng.
– volume: 169
  year: 2025
  ident: bib30
  article-title: Reinforcement learning-driven dual neighborhood structure artificial bee colony algorithm for continuous optimization problem
  publication-title: Appl. Soft Comput.
– volume: 174
  start-page: 388
  year: 2018
  end-page: 405
  ident: bib60
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers. Manag.
– volume: 46
  start-page: 116
  year: 2023
  end-page: 134
  ident: bib56
  article-title: A multi-phase scheduling method for reconfigurable flexible job-shops with multi-machine cooperation based on a scout and Mutation-based aquila optimizer
  publication-title: CIRP J. Manuf. Sci. Technol.
– volume: 83
  year: 2023
  ident: bib32
  article-title: Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions
  publication-title: Swarm Evolut. Comput.
– start-page: 1
  year: 2023
  end-page: 17
  ident: bib58
  article-title: Production scheduling in a reconfigurable manufacturing system benefiting from human-robot collaboration
  publication-title: Int. J. Prod. Res.
– volume: 11
  start-page: 1
  year: 2021
  end-page: 22
  ident: bib10
  article-title: Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields
  publication-title: Sci. Rep.
– volume: 58
  start-page: 442
  year: 2021
  end-page: 451
  ident: bib47
  article-title: An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints
  publication-title: J. Manuf. Syst.
– volume: 95
  start-page: 51
  year: 2016
  end-page: 67
  ident: bib59
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
– volume: 187
  start-page: 978
  year: 2008
  end-page: 984
  ident: bib9
  article-title: The significance of reducing setup times/setup costs
  publication-title: Eur. J. Oper. Res.
– start-page: 1
  year: 2021
  end-page: 22
  ident: bib6
  article-title: Distributed job-shop rescheduling problem considering reconfigurability of machines: a self-adaptive hybrid equilibrium optimiser
  publication-title: Int. J. Prod. Res.
– volume: 53
  start-page: 18925
  year: 2023
  end-page: 18958
  ident: bib20
  article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem
  publication-title: Appl. Intell.
– volume: 35
  start-page: 75
  year: 2024
  end-page: 93
  ident: bib21
  article-title: Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling
  publication-title: J. Intell. Manuf.
– volume: 168
  year: 2022
  ident: bib36
  article-title: A multi-method approach to scheduling and efficiency analysis in dual-resource constrained job shops with processing time uncertainty
  publication-title: Comput. Ind. Eng.
– volume: 63
  start-page: 563
  year: 2022
  end-page: 574
  ident: bib57
  article-title: Workforce planning and production scheduling in a reconfigurable manufacturing system facing the COVID-19 pandemic
  publication-title: J. Manuf. Syst.
– volume: 2021
  year: 2021
  ident: bib61
  article-title: Improved whale optimization algorithm for solving constrained optimization problems
  publication-title: Discret. Dyn. Nat. Soc.
– volume: 102
  start-page: 113
  year: 2016
  end-page: 131
  ident: bib37
  article-title: A branch population genetic algorithm for dual-resource constrained job shop scheduling problem
  publication-title: Comput. Ind. Eng.
– start-page: 2328
  year: 2021
  end-page: 2333
  ident: bib3
  article-title: A hybrid metaheuristic algorithm with novel decoding methods for flexible flow shop scheduling considering human fatigue
  publication-title: Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC)
– volume: 59
  start-page: 6400
  year: 2021
  end-page: 6418
  ident: bib5
  article-title: Reconfigurable manufacturing systems from an optimisation perspective: a focused review of literature
  publication-title: Int. J. Prod. Res.
– start-page: 51
  year: 2023, November
  end-page: 56
  ident: bib40
  article-title: Dual Resource-Constrained scheduling problem considering differences in processing time among operators and rush order
  publication-title: In 2023 IEEE 13th International Workshop on Computational Intelligence and Applications (IWCIA)
– volume: 128
  year: 2022
  ident: bib48
  article-title: A centroid opposition-based coral reefs algorithm for solving an automated guided vehicle routing problem with a recharging constraint
  publication-title: Appl. Soft Comput.
– volume: 258
  year: 2024
  ident: bib25
  article-title: A multi-objective genetic algorithm based on two-stage reinforcement learning for Green flexible shop scheduling problem considering machine speed
  publication-title: Expert Syst. Appl.
– year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib17
  article-title: An iterative greedy algorithm with Q-Learning mechanism for the multiobjective distributed No-Idle permutation flowshop scheduling
  publication-title: IEEE Trans. Syst. Man Cybern. Syst.
– volume: 160
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib39
  article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: an application from casting workshop
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2021.107557
– volume: 34
  issue: 4
  year: 2022
  ident: 10.1016/j.asoc.2025.113436_bib29
  article-title: A self-learning artificial bee colony algorithm based on reinforcement learning for a flexible job-shop scheduling problem
  publication-title: Concurr. Comput. Pract. Exp.
  doi: 10.1002/cpe.6658
– volume: 146
  year: 2023
  ident: 10.1016/j.asoc.2025.113436_bib22
  article-title: A reinforcement learning-artificial bee colony algorithm for flexible job-shop scheduling problem with lot streaming
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2023.110658
– volume: 95
  start-page: 51
  year: 2016
  ident: 10.1016/j.asoc.2025.113436_bib59
  article-title: The whale optimization algorithm
  publication-title: Adv. Eng. Softw.
  doi: 10.1016/j.advengsoft.2016.01.008
– volume: 133
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib19
  article-title: Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times
  publication-title: Eng. Appl. Artif. Intell.
– start-page: 1
  year: 2023
  ident: 10.1016/j.asoc.2025.113436_bib58
  article-title: Production scheduling in a reconfigurable manufacturing system benefiting from human-robot collaboration
  publication-title: Int. J. Prod. Res.
– start-page: 108
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib33
  article-title: A Self-Learning NSGA-III approach for Many-Objective flexible job shop scheduling problem based on reinforcement learning
– volume: 102
  start-page: 113
  year: 2016
  ident: 10.1016/j.asoc.2025.113436_bib37
  article-title: A branch population genetic algorithm for dual-resource constrained job shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2016.10.012
– volume: 32
  start-page: 707
  issue: 3
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib41
  article-title: An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-020-01697-5
– year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib44
  article-title: Dual resource constrained flexible job shop scheduling with sequence-dependent setup time
  publication-title: Expert Syst.
  doi: 10.1111/exsy.13669
– volume: 91
  year: 2025
  ident: 10.1016/j.asoc.2025.113436_bib42
  article-title: Multi-agent deep reinforcement learning for dynamic reconfigurable shop scheduling considering batch processing and worker cooperation
  publication-title: Robot. Comput. Integr. Manuf.
  doi: 10.1016/j.rcim.2024.102834
– volume: 59
  start-page: 3975
  issue: 13
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib52
  article-title: A multi-objective particle swarm optimisation for integrated configuration design and scheduling in reconfigurable manufacturing system
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1756507
– volume: 83
  year: 2023
  ident: 10.1016/j.asoc.2025.113436_bib32
  article-title: Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2023.101414
– volume: 2021
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib61
  article-title: Improved whale optimization algorithm for solving constrained optimization problems
  publication-title: Discret. Dyn. Nat. Soc.
  doi: 10.1155/2021/8832251
– volume: 53
  start-page: 18925
  issue: 15
  year: 2023
  ident: 10.1016/j.asoc.2025.113436_bib20
  article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-023-04479-7
– volume: 55
  start-page: 1440
  issue: 5
  year: 2017
  ident: 10.1016/j.asoc.2025.113436_bib7
  article-title: Recent advances in research on reconfigurable machine tools: a literature review
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1237795
– volume: 85
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib16
  article-title: MRLM: a meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2024.101479
– volume: 258
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib25
  article-title: A multi-objective genetic algorithm based on two-stage reinforcement learning for Green flexible shop scheduling problem considering machine speed
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.125189
– start-page: 1
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib6
  article-title: Distributed job-shop rescheduling problem considering reconfigurability of machines: a self-adaptive hybrid equilibrium optimiser
  publication-title: Int. J. Prod. Res.
– volume: 28
  start-page: 32
  issue: 1
  year: 2020
  ident: 10.1016/j.asoc.2025.113436_bib51
  article-title: Mixed integer programming models for concurrent configuration design and scheduling in a reconfigurable manufacturing system
  publication-title: Concurr. Eng.
  doi: 10.1177/1063293X19898727
– volume: 54
  start-page: 5554
  issue: 18
  year: 2016
  ident: 10.1016/j.asoc.2025.113436_bib4
  article-title: A knowledge-guided fruit Fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2016.1170226
– volume: 153
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib14
  article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.107082
– volume: 90
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib31
  article-title: A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2024.101658
– volume: 162
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib43
  article-title: Job-shop scheduling with limited flexible workers considering ergonomic factors using an improved multi-objective discrete jaya algorithm
  publication-title: Comput. Oper. Res.
  doi: 10.1016/j.cor.2023.106456
– volume: 175
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib2
  article-title: A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2021.114843
– volume: 146
  year: 2020
  ident: 10.1016/j.asoc.2025.113436_bib8
  article-title: Solving the hybrid flow shop scheduling problem with limited human resource constraint
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106545
– volume: 86
  start-page: 1945
  year: 2016
  ident: 10.1016/j.asoc.2025.113436_bib50
  article-title: Bi-objective optimization of integrating configuration generation and scheduling for reconfigurable flow lines using NSGA-II
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-015-8291-8
– volume: 434
  start-page: 433
  year: 2013
  ident: 10.1016/j.asoc.2025.113436_bib13
  article-title: Boosting metaheuristic search using reinforcement learning
– volume: 149
  year: 2020
  ident: 10.1016/j.asoc.2025.113436_bib23
  article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2020.106778
– volume: 11
  start-page: 1
  issue: 1
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib10
  article-title: Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields
  publication-title: Sci. Rep.
  doi: 10.1038/s41598-021-90847-7
– volume: 296
  start-page: 393
  issue: 2
  year: 2022
  ident: 10.1016/j.asoc.2025.113436_bib12
  article-title: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2021.04.032
– volume: 62
  start-page: 650
  year: 2022
  ident: 10.1016/j.asoc.2025.113436_bib54
  article-title: An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.01.014
– volume: 128
  year: 2022
  ident: 10.1016/j.asoc.2025.113436_bib48
  article-title: A centroid opposition-based coral reefs algorithm for solving an automated guided vehicle routing problem with a recharging constraint
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2022.109504
– volume: 59
  start-page: 6400
  issue: 21
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib5
  article-title: Reconfigurable manufacturing systems from an optimisation perspective: a focused review of literature
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2020.1813913
– volume: 94
  year: 2020
  ident: 10.1016/j.asoc.2025.113436_bib49
  article-title: Flexible job shop scheduling problem with reconfigurable machine tools: an improved differential evolution algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106416
– volume: 74
  start-page: 264
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib45
  article-title: An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: an application for machining workshop
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2024.03.005
– volume: 169
  year: 2025
  ident: 10.1016/j.asoc.2025.113436_bib30
  article-title: Reinforcement learning-driven dual neighborhood structure artificial bee colony algorithm for continuous optimization problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112601
– start-page: 2642
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib28
  article-title: A Self-learning harris hawks optimization algorithm for flexible job shop scheduling with setup times and resource constraints
– volume: 63
  start-page: 563
  year: 2022
  ident: 10.1016/j.asoc.2025.113436_bib57
  article-title: Workforce planning and production scheduling in a reconfigurable manufacturing system facing the COVID-19 pandemic
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2022.04.018
– start-page: 2328
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib3
  article-title: A hybrid metaheuristic algorithm with novel decoding methods for flexible flow shop scheduling considering human fatigue
– volume: 57
  start-page: 931
  issue: 3
  year: 2019
  ident: 10.1016/j.asoc.2025.113436_bib35
  article-title: Workload control in dual-resource constrained high-variety shops: an assessment by simulation
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2018.1497313
– volume: 58
  start-page: 6336
  issue: 20
  year: 2020
  ident: 10.1016/j.asoc.2025.113436_bib34
  article-title: Worker assignment in dual resource constrained assembly job shops with worker heterogeneity: an assessment by simulation
  publication-title: Int. J. Prod. Res.
  doi: 10.1080/00207543.2019.1677963
– volume: 187
  start-page: 978
  issue: 3
  year: 2008
  ident: 10.1016/j.asoc.2025.113436_bib9
  article-title: The significance of reducing setup times/setup costs
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2006.09.010
– volume: 188
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib27
  article-title: Multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2024.109903
– volume: 35
  start-page: 626
  issue: 3
  year: 2023
  ident: 10.1016/j.asoc.2025.113436_bib46
  article-title: A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility
  publication-title: Flex. Serv. Manuf. J.
  doi: 10.1007/s10696-022-09446-x
– start-page: 535
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib53
  article-title: Integrated workforce allocation and scheduling in a reconfigurable manufacturing system considering cloud manufacturing
– volume: 52
  start-page: 2191
  issue: 4
  year: 2019
  ident: 10.1016/j.asoc.2025.113436_bib11
  article-title: Metaheuristic research: a comprehensive survey
  publication-title: Artif. Intell. Rev.
  doi: 10.1007/s10462-017-9605-z
– volume: 304
  start-page: 1296
  issue: 3
  year: 2023
  ident: 10.1016/j.asoc.2025.113436_bib15
  article-title: Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem
  publication-title: Eur. J. Oper. Res.
  doi: 10.1016/j.ejor.2022.03.054
– volume: 174
  start-page: 388
  year: 2018
  ident: 10.1016/j.asoc.2025.113436_bib60
  article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm
  publication-title: Energy Convers. Manag.
  doi: 10.1016/j.enconman.2018.08.053
– volume: 35
  start-page: 75
  issue: 1
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib21
  article-title: Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling
  publication-title: J. Intell. Manuf.
  doi: 10.1007/s10845-022-02037-5
– volume: 94
  year: 2025
  ident: 10.1016/j.asoc.2025.113436_bib24
  article-title: A novel deep self-learning method for flexible job-shop scheduling problems with multiplicity: deep reinforcement learning assisted the fluid master-apprentice evolutionary algorithm
  publication-title: Swarm Evolut. Comput.
  doi: 10.1016/j.swevo.2025.101907
– volume: 372
  start-page: 655
  year: 2016
  ident: 10.1016/j.asoc.2025.113436_bib1
  article-title: A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2016.08.046
– volume: 168
  year: 2022
  ident: 10.1016/j.asoc.2025.113436_bib36
  article-title: A multi-method approach to scheduling and efficiency analysis in dual-resource constrained job shops with processing time uncertainty
  publication-title: Comput. Ind. Eng.
  doi: 10.1016/j.cie.2022.108067
– start-page: 1
  year: 2022
  ident: 10.1016/j.asoc.2025.113436_bib38
  article-title: A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility
  publication-title: Flex. Serv. Manuf. J.
– volume: 166
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib55
  article-title: Flexible assembly job shop scheduling problem considering reconfigurable machine: a cooperative co-evolutionary matheuristic algorithm
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2024.112148
– volume: 46
  start-page: 116
  year: 2023
  ident: 10.1016/j.asoc.2025.113436_bib56
  article-title: A multi-phase scheduling method for reconfigurable flexible job-shops with multi-machine cooperation based on a scout and Mutation-based aquila optimizer
  publication-title: CIRP J. Manuf. Sci. Technol.
  doi: 10.1016/j.cirpj.2023.08.003
– start-page: 51
  year: 2023
  ident: 10.1016/j.asoc.2025.113436_bib40
  article-title: Dual Resource-Constrained scheduling problem considering differences in processing time among operators and rush order
– volume: 255
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib18
  article-title: The marriage of operations research and reinforcement learning: integration of NEH into Q-learning algorithm for the permutation flowshop scheduling problem
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2024.124779
– volume: 130
  year: 2024
  ident: 10.1016/j.asoc.2025.113436_bib26
  article-title: An enhanced memetic algorithm with hierarchical heuristic neighborhood search for type-2 Green fuzzy flexible job shop scheduling
  publication-title: Eng. Appl. Artif. Intell.
  doi: 10.1016/j.engappai.2023.107762
– volume: 58
  start-page: 442
  year: 2021
  ident: 10.1016/j.asoc.2025.113436_bib47
  article-title: An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints
  publication-title: J. Manuf. Syst.
  doi: 10.1016/j.jmsy.2021.01.001
SSID ssj0016928
Score 2.4669733
Snippet One of the key areas in which production systems researchers are working these days is to find advanced optimization algorithms to efficiently schedule...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 113436
SubjectTerms Flexible job shop scheduling
Machine learning
Meta-heuristics
Reconfigurable manufacturing systems
Reinforcement learning
Title A self-learning whale optimization algorithm based on reinforcement learning for a dual-resource flexible job shop scheduling problem
URI https://dx.doi.org/10.1016/j.asoc.2025.113436
Volume 180
WOSCitedRecordID wos001511049800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1568-4946
  databaseCode: AIEXJ
  dateStart: 20010601
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0016928
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXvoumL3DoJsiwJEqiRqN10RZoUAQevAkkRcZ2FMmwFTfInh_Uf9ijSNFy2gbN0EUQCPIk6D7eHU_3QOh9CHsmK1Lig_WrfBLHzOeg530wRgggYMSjwjSbSI-P6WyWfR8Mfna5MNsyrSp6eZmt_iurYQyYrVNn78BuRxQG4B6YDldgO1z_ifFjbyNL5Zedz-PHnOkAQhAN5zbn0mPlab1eNPNzTyuxQv8wWMu2hKpovYWeW9zGWHo6X8tfW0e_p3QNTZ1wtay5t5nXKw9OyKCxbGJ726Cmb_N2hu4GJH4bwn7RdPqydYVXTLUhBZN5L0Doo64MIU2fKl0dod65GLbs7KwuF_63-nQOGDCIPpFXTsGcAEndDbs2yUhNI-u-cyOMXWidk8cJ9UlmvZROYI96IjcIImJqqPymDYxjYjlkAPShJj_cTd4vvX1DJbpAxS4GbplrGrmmkRsa99BhmMYZCNLD8ZfJ7Kv7dZVkbUNf9-Y2U8sEFd58kz9bQz0LZ_oYPbRHEzw2kHqCBrJ6ih51bT-w1QLP0PUY7yEMtwjDfYRhhzDcIgzD0B7CsFsMQ5jhPYThDmEYEIY1wvAOYdgi7DmafppMP3z2bTcPX0SjsPFTloG04ElIChkWVKmIUsozHiQFSQqakJiFPIhVxgkcKZiIuFJFIkTAdev5NHqBDqq6ki8RFiSSCQsoVYITygQLlVQpEWFWBCMiiiMUdB81F7bSvW64UuZ_Z-cR8tyalanzcuvsuONVbi1VY4HmAL1b1r2601Neowe7PfEGHTTrC_kW3RfbZrFZv7O4-wUf5LyD
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-learning+whale+optimization+algorithm+based+on+reinforcement+learning+for+a+dual-resource+flexible+job+shop+scheduling+problem&rft.jtitle=Applied+soft+computing&rft.au=Manafi%2C+Ehsan&rft.au=Domenech%2C+Bruno&rft.au=Tavakkoli-Moghaddam%2C+Reza&rft.au=Ranaboldo%2C+Matteo&rft.date=2025-08-01&rft.issn=1568-4946&rft.volume=180&rft.spage=113436&rft_id=info:doi/10.1016%2Fj.asoc.2025.113436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2025_113436
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon