A self-learning whale optimization algorithm based on reinforcement learning for a dual-resource flexible job shop scheduling problem
One of the key areas in which production systems researchers are working these days is to find advanced optimization algorithms to efficiently schedule activities in manufacturing systems, which requires more sophisticated models with increased computational complexity. Therefore, there has been gro...
Saved in:
| Published in: | Applied soft computing Vol. 180; p. 113436 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier B.V
01.08.2025
|
| Subjects: | |
| ISSN: | 1568-4946 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | One of the key areas in which production systems researchers are working these days is to find advanced optimization algorithms to efficiently schedule activities in manufacturing systems, which requires more sophisticated models with increased computational complexity. Therefore, there has been growing interest in this subject to improve the performance of meta-heuristics by incorporating reinforcement learning approaches. This paper deals with a dual-resource flexible job shop scheduling (DRFJSS) problem, in which each operation requires two resources (i.e., reconfigurable machine tool (RMT) and worker) to be processed. A mixed-integer linear programming (MILP) model is formulated to minimize the makespan. Since the proposed model cannot optimally solve most medium-sized instances, a self-learning whale optimization algorithm (SLWOA) is developed to deal efficiently with such a difficult problem. In the proposed SLWOA, an agent is trained by the state–action–reward–state–action (SARSA) algorithm to balance exploration and exploitation. The results show that the SLWOA has a stronger global search ability and faster convergence speed than the original whale optimization algorithm.
[Display omitted]
•Studying dual-resource scheduling in shop floors with reconfigurable machine tools.•Formulating a position-based MILP model for scheduling optimization.•Proposing a self-learning whale algorithm for large instance problems.•Designing states, actions, and rewards for reinforcement learning integration.•Developing a variable neighbourhood search to improve the local search. |
|---|---|
| AbstractList | One of the key areas in which production systems researchers are working these days is to find advanced optimization algorithms to efficiently schedule activities in manufacturing systems, which requires more sophisticated models with increased computational complexity. Therefore, there has been growing interest in this subject to improve the performance of meta-heuristics by incorporating reinforcement learning approaches. This paper deals with a dual-resource flexible job shop scheduling (DRFJSS) problem, in which each operation requires two resources (i.e., reconfigurable machine tool (RMT) and worker) to be processed. A mixed-integer linear programming (MILP) model is formulated to minimize the makespan. Since the proposed model cannot optimally solve most medium-sized instances, a self-learning whale optimization algorithm (SLWOA) is developed to deal efficiently with such a difficult problem. In the proposed SLWOA, an agent is trained by the state–action–reward–state–action (SARSA) algorithm to balance exploration and exploitation. The results show that the SLWOA has a stronger global search ability and faster convergence speed than the original whale optimization algorithm.
[Display omitted]
•Studying dual-resource scheduling in shop floors with reconfigurable machine tools.•Formulating a position-based MILP model for scheduling optimization.•Proposing a self-learning whale algorithm for large instance problems.•Designing states, actions, and rewards for reinforcement learning integration.•Developing a variable neighbourhood search to improve the local search. |
| ArticleNumber | 113436 |
| Author | Tavakkoli-Moghaddam, Reza Ranaboldo, Matteo Manafi, Ehsan Domenech, Bruno |
| Author_xml | – sequence: 1 givenname: Ehsan surname: Manafi fullname: Manafi, Ehsan email: ehsan.manafi@upc.edu organization: DOPS-UPC, Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Barcelona, Spain – sequence: 2 givenname: Bruno surname: Domenech fullname: Domenech, Bruno email: bruno.domenech@upc.edu organization: DOPS-UPC, Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Barcelona, Spain – sequence: 3 givenname: Reza surname: Tavakkoli-Moghaddam fullname: Tavakkoli-Moghaddam, Reza email: tavakoli@ut.ac.ir organization: School of Industrial Engineering, College of Engineering, University of Tehran, Tehran, Iran – sequence: 4 givenname: Matteo surname: Ranaboldo fullname: Ranaboldo, Matteo email: matteo.ranaboldo@upc.edu organization: CITCEA-UPC, Universitat Politècnica de Catalunya – BarcelonaTech (UPC), Barcelona, Spain |
| BookMark | eNp9kMtqwzAQRbVIoUnaH-hKP2DXkm3Fhm5C6AsC3WQv9BjFMrJlJKevff-7TlO66CKrgTv3DMxZoFnve0DohmQpyQi7bVMRvUppRsuUkLzI2QzNScmqpKgLdokWMbbZVKxpNUdfaxzBmcSBCL3t9_itEQ6wH0bb2U8xWt9j4fY-2LHpsBQRNJ6iALY3PijooB_xHzxFWGB9EC4JEP1hKmDj4N3K6WbrJY6NH3BUDeiDOwJD8NOqu0IXRrgI179ziXYP97vNU7J9eXzerLeJyjM6JitRKyUko4UGqitj8qqqZC0J0wXTFStKQSUpTS2LnDKhcmmMZkoRSQpGVvkS0dNZFXyMAQwfgu1E-OAk40d3vOVHd_zojp_cTVD1D1J2_BEzBmHdefTuhML006uFwKOy0CvQNoAaufb2HP4NTv-Snw |
| CitedBy_id | crossref_primary_10_1016_j_est_2025_118077 crossref_primary_10_3390_systems13090768 crossref_primary_10_1016_j_asoc_2025_113712 crossref_primary_10_3390_mca30040083 |
| Cites_doi | 10.1016/j.cie.2021.107557 10.1002/cpe.6658 10.1016/j.asoc.2023.110658 10.1016/j.advengsoft.2016.01.008 10.1016/j.cie.2016.10.012 10.1007/s10845-020-01697-5 10.1111/exsy.13669 10.1016/j.rcim.2024.102834 10.1080/00207543.2020.1756507 10.1016/j.swevo.2023.101414 10.1155/2021/8832251 10.1007/s10489-023-04479-7 10.1080/00207543.2016.1237795 10.1016/j.swevo.2024.101479 10.1016/j.eswa.2024.125189 10.1177/1063293X19898727 10.1080/00207543.2016.1170226 10.1016/j.cie.2020.107082 10.1016/j.swevo.2024.101658 10.1016/j.cor.2023.106456 10.1016/j.eswa.2021.114843 10.1016/j.cie.2020.106545 10.1007/s00170-015-8291-8 10.1016/j.cie.2020.106778 10.1038/s41598-021-90847-7 10.1016/j.ejor.2021.04.032 10.1016/j.jmsy.2022.01.014 10.1016/j.asoc.2022.109504 10.1080/00207543.2020.1813913 10.1016/j.asoc.2020.106416 10.1016/j.jmsy.2024.03.005 10.1016/j.asoc.2024.112601 10.1016/j.jmsy.2022.04.018 10.1080/00207543.2018.1497313 10.1080/00207543.2019.1677963 10.1016/j.ejor.2006.09.010 10.1016/j.cie.2024.109903 10.1007/s10696-022-09446-x 10.1007/s10462-017-9605-z 10.1016/j.ejor.2022.03.054 10.1016/j.enconman.2018.08.053 10.1007/s10845-022-02037-5 10.1016/j.swevo.2025.101907 10.1016/j.ins.2016.08.046 10.1016/j.cie.2022.108067 10.1016/j.asoc.2024.112148 10.1016/j.cirpj.2023.08.003 10.1016/j.eswa.2024.124779 10.1016/j.engappai.2023.107762 10.1016/j.jmsy.2021.01.001 |
| ContentType | Journal Article |
| Copyright | 2025 The Authors |
| Copyright_xml | – notice: 2025 The Authors |
| DBID | 6I. AAFTH AAYXX CITATION |
| DOI | 10.1016/j.asoc.2025.113436 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2025_113436 S1568494625007471 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6I. 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAFTH AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGQPQ AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFKBS EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- ROL RPZ SDF SDG SES SEW SPC SPCBC SST SSV SSZ T5K UHS UNMZH ~G- ~HD 9DU AAYXX ACLOT CITATION |
| ID | FETCH-LOGICAL-c302t-7a9ccab624de2d8ff3888b9b16d46d8645a2b15f9b4326ac3bffd6cc1b146173 |
| ISICitedReferencesCount | 4 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001511049800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Tue Nov 18 22:03:43 EST 2025 Sat Nov 29 07:36:19 EST 2025 Sat Sep 20 17:14:03 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Reconfigurable manufacturing systems Flexible job shop scheduling Machine learning Reinforcement learning Meta-heuristics |
| Language | English |
| License | This is an open access article under the CC BY-NC license. |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c302t-7a9ccab624de2d8ff3888b9b16d46d8645a2b15f9b4326ac3bffd6cc1b146173 |
| OpenAccessLink | https://dx.doi.org/10.1016/j.asoc.2025.113436 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2025_113436 crossref_citationtrail_10_1016_j_asoc_2025_113436 elsevier_sciencedirect_doi_10_1016_j_asoc_2025_113436 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Jing, Yao, Liu, Zhou (bib21) 2024; 35 Gadalla, Xue (bib7) 2017; 55 Allahverdi, Soroush (bib9) 2008; 187 Hussain, Mohd Salleh, Cheng, Shi (bib11) 2019; 52 Vital-Soto, Baki, Azab (bib38) 2022 Wu, Peng, Xiao, Wu (bib41) 2021; 32 Long, Zhang, Qi, Xu, Jin, Zhou (bib29) 2022; 34 Yelles-Chaouche, Gurevsky, Brahimi, Dolgui (bib5) 2021; 59 Wauters, Verbeeck, Causmaecker, Berghe (bib13) 2013; 434 Karimi-Mamaghan, Mohammadi, Pasdeloup, Meyer (bib15) 2023; 304 Dou, Su, Zhao (bib51) 2020; 28 Chen, Wu, Wang, Tong, Yan (bib31) 2024; 90 Bortolini, Ferrari, Galizia, Regattieri (bib47) 2021; 58 Dunke, Nickel (bib36) 2022; 168 Huang, Gong, Lu (bib26) 2024; 130 Vital-Soto, Baki, Azab (bib46) 2023; 35 Dou, Li, Xia, Zhao (bib52) 2021; 59 Zheng, Wang (bib4) 2016; 54 Thürer, Zhang, Stevenson, Costa, Ma (bib34) 2020; 58 Mirjalili, Lewis (bib59) 2016; 95 Zhao, Zhang, Cao, Tang (bib14) 2021; 153 Ye, Zhang, Wang, Zeng, Wang, Zeng (bib30) 2025; 169 Wei, Tang, Li, Lei, Wang (bib45) 2024; 74 Chen, Yang, Li, Wang (bib23) 2020; 149 Kimura, Ishigaki, Tanabe (bib40) 2023, November Vahedi-Nouri, Tavakkoli-Moghaddam, Hanzálek, Dolgui (bib58) 2023 Thürer, Stevenson, Renna (bib35) 2019; 57 Vahedi-Nouri, Tavakkoli-Moghaddam, Hanzálek, Dolgui (bib53) 2021 Fan, Zhang, Liu, Shen, Gao (bib54) 2022; 62 Gao, Pan (bib1) 2016; 372 Costa, Fernandez-Viagas, Framiñan (bib8) 2020; 146 Karimi-Mamaghan, Mohammadi, Meyer, Karimi-Mamaghan, Talbi (bib12) 2022; 296 Zhang, Yan, Song, Zhang, Guo (bib19) 2024; 133 Xu, Wang (bib33) 2024, October Usman, Lu (bib43) 2024; 162 Zhao, Zhuang, Wang, Dong (bib17) 2024 Gu, Chen, Wang (bib20) 2023; 53 Hu, Zhang, Zhang, Li, Tang (bib55) 2024; 166 Alvarez-Alvarado, Alban-Chacon, Lamilla-Rubio, Rodriguez-Gallegos, Velásquez (bib10) 2021; 11 Zhang, Shao, Shao, Chen, Pi (bib16) 2024; 85 Ning, Cao (bib61) 2021; 2021 Ye, Bu (bib28) 2021 Dou, Li, Su (bib50) 2016; 86 Li, Huang, Niu (bib37) 2016; 102 Zhang, Deng, Lin, Gong, Han (bib2) 2021; 175 Liu, Lv, Du, Deng, Shen, Zhou (bib27) 2024; 188 Mahmoodjanloo, Tavakkoli-Moghaddama, Baboli, Bozorgi-Amiri (bib6) 2021 Li, Liao, Wang, Xiao, Cao, Guo (bib22) 2023; 146 Pang, Yang, Chen, Zhang, Mo (bib56) 2023; 46 Li, Li, Gao, Lu (bib42) 2025; 91 Mahmoodjanloo, Tavakkoli-Moghaddam, Baboli, Bozorgi-Amiri (bib49) 2020; 94 Zhuang, Zhang, Tang, Li, Wang (bib25) 2024; 258 Du, Qiao, Wang, Lu (bib3) 2021 Guo, Liu, Ling, Li, Jiang, Li, Huang (bib18) 2024; 255 Chen, Li, Xu (bib32) 2023; 83 Vahedi-Nouri, Tavakkoli-Moghaddam, Hanzálek, Dolgui (bib57) 2022; 63 Manafi, Tavakkoli-Moghaddam, Mahmoodjanloo (bib48) 2022; 128 Xiong, Zhang, Shi, He (bib60) 2018; 174 Ding, Luo, Mudassar, Yue, Meng (bib24) 2025; 94 Barak, Javanmard, Moghdani (bib44) 2024 Tan, Yuan, Wang, Zhang (bib39) 2021; 160 Thürer (10.1016/j.asoc.2025.113436_bib34) 2020; 58 Dunke (10.1016/j.asoc.2025.113436_bib36) 2022; 168 Chen (10.1016/j.asoc.2025.113436_bib32) 2023; 83 Dou (10.1016/j.asoc.2025.113436_bib52) 2021; 59 Fan (10.1016/j.asoc.2025.113436_bib54) 2022; 62 Xu (10.1016/j.asoc.2025.113436_bib33) 2024 Costa (10.1016/j.asoc.2025.113436_bib8) 2020; 146 Zheng (10.1016/j.asoc.2025.113436_bib4) 2016; 54 Alvarez-Alvarado (10.1016/j.asoc.2025.113436_bib10) 2021; 11 Gadalla (10.1016/j.asoc.2025.113436_bib7) 2017; 55 Thürer (10.1016/j.asoc.2025.113436_bib35) 2019; 57 Li (10.1016/j.asoc.2025.113436_bib22) 2023; 146 Tan (10.1016/j.asoc.2025.113436_bib39) 2021; 160 Wei (10.1016/j.asoc.2025.113436_bib45) 2024; 74 Du (10.1016/j.asoc.2025.113436_bib3) 2021 Wauters (10.1016/j.asoc.2025.113436_bib13) 2013; 434 Jing (10.1016/j.asoc.2025.113436_bib21) 2024; 35 Pang (10.1016/j.asoc.2025.113436_bib56) 2023; 46 Chen (10.1016/j.asoc.2025.113436_bib31) 2024; 90 Gu (10.1016/j.asoc.2025.113436_bib20) 2023; 53 Ning (10.1016/j.asoc.2025.113436_bib61) 2021; 2021 Xiong (10.1016/j.asoc.2025.113436_bib60) 2018; 174 Hu (10.1016/j.asoc.2025.113436_bib55) 2024; 166 Zhang (10.1016/j.asoc.2025.113436_bib19) 2024; 133 Barak (10.1016/j.asoc.2025.113436_bib44) 2024 Mahmoodjanloo (10.1016/j.asoc.2025.113436_bib6) 2021 Vahedi-Nouri (10.1016/j.asoc.2025.113436_bib53) 2021 Gao (10.1016/j.asoc.2025.113436_bib1) 2016; 372 Zhao (10.1016/j.asoc.2025.113436_bib17) 2024 Vital-Soto (10.1016/j.asoc.2025.113436_bib38) 2022 Vahedi-Nouri (10.1016/j.asoc.2025.113436_bib57) 2022; 63 Li (10.1016/j.asoc.2025.113436_bib37) 2016; 102 Mirjalili (10.1016/j.asoc.2025.113436_bib59) 2016; 95 Zhang (10.1016/j.asoc.2025.113436_bib16) 2024; 85 Li (10.1016/j.asoc.2025.113436_bib42) 2025; 91 Ye (10.1016/j.asoc.2025.113436_bib30) 2025; 169 Karimi-Mamaghan (10.1016/j.asoc.2025.113436_bib15) 2023; 304 Karimi-Mamaghan (10.1016/j.asoc.2025.113436_bib12) 2022; 296 Vital-Soto (10.1016/j.asoc.2025.113436_bib46) 2023; 35 Zhuang (10.1016/j.asoc.2025.113436_bib25) 2024; 258 Dou (10.1016/j.asoc.2025.113436_bib51) 2020; 28 Liu (10.1016/j.asoc.2025.113436_bib27) 2024; 188 Kimura (10.1016/j.asoc.2025.113436_bib40) 2023 Chen (10.1016/j.asoc.2025.113436_bib23) 2020; 149 Wu (10.1016/j.asoc.2025.113436_bib41) 2021; 32 Vahedi-Nouri (10.1016/j.asoc.2025.113436_bib58) 2023 Ye (10.1016/j.asoc.2025.113436_bib28) 2021 Yelles-Chaouche (10.1016/j.asoc.2025.113436_bib5) 2021; 59 Zhao (10.1016/j.asoc.2025.113436_bib14) 2021; 153 Ding (10.1016/j.asoc.2025.113436_bib24) 2025; 94 Zhang (10.1016/j.asoc.2025.113436_bib2) 2021; 175 Mahmoodjanloo (10.1016/j.asoc.2025.113436_bib49) 2020; 94 Long (10.1016/j.asoc.2025.113436_bib29) 2022; 34 Dou (10.1016/j.asoc.2025.113436_bib50) 2016; 86 Bortolini (10.1016/j.asoc.2025.113436_bib47) 2021; 58 Huang (10.1016/j.asoc.2025.113436_bib26) 2024; 130 Usman (10.1016/j.asoc.2025.113436_bib43) 2024; 162 Allahverdi (10.1016/j.asoc.2025.113436_bib9) 2008; 187 Hussain (10.1016/j.asoc.2025.113436_bib11) 2019; 52 Manafi (10.1016/j.asoc.2025.113436_bib48) 2022; 128 Guo (10.1016/j.asoc.2025.113436_bib18) 2024; 255 |
| References_xml | – volume: 52 start-page: 2191 year: 2019 end-page: 2233 ident: bib11 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. – volume: 94 year: 2025 ident: bib24 article-title: A novel deep self-learning method for flexible job-shop scheduling problems with multiplicity: deep reinforcement learning assisted the fluid master-apprentice evolutionary algorithm publication-title: Swarm Evolut. Comput. – volume: 162 year: 2024 ident: bib43 article-title: Job-shop scheduling with limited flexible workers considering ergonomic factors using an improved multi-objective discrete jaya algorithm publication-title: Comput. Oper. Res. – volume: 62 start-page: 650 year: 2022 end-page: 667 ident: bib54 article-title: An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules publication-title: J. Manuf. Syst. – volume: 130 year: 2024 ident: bib26 article-title: An enhanced memetic algorithm with hierarchical heuristic neighborhood search for type-2 Green fuzzy flexible job shop scheduling publication-title: Eng. Appl. Artif. Intell. – volume: 90 year: 2024 ident: bib31 article-title: A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources publication-title: Swarm Evolut. Comput. – volume: 133 year: 2024 ident: bib19 article-title: Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times publication-title: Eng. Appl. Artif. Intell. – volume: 55 start-page: 1440 year: 2017 end-page: 1454 ident: bib7 article-title: Recent advances in research on reconfigurable machine tools: a literature review publication-title: Int. J. Prod. Res. – start-page: 2642 year: 2021 end-page: 2649 ident: bib28 article-title: A Self-learning harris hawks optimization algorithm for flexible job shop scheduling with setup times and resource constraints publication-title: 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) – volume: 255 year: 2024 ident: bib18 article-title: The marriage of operations research and reinforcement learning: integration of NEH into Q-learning algorithm for the permutation flowshop scheduling problem publication-title: Expert Syst. Appl. – volume: 160 year: 2021 ident: bib39 article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: an application from casting workshop publication-title: Comput. Ind. Eng. – volume: 166 year: 2024 ident: bib55 article-title: Flexible assembly job shop scheduling problem considering reconfigurable machine: a cooperative co-evolutionary matheuristic algorithm publication-title: Appl. Soft Comput. – volume: 153 year: 2021 ident: bib14 article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem publication-title: Comput. Ind. Eng. – volume: 35 start-page: 626 year: 2023 end-page: 668 ident: bib46 article-title: A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility publication-title: Flex. Serv. Manuf. J. – start-page: 535 year: 2021 end-page: 543 ident: bib53 article-title: Integrated workforce allocation and scheduling in a reconfigurable manufacturing system considering cloud manufacturing publication-title: Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems: IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 5–9, 2021, Proceedings, Part II – volume: 304 start-page: 1296 year: 2023 end-page: 1330 ident: bib15 article-title: Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: Eur. J. Oper. Res. – volume: 85 year: 2024 ident: bib16 article-title: MRLM: a meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects publication-title: Swarm Evolut. Comput. – volume: 149 year: 2020 ident: bib23 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Comput. Ind. Eng. – volume: 188 year: 2024 ident: bib27 article-title: Multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation publication-title: Comput. Ind. Eng. – volume: 32 start-page: 707 year: 2021 end-page: 728 ident: bib41 article-title: An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading publication-title: J. Intell. Manuf. – volume: 54 start-page: 5554 year: 2016 end-page: 5566 ident: bib4 article-title: A knowledge-guided fruit Fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem publication-title: Int. J. Prod. Res. – year: 2024 ident: bib44 article-title: Dual resource constrained flexible job shop scheduling with sequence-dependent setup time publication-title: Expert Syst. – volume: 59 start-page: 3975 year: 2021 end-page: 3995 ident: bib52 article-title: A multi-objective particle swarm optimisation for integrated configuration design and scheduling in reconfigurable manufacturing system publication-title: Int. J. Prod. Res. – volume: 94 year: 2020 ident: bib49 article-title: Flexible job shop scheduling problem with reconfigurable machine tools: an improved differential evolution algorithm publication-title: Appl. Soft Comput. – volume: 91 year: 2025 ident: bib42 article-title: Multi-agent deep reinforcement learning for dynamic reconfigurable shop scheduling considering batch processing and worker cooperation publication-title: Robot. Comput. Integr. Manuf. – volume: 296 start-page: 393 year: 2022 end-page: 422 ident: bib12 article-title: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art publication-title: Eur. J. Oper. Res. – year: 2024 ident: bib17 article-title: An iterative greedy algorithm with Q-Learning mechanism for the multiobjective distributed No-Idle permutation flowshop scheduling publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 28 start-page: 32 year: 2020 end-page: 46 ident: bib51 article-title: Mixed integer programming models for concurrent configuration design and scheduling in a reconfigurable manufacturing system publication-title: Concurr. Eng. – start-page: 1 year: 2022 end-page: 43 ident: bib38 article-title: A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility publication-title: Flex. Serv. Manuf. J. – volume: 58 start-page: 6336 year: 2020 end-page: 6349 ident: bib34 article-title: Worker assignment in dual resource constrained assembly job shops with worker heterogeneity: an assessment by simulation publication-title: Int. J. Prod. Res. – volume: 434 start-page: 433 year: 2013 end-page: 452 ident: bib13 article-title: Boosting metaheuristic search using reinforcement learning publication-title: Hybrid Metaheuristics, Studies in Computational Intelligence – volume: 175 year: 2021 ident: bib2 article-title: A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect publication-title: Expert Syst. Appl. – volume: 57 start-page: 931 year: 2019 end-page: 947 ident: bib35 article-title: Workload control in dual-resource constrained high-variety shops: an assessment by simulation publication-title: Int. J. Prod. Res. – volume: 74 start-page: 264 year: 2024 end-page: 290 ident: bib45 article-title: An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: an application for machining workshop publication-title: J. Manuf. Syst. – volume: 372 start-page: 655 year: 2016 end-page: 676 ident: bib1 article-title: A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem publication-title: Inf. Sci. – volume: 34 year: 2022 ident: bib29 article-title: A self-learning artificial bee colony algorithm based on reinforcement learning for a flexible job-shop scheduling problem publication-title: Concurr. Comput. Pract. Exp. – volume: 146 year: 2023 ident: bib22 article-title: A reinforcement learning-artificial bee colony algorithm for flexible job-shop scheduling problem with lot streaming publication-title: Appl. Soft Comput. – volume: 86 start-page: 1945 year: 2016 end-page: 1962 ident: bib50 article-title: Bi-objective optimization of integrating configuration generation and scheduling for reconfigurable flow lines using NSGA-II publication-title: Int. J. Adv. Manuf. Technol. – start-page: 108 year: 2024, October end-page: 116 ident: bib33 article-title: A Self-Learning NSGA-III approach for Many-Objective flexible job shop scheduling problem based on reinforcement learning publication-title: International Workshop of Advanced Manufacturing and Automation – volume: 146 year: 2020 ident: bib8 article-title: Solving the hybrid flow shop scheduling problem with limited human resource constraint publication-title: Comput. Ind. Eng. – volume: 169 year: 2025 ident: bib30 article-title: Reinforcement learning-driven dual neighborhood structure artificial bee colony algorithm for continuous optimization problem publication-title: Appl. Soft Comput. – volume: 174 start-page: 388 year: 2018 end-page: 405 ident: bib60 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers. Manag. – volume: 46 start-page: 116 year: 2023 end-page: 134 ident: bib56 article-title: A multi-phase scheduling method for reconfigurable flexible job-shops with multi-machine cooperation based on a scout and Mutation-based aquila optimizer publication-title: CIRP J. Manuf. Sci. Technol. – volume: 83 year: 2023 ident: bib32 article-title: Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions publication-title: Swarm Evolut. Comput. – start-page: 1 year: 2023 end-page: 17 ident: bib58 article-title: Production scheduling in a reconfigurable manufacturing system benefiting from human-robot collaboration publication-title: Int. J. Prod. Res. – volume: 11 start-page: 1 year: 2021 end-page: 22 ident: bib10 article-title: Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields publication-title: Sci. Rep. – volume: 58 start-page: 442 year: 2021 end-page: 451 ident: bib47 article-title: An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints publication-title: J. Manuf. Syst. – volume: 95 start-page: 51 year: 2016 end-page: 67 ident: bib59 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. – volume: 187 start-page: 978 year: 2008 end-page: 984 ident: bib9 article-title: The significance of reducing setup times/setup costs publication-title: Eur. J. Oper. Res. – start-page: 1 year: 2021 end-page: 22 ident: bib6 article-title: Distributed job-shop rescheduling problem considering reconfigurability of machines: a self-adaptive hybrid equilibrium optimiser publication-title: Int. J. Prod. Res. – volume: 53 start-page: 18925 year: 2023 end-page: 18958 ident: bib20 article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem publication-title: Appl. Intell. – volume: 35 start-page: 75 year: 2024 end-page: 93 ident: bib21 article-title: Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling publication-title: J. Intell. Manuf. – volume: 168 year: 2022 ident: bib36 article-title: A multi-method approach to scheduling and efficiency analysis in dual-resource constrained job shops with processing time uncertainty publication-title: Comput. Ind. Eng. – volume: 63 start-page: 563 year: 2022 end-page: 574 ident: bib57 article-title: Workforce planning and production scheduling in a reconfigurable manufacturing system facing the COVID-19 pandemic publication-title: J. Manuf. Syst. – volume: 2021 year: 2021 ident: bib61 article-title: Improved whale optimization algorithm for solving constrained optimization problems publication-title: Discret. Dyn. Nat. Soc. – volume: 102 start-page: 113 year: 2016 end-page: 131 ident: bib37 article-title: A branch population genetic algorithm for dual-resource constrained job shop scheduling problem publication-title: Comput. Ind. Eng. – start-page: 2328 year: 2021 end-page: 2333 ident: bib3 article-title: A hybrid metaheuristic algorithm with novel decoding methods for flexible flow shop scheduling considering human fatigue publication-title: Proceedings of the 2021 IEEE International Conference on Systems, Man, and Cybernetics (SMC) – volume: 59 start-page: 6400 year: 2021 end-page: 6418 ident: bib5 article-title: Reconfigurable manufacturing systems from an optimisation perspective: a focused review of literature publication-title: Int. J. Prod. Res. – start-page: 51 year: 2023, November end-page: 56 ident: bib40 article-title: Dual Resource-Constrained scheduling problem considering differences in processing time among operators and rush order publication-title: In 2023 IEEE 13th International Workshop on Computational Intelligence and Applications (IWCIA) – volume: 128 year: 2022 ident: bib48 article-title: A centroid opposition-based coral reefs algorithm for solving an automated guided vehicle routing problem with a recharging constraint publication-title: Appl. Soft Comput. – volume: 258 year: 2024 ident: bib25 article-title: A multi-objective genetic algorithm based on two-stage reinforcement learning for Green flexible shop scheduling problem considering machine speed publication-title: Expert Syst. Appl. – year: 2024 ident: 10.1016/j.asoc.2025.113436_bib17 article-title: An iterative greedy algorithm with Q-Learning mechanism for the multiobjective distributed No-Idle permutation flowshop scheduling publication-title: IEEE Trans. Syst. Man Cybern. Syst. – volume: 160 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib39 article-title: A fatigue-conscious dual resource constrained flexible job shop scheduling problem by enhanced NSGA-II: an application from casting workshop publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107557 – volume: 34 issue: 4 year: 2022 ident: 10.1016/j.asoc.2025.113436_bib29 article-title: A self-learning artificial bee colony algorithm based on reinforcement learning for a flexible job-shop scheduling problem publication-title: Concurr. Comput. Pract. Exp. doi: 10.1002/cpe.6658 – volume: 146 year: 2023 ident: 10.1016/j.asoc.2025.113436_bib22 article-title: A reinforcement learning-artificial bee colony algorithm for flexible job-shop scheduling problem with lot streaming publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2023.110658 – volume: 95 start-page: 51 year: 2016 ident: 10.1016/j.asoc.2025.113436_bib59 article-title: The whale optimization algorithm publication-title: Adv. Eng. Softw. doi: 10.1016/j.advengsoft.2016.01.008 – volume: 133 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib19 article-title: Evolutionary algorithm incorporating reinforcement learning for energy-conscious flexible job-shop scheduling problem with transportation and setup times publication-title: Eng. Appl. Artif. Intell. – start-page: 1 year: 2023 ident: 10.1016/j.asoc.2025.113436_bib58 article-title: Production scheduling in a reconfigurable manufacturing system benefiting from human-robot collaboration publication-title: Int. J. Prod. Res. – start-page: 108 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib33 article-title: A Self-Learning NSGA-III approach for Many-Objective flexible job shop scheduling problem based on reinforcement learning – volume: 102 start-page: 113 year: 2016 ident: 10.1016/j.asoc.2025.113436_bib37 article-title: A branch population genetic algorithm for dual-resource constrained job shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2016.10.012 – volume: 32 start-page: 707 issue: 3 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib41 article-title: An effective approach for the dual-resource flexible job shop scheduling problem considering loading and unloading publication-title: J. Intell. Manuf. doi: 10.1007/s10845-020-01697-5 – year: 2024 ident: 10.1016/j.asoc.2025.113436_bib44 article-title: Dual resource constrained flexible job shop scheduling with sequence-dependent setup time publication-title: Expert Syst. doi: 10.1111/exsy.13669 – volume: 91 year: 2025 ident: 10.1016/j.asoc.2025.113436_bib42 article-title: Multi-agent deep reinforcement learning for dynamic reconfigurable shop scheduling considering batch processing and worker cooperation publication-title: Robot. Comput. Integr. Manuf. doi: 10.1016/j.rcim.2024.102834 – volume: 59 start-page: 3975 issue: 13 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib52 article-title: A multi-objective particle swarm optimisation for integrated configuration design and scheduling in reconfigurable manufacturing system publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1756507 – volume: 83 year: 2023 ident: 10.1016/j.asoc.2025.113436_bib32 article-title: Q-learning based multi-objective immune algorithm for fuzzy flexible job shop scheduling problem considering dynamic disruptions publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2023.101414 – volume: 2021 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib61 article-title: Improved whale optimization algorithm for solving constrained optimization problems publication-title: Discret. Dyn. Nat. Soc. doi: 10.1155/2021/8832251 – volume: 53 start-page: 18925 issue: 15 year: 2023 ident: 10.1016/j.asoc.2025.113436_bib20 article-title: A self-learning discrete salp swarm algorithm based on deep reinforcement learning for dynamic job shop scheduling problem publication-title: Appl. Intell. doi: 10.1007/s10489-023-04479-7 – volume: 55 start-page: 1440 issue: 5 year: 2017 ident: 10.1016/j.asoc.2025.113436_bib7 article-title: Recent advances in research on reconfigurable machine tools: a literature review publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1237795 – volume: 85 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib16 article-title: MRLM: a meta-reinforcement learning-based metaheuristic for hybrid flow-shop scheduling problem with learning and forgetting effects publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2024.101479 – volume: 258 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib25 article-title: A multi-objective genetic algorithm based on two-stage reinforcement learning for Green flexible shop scheduling problem considering machine speed publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.125189 – start-page: 1 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib6 article-title: Distributed job-shop rescheduling problem considering reconfigurability of machines: a self-adaptive hybrid equilibrium optimiser publication-title: Int. J. Prod. Res. – volume: 28 start-page: 32 issue: 1 year: 2020 ident: 10.1016/j.asoc.2025.113436_bib51 article-title: Mixed integer programming models for concurrent configuration design and scheduling in a reconfigurable manufacturing system publication-title: Concurr. Eng. doi: 10.1177/1063293X19898727 – volume: 54 start-page: 5554 issue: 18 year: 2016 ident: 10.1016/j.asoc.2025.113436_bib4 article-title: A knowledge-guided fruit Fly optimization algorithm for dual resource constrained flexible job-shop scheduling problem publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2016.1170226 – volume: 153 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib14 article-title: A cooperative water wave optimization algorithm with reinforcement learning for the distributed assembly no-idle flowshop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.107082 – volume: 90 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib31 article-title: A Q-Learning based NSGA-II for dynamic flexible job shop scheduling with limited transportation resources publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2024.101658 – volume: 162 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib43 article-title: Job-shop scheduling with limited flexible workers considering ergonomic factors using an improved multi-objective discrete jaya algorithm publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2023.106456 – volume: 175 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib2 article-title: A combinatorial evolutionary algorithm for unrelated parallel machine scheduling problem with sequence and machine-dependent setup times, limited worker resources and learning effect publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2021.114843 – volume: 146 year: 2020 ident: 10.1016/j.asoc.2025.113436_bib8 article-title: Solving the hybrid flow shop scheduling problem with limited human resource constraint publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106545 – volume: 86 start-page: 1945 year: 2016 ident: 10.1016/j.asoc.2025.113436_bib50 article-title: Bi-objective optimization of integrating configuration generation and scheduling for reconfigurable flow lines using NSGA-II publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-015-8291-8 – volume: 434 start-page: 433 year: 2013 ident: 10.1016/j.asoc.2025.113436_bib13 article-title: Boosting metaheuristic search using reinforcement learning – volume: 149 year: 2020 ident: 10.1016/j.asoc.2025.113436_bib23 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106778 – volume: 11 start-page: 1 issue: 1 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib10 article-title: Three novel quantum-inspired swarm optimization algorithms using different bounded potential fields publication-title: Sci. Rep. doi: 10.1038/s41598-021-90847-7 – volume: 296 start-page: 393 issue: 2 year: 2022 ident: 10.1016/j.asoc.2025.113436_bib12 article-title: Machine learning at the service of meta-heuristics for solving combinatorial optimization problems: a state-of-the-art publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2021.04.032 – volume: 62 start-page: 650 year: 2022 ident: 10.1016/j.asoc.2025.113436_bib54 article-title: An improved genetic algorithm for flexible job shop scheduling problem considering reconfigurable machine tools with limited auxiliary modules publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.01.014 – volume: 128 year: 2022 ident: 10.1016/j.asoc.2025.113436_bib48 article-title: A centroid opposition-based coral reefs algorithm for solving an automated guided vehicle routing problem with a recharging constraint publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2022.109504 – volume: 59 start-page: 6400 issue: 21 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib5 article-title: Reconfigurable manufacturing systems from an optimisation perspective: a focused review of literature publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2020.1813913 – volume: 94 year: 2020 ident: 10.1016/j.asoc.2025.113436_bib49 article-title: Flexible job shop scheduling problem with reconfigurable machine tools: an improved differential evolution algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106416 – volume: 74 start-page: 264 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib45 article-title: An improved memetic algorithm for multi-objective resource-constrained flexible job shop inverse scheduling problem: an application for machining workshop publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2024.03.005 – volume: 169 year: 2025 ident: 10.1016/j.asoc.2025.113436_bib30 article-title: Reinforcement learning-driven dual neighborhood structure artificial bee colony algorithm for continuous optimization problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112601 – start-page: 2642 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib28 article-title: A Self-learning harris hawks optimization algorithm for flexible job shop scheduling with setup times and resource constraints – volume: 63 start-page: 563 year: 2022 ident: 10.1016/j.asoc.2025.113436_bib57 article-title: Workforce planning and production scheduling in a reconfigurable manufacturing system facing the COVID-19 pandemic publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2022.04.018 – start-page: 2328 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib3 article-title: A hybrid metaheuristic algorithm with novel decoding methods for flexible flow shop scheduling considering human fatigue – volume: 57 start-page: 931 issue: 3 year: 2019 ident: 10.1016/j.asoc.2025.113436_bib35 article-title: Workload control in dual-resource constrained high-variety shops: an assessment by simulation publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2018.1497313 – volume: 58 start-page: 6336 issue: 20 year: 2020 ident: 10.1016/j.asoc.2025.113436_bib34 article-title: Worker assignment in dual resource constrained assembly job shops with worker heterogeneity: an assessment by simulation publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2019.1677963 – volume: 187 start-page: 978 issue: 3 year: 2008 ident: 10.1016/j.asoc.2025.113436_bib9 article-title: The significance of reducing setup times/setup costs publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2006.09.010 – volume: 188 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib27 article-title: Multi-resource constrained flexible job shop scheduling problem with fixture-pallet combinatorial optimisation publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2024.109903 – volume: 35 start-page: 626 issue: 3 year: 2023 ident: 10.1016/j.asoc.2025.113436_bib46 article-title: A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility publication-title: Flex. Serv. Manuf. J. doi: 10.1007/s10696-022-09446-x – start-page: 535 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib53 article-title: Integrated workforce allocation and scheduling in a reconfigurable manufacturing system considering cloud manufacturing – volume: 52 start-page: 2191 issue: 4 year: 2019 ident: 10.1016/j.asoc.2025.113436_bib11 article-title: Metaheuristic research: a comprehensive survey publication-title: Artif. Intell. Rev. doi: 10.1007/s10462-017-9605-z – volume: 304 start-page: 1296 issue: 3 year: 2023 ident: 10.1016/j.asoc.2025.113436_bib15 article-title: Learning to select operators in meta-heuristics: an integration of Q-learning into the iterated greedy algorithm for the permutation flowshop scheduling problem publication-title: Eur. J. Oper. Res. doi: 10.1016/j.ejor.2022.03.054 – volume: 174 start-page: 388 year: 2018 ident: 10.1016/j.asoc.2025.113436_bib60 article-title: Parameter extraction of solar photovoltaic models using an improved whale optimization algorithm publication-title: Energy Convers. Manag. doi: 10.1016/j.enconman.2018.08.053 – volume: 35 start-page: 75 issue: 1 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib21 article-title: Multi-agent reinforcement learning based on graph convolutional network for flexible job shop scheduling publication-title: J. Intell. Manuf. doi: 10.1007/s10845-022-02037-5 – volume: 94 year: 2025 ident: 10.1016/j.asoc.2025.113436_bib24 article-title: A novel deep self-learning method for flexible job-shop scheduling problems with multiplicity: deep reinforcement learning assisted the fluid master-apprentice evolutionary algorithm publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2025.101907 – volume: 372 start-page: 655 year: 2016 ident: 10.1016/j.asoc.2025.113436_bib1 article-title: A shuffled multi-swarm micro-migrating birds optimizer for a multi-resource-constrained flexible job shop scheduling problem publication-title: Inf. Sci. doi: 10.1016/j.ins.2016.08.046 – volume: 168 year: 2022 ident: 10.1016/j.asoc.2025.113436_bib36 article-title: A multi-method approach to scheduling and efficiency analysis in dual-resource constrained job shops with processing time uncertainty publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108067 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2025.113436_bib38 article-title: A multi-objective mathematical model and evolutionary algorithm for the dual-resource flexible job-shop scheduling problem with sequencing flexibility publication-title: Flex. Serv. Manuf. J. – volume: 166 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib55 article-title: Flexible assembly job shop scheduling problem considering reconfigurable machine: a cooperative co-evolutionary matheuristic algorithm publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2024.112148 – volume: 46 start-page: 116 year: 2023 ident: 10.1016/j.asoc.2025.113436_bib56 article-title: A multi-phase scheduling method for reconfigurable flexible job-shops with multi-machine cooperation based on a scout and Mutation-based aquila optimizer publication-title: CIRP J. Manuf. Sci. Technol. doi: 10.1016/j.cirpj.2023.08.003 – start-page: 51 year: 2023 ident: 10.1016/j.asoc.2025.113436_bib40 article-title: Dual Resource-Constrained scheduling problem considering differences in processing time among operators and rush order – volume: 255 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib18 article-title: The marriage of operations research and reinforcement learning: integration of NEH into Q-learning algorithm for the permutation flowshop scheduling problem publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2024.124779 – volume: 130 year: 2024 ident: 10.1016/j.asoc.2025.113436_bib26 article-title: An enhanced memetic algorithm with hierarchical heuristic neighborhood search for type-2 Green fuzzy flexible job shop scheduling publication-title: Eng. Appl. Artif. Intell. doi: 10.1016/j.engappai.2023.107762 – volume: 58 start-page: 442 year: 2021 ident: 10.1016/j.asoc.2025.113436_bib47 article-title: An optimisation model for the dynamic management of cellular reconfigurable manufacturing systems under auxiliary module availability constraints publication-title: J. Manuf. Syst. doi: 10.1016/j.jmsy.2021.01.001 |
| SSID | ssj0016928 |
| Score | 2.4669733 |
| Snippet | One of the key areas in which production systems researchers are working these days is to find advanced optimization algorithms to efficiently schedule... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113436 |
| SubjectTerms | Flexible job shop scheduling Machine learning Meta-heuristics Reconfigurable manufacturing systems Reinforcement learning |
| Title | A self-learning whale optimization algorithm based on reinforcement learning for a dual-resource flexible job shop scheduling problem |
| URI | https://dx.doi.org/10.1016/j.asoc.2025.113436 |
| Volume | 180 |
| WOSCitedRecordID | wos001511049800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016928 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV07b9swECbcpEOXvoumL3DoJsiwJEqiRqN10RZoUAQevAkkRcZ2FMmwFTfInh_Uf9ijSNFy2gbN0EUQCPIk6D7eHU_3QOh9CHsmK1Lig_WrfBLHzOeg530wRgggYMSjwjSbSI-P6WyWfR8Mfna5MNsyrSp6eZmt_iurYQyYrVNn78BuRxQG4B6YDldgO1z_ifFjbyNL5Zedz-PHnOkAQhAN5zbn0mPlab1eNPNzTyuxQv8wWMu2hKpovYWeW9zGWHo6X8tfW0e_p3QNTZ1wtay5t5nXKw9OyKCxbGJ726Cmb_N2hu4GJH4bwn7RdPqydYVXTLUhBZN5L0Doo64MIU2fKl0dod65GLbs7KwuF_63-nQOGDCIPpFXTsGcAEndDbs2yUhNI-u-cyOMXWidk8cJ9UlmvZROYI96IjcIImJqqPymDYxjYjlkAPShJj_cTd4vvX1DJbpAxS4GbplrGrmmkRsa99BhmMYZCNLD8ZfJ7Kv7dZVkbUNf9-Y2U8sEFd58kz9bQz0LZ_oYPbRHEzw2kHqCBrJ6ih51bT-w1QLP0PUY7yEMtwjDfYRhhzDcIgzD0B7CsFsMQ5jhPYThDmEYEIY1wvAOYdgi7DmafppMP3z2bTcPX0SjsPFTloG04ElIChkWVKmIUsozHiQFSQqakJiFPIhVxgkcKZiIuFJFIkTAdev5NHqBDqq6ki8RFiSSCQsoVYITygQLlVQpEWFWBCMiiiMUdB81F7bSvW64UuZ_Z-cR8tyalanzcuvsuONVbi1VY4HmAL1b1r2601Neowe7PfEGHTTrC_kW3RfbZrFZv7O4-wUf5LyD |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+self-learning+whale+optimization+algorithm+based+on+reinforcement+learning+for+a+dual-resource+flexible+job+shop+scheduling+problem&rft.jtitle=Applied+soft+computing&rft.au=Manafi%2C+Ehsan&rft.au=Domenech%2C+Bruno&rft.au=Tavakkoli-Moghaddam%2C+Reza&rft.au=Ranaboldo%2C+Matteo&rft.date=2025-08-01&rft.issn=1568-4946&rft.volume=180&rft.spage=113436&rft_id=info:doi/10.1016%2Fj.asoc.2025.113436&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_asoc_2025_113436 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |