Reinforcement-learning-based parallel genetic algorithm for the multi-objective hot-rolling scheduling problem of wide-thick slab
Hot rolling is the core process of steel production, and its scheduling problem is the key to determining the rolling rhythm. Compared with traditional hot-rolling scheduling, hot-rolling scheduling optimisation of wide-thick slabs needs to consider the characteristics of cross rolling and the influ...
Uložené v:
| Vydané v: | Applied soft computing Ročník 179; s. 113355 |
|---|---|
| Hlavní autori: | , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Elsevier B.V
01.07.2025
|
| Predmet: | |
| ISSN: | 1568-4946 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Hot rolling is the core process of steel production, and its scheduling problem is the key to determining the rolling rhythm. Compared with traditional hot-rolling scheduling, hot-rolling scheduling optimisation of wide-thick slabs needs to consider the characteristics of cross rolling and the influence of the reheating furnace, which significantly increase the difficulty of problem-solving. In this paper, the characteristics of cross rolling and the influence of the reheating furnace are analysed, and the hot-rolling scheduling problem of the wide-thick slab (WTS-HRSP) is mapped to a multi-objective asymmetric vehicle routing problem (MAVRP) model. Combined with the multi-objective characteristics of MAVRP, a reinforcement-learning-based parallel genetic algorithm (RPGA) was designed, which implements parallel computation of multiple populations based on the master-slave island model, designs three priority rules to initialise populations, and optimises the parameters of the genetic operation using Q-Learning. Based on the rolling data of the wide-thick slab hot-rolling mill of a Chinese iron and steel group, experiments were conducted to compare RPGA with five advanced multi-objective optimisation algorithms, and the results showed that RPGA had better convergence and stability and was more suitable for the WTS-HRSP. The findings can help optimise hot-rolling scheduling.
•The multi-objective hot-rolling scheduling model of wide-thick slab is proposed.•Designing a reinforcement-learning-based parallel genetic algorithm.•Designing a parallel computation based on the master-slave island model.•Designing the priority rules and Q-Learning to improve the genetic algorithm.•Experiments demonstrate the proposed scheduling algorithm has the best performance. |
|---|---|
| AbstractList | Hot rolling is the core process of steel production, and its scheduling problem is the key to determining the rolling rhythm. Compared with traditional hot-rolling scheduling, hot-rolling scheduling optimisation of wide-thick slabs needs to consider the characteristics of cross rolling and the influence of the reheating furnace, which significantly increase the difficulty of problem-solving. In this paper, the characteristics of cross rolling and the influence of the reheating furnace are analysed, and the hot-rolling scheduling problem of the wide-thick slab (WTS-HRSP) is mapped to a multi-objective asymmetric vehicle routing problem (MAVRP) model. Combined with the multi-objective characteristics of MAVRP, a reinforcement-learning-based parallel genetic algorithm (RPGA) was designed, which implements parallel computation of multiple populations based on the master-slave island model, designs three priority rules to initialise populations, and optimises the parameters of the genetic operation using Q-Learning. Based on the rolling data of the wide-thick slab hot-rolling mill of a Chinese iron and steel group, experiments were conducted to compare RPGA with five advanced multi-objective optimisation algorithms, and the results showed that RPGA had better convergence and stability and was more suitable for the WTS-HRSP. The findings can help optimise hot-rolling scheduling.
•The multi-objective hot-rolling scheduling model of wide-thick slab is proposed.•Designing a reinforcement-learning-based parallel genetic algorithm.•Designing a parallel computation based on the master-slave island model.•Designing the priority rules and Q-Learning to improve the genetic algorithm.•Experiments demonstrate the proposed scheduling algorithm has the best performance. |
| ArticleNumber | 113355 |
| Author | Yuan, Shuaipeng Wang, Xiqing Li, Tieke Li, Yiren Zhang, Zhuolun Wang, Bailin |
| Author_xml | – sequence: 1 givenname: Zhuolun orcidid: 0000-0002-2134-9629 surname: Zhang fullname: Zhang, Zhuolun email: zhangzl0036@163.com organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China – sequence: 2 givenname: Bailin surname: Wang fullname: Wang, Bailin email: wangbl@ustb.edu.cn organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China – sequence: 3 givenname: Shuaipeng surname: Yuan fullname: Yuan, Shuaipeng email: shuaipengyuan@163.com organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China – sequence: 4 givenname: Yiren surname: Li fullname: Li, Yiren email: liyiren@hbisco.com organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China – sequence: 5 givenname: Xiqing surname: Wang fullname: Wang, Xiqing email: wangxiqing@njsteel.com.cn organization: Plate Division of Nanjing Iron and Steel Group, Nanjing 210044, China – sequence: 6 givenname: Tieke surname: Li fullname: Li, Tieke email: tieke@ustb.edu.cn organization: School of Economics and Management, University of Science and Technology Beijing, Beijing 100083, China |
| BookMark | eNp9kMtKAzEUhrOoYKu-gKu8QOpkMldwI8UbCILoOuRy0knNJCVJKy59c6fWlQtX51-c74f_W6CZDx4QuqTFkha0udosRQpqWRZlvaSUsbqeoTmtm45UfdWcokVKm2J67Mtujr5ewHoTooIRfCYORPTWr4kUCTTeiiicA4fX4CFbhYVbh2jzMOKJwXkAPO5ctiTIDahs94CHkEkMzk0lOKkB9O4nbmOQDkYcDP6wGkgerHrHyQl5jk6McAkufu8Zeru7fV09kKfn-8fVzRNRrCgzaUwrTMOk0aanquqbWvemqmWrFAim-kq2su8NrUwnJBNtVxjKGl1WXa3bSjB2hspjr4ohpQiGb6MdRfzktOAHcXzDD-L4QRw_ipug7g-kbBbZBp-jsO5_9PqIwjRqbyHypCx4BdrGyRXXwf6HfwOugZGZ |
| CitedBy_id | crossref_primary_10_1080_15376494_2025_2517255 |
| Cites_doi | 10.1016/j.cie.2022.108561 10.1109/TII.2019.2944247 10.1016/j.cie.2022.108293 10.1002/srin.202100331 10.1016/j.eswa.2022.117555 10.1007/s12652-018-0944-7 10.1016/j.asoc.2023.110187 10.1080/00207543.2021.1919780 10.1016/j.cor.2022.105745 10.1016/j.applthermaleng.2018.10.020 10.1016/j.swevo.2023.101236 10.1080/00207540600988048 10.1016/j.eswa.2023.120083 10.1016/0166-3615(92)90069-Y 10.1016/j.cie.2020.106778 10.1109/4235.996017 10.1016/j.cie.2021.107659 10.1109/ACCESS.2021.3058328 10.3724/SP.J.1004.2010.00282 10.1007/s00170-011-3749-9 10.1016/j.cor.2021.105267 10.1016/S0377-2217(97)00277-4 10.1080/00207543.2021.2017054 10.1371/journal.pone.0241077 10.1016/j.swevo.2021.100911 10.1016/S0377-2217(99)00380-X 10.1155/2018/1919438 10.1080/00207543.2021.1987550 10.1016/j.apm.2017.03.067 10.1016/j.future.2017.07.020 10.1016/j.cie.2017.12.013 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier B.V. |
| Copyright_xml | – notice: 2025 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.asoc.2025.113355 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_asoc_2025_113355 S1568494625006660 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 23M 4.4 457 4G. 53G 5GY 5VS 6J9 7-5 71M 8P~ AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABFRF ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFO ACGFS ACNNM ACRLP ACRPL ACVFH ACZNC ADBBV ADCNI ADEZE ADJOM ADMUD ADNMO ADTZH AEBSH AECPX AEFWE AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APXCP ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC BNPGV CS3 EBS EFJIC EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HVGLF HZ~ IHE J1W JJJVA KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SEW SPC SPCBC SSH SST SSV SSZ T5K UHS UNMZH ~G- 9DU AAYXX ACLOT CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c302t-6f7af63bfdf91c4965d9f45b7ccea3c94b7b99f14f8ab3a780f136d2485d74a33 |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001504749900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1568-4946 |
| IngestDate | Sat Nov 29 07:51:04 EST 2025 Tue Nov 18 21:26:37 EST 2025 Sat Jul 05 17:12:16 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multi-objective asymmetric vehicle routing model Parallel genetic algorithm Q-learning Island model Hot rolling scheduling |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c302t-6f7af63bfdf91c4965d9f45b7ccea3c94b7b99f14f8ab3a780f136d2485d74a33 |
| ORCID | 0000-0002-2134-9629 |
| ParticipantIDs | crossref_primary_10_1016_j_asoc_2025_113355 crossref_citationtrail_10_1016_j_asoc_2025_113355 elsevier_sciencedirect_doi_10_1016_j_asoc_2025_113355 |
| PublicationCentury | 2000 |
| PublicationDate | July 2025 2025-07-00 |
| PublicationDateYYYYMMDD | 2025-07-01 |
| PublicationDate_xml | – month: 07 year: 2025 text: July 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Applied soft computing |
| PublicationYear | 2025 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Zhang, Song, Wu (bib16) 2022 Chen, Yang, Wu (bib6) 2008; 46 Shen, De Pessemier, Martens (bib25) 2021; 161 Jia, Zhu, Yang (bib2) 2012; 61 Sun, Benlic, Li (bib32) 2022; 143 Riquelme, Von Lucken, Baran (bib34) 2015; 2015 Zhang, Meng, Lu (bib22) 2023; 138 Lu, Liu, Zhang (bib21) 2022; 204 Tang, Liu, Rong (bib5) 2000; 124 Zhang, Pan, Gao (bib8) 2018; 116 İLHAN (bib29) 2021; 64 Jiang, Li, Zhang (bib12) 2022; 172 Zhang, Tang, Li (bib24) 2021; 132 Su, Kong, Wang (bib9) 2021; 407 Shi, Liu (bib11) 2021; 9 Zhang, Zhang, Li, Rohaninejad, Tavakkoli-Moghaddam, Vahedi-Nouri (bib20) 2022; 37 Cheng, Tang, Zhang (bib31) 2022; 169 Zhang, Song, Wu (bib15) 2020; 16 Zhou, Li, Chen (bib1) 2022; 93 Chen, Xiufeng, Guohua (bib14) 2020; 15 Lopez, Carter, Gendreau (bib4) 1998; 106 Pan, Chen, Meng (bib7) 2017; 48 Song, Wei, Yang (bib35) 2023; 77 Kosiba, Wright, Cobbs (bib3) 1992; 19 Huo, Liu, Zhang (bib27) 2018; 81 Deb, Pratap, Agarwal (bib28) 2002; 6 Yuan, Li, Wang (bib18) 2023; 32 Yu, Wang, Qu (bib17) 2010; 36 Long, Pardalos, Li (bib23) 2022; 60 Bora, Mariani, Coelho (bib30) 2019; 146 Sutton R.S., Barto A.G. Reinforcement Learning: An Introduction[M]. MIT Press, 2018. Li, Tian (bib10) 2018; 2018 Zhang, Wang, Yuan, Yağmur, Kesen (bib19) 2023; 227 Chen, Yang, Li (bib26) 2020; 149 Liu, Wan, Gao (bib13) 2019; 10 Su (10.1016/j.asoc.2025.113355_bib9) 2021; 407 Zhou (10.1016/j.asoc.2025.113355_bib1) 2022; 93 Huo (10.1016/j.asoc.2025.113355_bib27) 2018; 81 Shen (10.1016/j.asoc.2025.113355_bib25) 2021; 161 Zhang (10.1016/j.asoc.2025.113355_bib16) 2022 Zhang (10.1016/j.asoc.2025.113355_bib8) 2018; 116 Jiang (10.1016/j.asoc.2025.113355_bib12) 2022; 172 Bora (10.1016/j.asoc.2025.113355_bib30) 2019; 146 Liu (10.1016/j.asoc.2025.113355_bib13) 2019; 10 Long (10.1016/j.asoc.2025.113355_bib23) 2022; 60 Tang (10.1016/j.asoc.2025.113355_bib5) 2000; 124 Chen (10.1016/j.asoc.2025.113355_bib14) 2020; 15 Yuan (10.1016/j.asoc.2025.113355_bib18) 2023; 32 Song (10.1016/j.asoc.2025.113355_bib35) 2023; 77 Jia (10.1016/j.asoc.2025.113355_bib2) 2012; 61 Deb (10.1016/j.asoc.2025.113355_bib28) 2002; 6 İLHAN (10.1016/j.asoc.2025.113355_bib29) 2021; 64 Sun (10.1016/j.asoc.2025.113355_bib32) 2022; 143 Yağmur (10.1016/j.asoc.2025.113355_sbref20) 2023; 61 Pan (10.1016/j.asoc.2025.113355_bib7) 2017; 48 Yu (10.1016/j.asoc.2025.113355_bib17) 2010; 36 Zhang (10.1016/j.asoc.2025.113355_sbref21) 2022; 37 Zhang (10.1016/j.asoc.2025.113355_bib22) 2023; 138 Zhang (10.1016/j.asoc.2025.113355_bib24) 2021; 132 Riquelme (10.1016/j.asoc.2025.113355_bib34) 2015; 2015 Lu (10.1016/j.asoc.2025.113355_bib21) 2022; 204 Cheng (10.1016/j.asoc.2025.113355_bib31) 2022; 169 Shi (10.1016/j.asoc.2025.113355_bib11) 2021; 9 Chen (10.1016/j.asoc.2025.113355_bib26) 2020; 149 10.1016/j.asoc.2025.113355_bib33 Chen (10.1016/j.asoc.2025.113355_bib6) 2008; 46 Lopez (10.1016/j.asoc.2025.113355_bib4) 1998; 106 Kosiba (10.1016/j.asoc.2025.113355_bib3) 1992; 19 Zhang (10.1016/j.asoc.2025.113355_bib15) 2020; 16 Li (10.1016/j.asoc.2025.113355_bib10) 2018; 2018 Zhang (10.1016/j.asoc.2025.113355_sbref19) 2023; 227 Rohaninejad (10.1016/j.asoc.2025.113355_sbref22) 2022; 60 |
| References_xml | – volume: 16 start-page: 2809 year: 2020 end-page: 2819 ident: bib15 article-title: Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm publication-title: IEEE Trans. Ind. Inform. – volume: 116 start-page: 22 year: 2018 end-page: 36 ident: bib8 article-title: A hybrid variable neighborhood search algorithm for the hot rolling batch scheduling problem in compact strip production publication-title: Comput. Ind. Eng. – volume: 36 start-page: 282 year: 2010 end-page: 288 ident: bib17 article-title: Optimization method of production scheduling for hot rolling of medium-thick slabs publication-title: Acta Autom. Sin. – volume: 407 year: 2021 ident: bib9 article-title: Modeling and application for rolling scheduling problem based on TSP publication-title: Appl. Math. Comput. – volume: 143 year: 2022 ident: bib32 article-title: Reinforcement learning based tabu search for the minimum load coloring problem publication-title: Comput. Oper. Res. – volume: 15 year: 2020 ident: bib14 article-title: Research on hot rolling scheduling problem based on Two-phase Pareto algorithm publication-title: PLoS One – volume: 32 start-page: 78 year: 2023 end-page: 84 ident: bib18 article-title: An improved estimation of distributed algorithm for a single machine scheduling problem with re-entrant and group reatures publication-title: Operat. Res. and Manag. Sci. – volume: 6 start-page: 182 year: 2002 end-page: 197 ident: bib28 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. – volume: 2018 start-page: 1 year: 2018 end-page: 19 ident: bib10 article-title: Integrated scheduling of reheating furnace and hot rolling based on improved multiobjective differential evolution publication-title: Complexity – volume: 60 start-page: 3319 year: 2022 end-page: 3338 ident: bib23 article-title: Level-based multi-objective particle swarm optimizer for integrated production scheduling and vehicle routing decision with inventory holding, delivery, and tardiness costs publication-title: Int. J. Prod. Res. – volume: 37 start-page: 1827 year: 2022 end-page: 1836 ident: bib20 article-title: Model and algorithm for rolling planning of hot-rolled slab with reheating furnace production factors publication-title: Control Decis. – volume: 172 year: 2022 ident: bib12 article-title: An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills publication-title: Comput. Ind. Eng. – volume: 46 start-page: 1955 year: 2008 end-page: 1973 ident: bib6 article-title: Production scheduling optimization algorithm for the hot rolling processes publication-title: Int. J. Prod. Res. – reference: Sutton R.S., Barto A.G. Reinforcement Learning: An Introduction[M]. MIT Press, 2018. – volume: 81 start-page: 492 year: 2018 end-page: 504 ident: bib27 article-title: An improved multi-cores parallel artificial Bee colony optimization algorithm for parameters calibration of hydrological model publication-title: Future Gener. Comput. Syst. – volume: 48 start-page: 516 year: 2017 end-page: 533 ident: bib7 article-title: A mathematical model and two-stage heuristic for hot rolling scheduling in compact strip production publication-title: Appl. Math. Model. – start-page: 1 year: 2022 end-page: 15 ident: bib16 article-title: The hot strip mill scheduling problem with uncertainty: robust optimization models and solution approaches publication-title: IEEE Trans. Cybern. – volume: 93 year: 2022 ident: bib1 article-title: Controlled rolling of X80 pipeline steel in the austenite recrystallization temperature region and its effect on the microstructure and mechanical properties publication-title: Steel Res. Int. – volume: 9 start-page: 47856 year: 2021 end-page: 47863 ident: bib11 article-title: Very large-scale neighborhood search for steel hot rolling scheduling problem with slab stack shuffling considerations publication-title: IEEE Access – volume: 124 start-page: 267 year: 2000 end-page: 282 ident: bib5 article-title: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex publication-title: Eur. J. Oper. Res. – volume: 169 year: 2022 ident: bib31 article-title: Scheduling flexible manufacturing cell with no-idle flow-lines and job-shop via Q-learning-based genetic algorithm publication-title: Comput. Ind. Eng. – volume: 19 start-page: 317 year: 1992 end-page: 327 ident: bib3 article-title: Discrete event sequencing as a traveling salesman problem publication-title: Comput. Ind. – volume: 161 year: 2021 ident: bib25 article-title: A parallel genetic algorithm for multi-objective flexible flowshop scheduling in pasta manufacturing publication-title: Comput. Ind. Eng. – volume: 2015 year: 2015 ident: bib34 article-title: Performance metrics in multi-objective optimization publication-title: C – volume: 64 year: 2021 ident: bib29 article-title: An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem publication-title: Swarm Evolut. Comput. – volume: 61 start-page: 487 year: 2012 end-page: 501 ident: bib2 article-title: A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem publication-title: Int. J. Adv. Manuf. Technol. – volume: 149 year: 2020 ident: bib26 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Comput. Ind. Eng. – volume: 146 start-page: 688 year: 2019 end-page: 700 ident: bib30 article-title: Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm publication-title: Appl. Therm. Eng. – volume: 204 year: 2022 ident: bib21 article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop publication-title: Expert Syst. Appl. – volume: 138 year: 2023 ident: bib22 article-title: Real-time data-driven automatic design of multi-objective evolutionary algorithm: a case study on production scheduling publication-title: Appl. Softw. Comput. – volume: 132 year: 2021 ident: bib24 article-title: A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context publication-title: Comput. Oper. Res. – volume: 106 start-page: 317 year: 1998 end-page: 335 ident: bib4 article-title: The hot strip mill production scheduling problem: a tabu search approach publication-title: Eur. J. Oper. Res. – volume: 227 start-page: 774 year: 2023 end-page: 795 ident: bib19 article-title: Deep learning-based prediction framework of temperature control time for wide-thick slab hot rolling production publication-title: Expert Syst. Appl. – volume: 77 year: 2023 ident: bib35 article-title: RL-GA: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem publication-title: Swarm Evolut. Comput. – volume: 10 start-page: 1201 year: 2019 end-page: 1216 ident: bib13 article-title: Research on modelling and optimization of hot rolling scheduling publication-title: J. Ambient Intell. Humaniz. Comput. – volume: 172 year: 2022 ident: 10.1016/j.asoc.2025.113355_bib12 article-title: An improved Pareto local search for solving bi-objective scheduling problems in hot rolling mills publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108561 – ident: 10.1016/j.asoc.2025.113355_bib33 – volume: 16 start-page: 2809 issue: 4 year: 2020 ident: 10.1016/j.asoc.2025.113355_bib15 article-title: Robust scheduling of hot rolling production by local search enhanced ant colony optimization algorithm publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2944247 – volume: 169 year: 2022 ident: 10.1016/j.asoc.2025.113355_bib31 article-title: Scheduling flexible manufacturing cell with no-idle flow-lines and job-shop via Q-learning-based genetic algorithm publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2022.108293 – volume: 32 start-page: 78 issue: 8 year: 2023 ident: 10.1016/j.asoc.2025.113355_bib18 article-title: An improved estimation of distributed algorithm for a single machine scheduling problem with re-entrant and group reatures publication-title: Operat. Res. and Manag. Sci. – volume: 93 issue: 1 year: 2022 ident: 10.1016/j.asoc.2025.113355_bib1 article-title: Controlled rolling of X80 pipeline steel in the austenite recrystallization temperature region and its effect on the microstructure and mechanical properties publication-title: Steel Res. Int. doi: 10.1002/srin.202100331 – volume: 204 year: 2022 ident: 10.1016/j.asoc.2025.113355_bib21 article-title: A Pareto-based hybrid iterated greedy algorithm for energy-efficient scheduling of distributed hybrid flowshop publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2022.117555 – volume: 10 start-page: 1201 issue: 3 year: 2019 ident: 10.1016/j.asoc.2025.113355_bib13 article-title: Research on modelling and optimization of hot rolling scheduling publication-title: J. Ambient Intell. Humaniz. Comput. doi: 10.1007/s12652-018-0944-7 – volume: 37 start-page: 1827 issue: 7 year: 2022 ident: 10.1016/j.asoc.2025.113355_sbref21 article-title: Model and algorithm for rolling planning of hot-rolled slab with reheating furnace production factors publication-title: Control Decis. – volume: 138 year: 2023 ident: 10.1016/j.asoc.2025.113355_bib22 article-title: Real-time data-driven automatic design of multi-objective evolutionary algorithm: a case study on production scheduling publication-title: Appl. Softw. Comput. doi: 10.1016/j.asoc.2023.110187 – volume: 60 start-page: 3319 issue: 11 year: 2022 ident: 10.1016/j.asoc.2025.113355_bib23 article-title: Level-based multi-objective particle swarm optimizer for integrated production scheduling and vehicle routing decision with inventory holding, delivery, and tardiness costs publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.1919780 – volume: 143 year: 2022 ident: 10.1016/j.asoc.2025.113355_bib32 article-title: Reinforcement learning based tabu search for the minimum load coloring problem publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2022.105745 – volume: 146 start-page: 688 year: 2019 ident: 10.1016/j.asoc.2025.113355_bib30 article-title: Multi-objective optimization of the environmental-economic dispatch with reinforcement learning based on non-dominated sorting genetic algorithm publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.10.020 – volume: 77 year: 2023 ident: 10.1016/j.asoc.2025.113355_bib35 article-title: RL-GA: a reinforcement learning-based genetic algorithm for electromagnetic detection satellite scheduling problem publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2023.101236 – volume: 46 start-page: 1955 issue: 7 year: 2008 ident: 10.1016/j.asoc.2025.113355_bib6 article-title: Production scheduling optimization algorithm for the hot rolling processes publication-title: Int. J. Prod. Res. doi: 10.1080/00207540600988048 – volume: 227 year: 2023 ident: 10.1016/j.asoc.2025.113355_sbref19 article-title: Deep learning-based prediction framework of temperature control time for wide-thick slab hot rolling production publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2023.120083 – volume: 19 start-page: 317 issue: 3 year: 1992 ident: 10.1016/j.asoc.2025.113355_bib3 article-title: Discrete event sequencing as a traveling salesman problem publication-title: Comput. Ind. doi: 10.1016/0166-3615(92)90069-Y – volume: 149 year: 2020 ident: 10.1016/j.asoc.2025.113355_bib26 article-title: A self-learning genetic algorithm based on reinforcement learning for flexible job-shop scheduling problem publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2020.106778 – volume: 6 start-page: 182 issue: 2 year: 2002 ident: 10.1016/j.asoc.2025.113355_bib28 article-title: A fast and elitist multiobjective genetic algorithm: NSGA-II publication-title: IEEE Trans. Evolut. Comput. doi: 10.1109/4235.996017 – volume: 161 year: 2021 ident: 10.1016/j.asoc.2025.113355_bib25 article-title: A parallel genetic algorithm for multi-objective flexible flowshop scheduling in pasta manufacturing publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2021.107659 – volume: 9 start-page: 47856 year: 2021 ident: 10.1016/j.asoc.2025.113355_bib11 article-title: Very large-scale neighborhood search for steel hot rolling scheduling problem with slab stack shuffling considerations publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3058328 – volume: 36 start-page: 282 issue: 02 year: 2010 ident: 10.1016/j.asoc.2025.113355_bib17 article-title: Optimization method of production scheduling for hot rolling of medium-thick slabs publication-title: Acta Autom. Sin. doi: 10.3724/SP.J.1004.2010.00282 – volume: 61 start-page: 487 issue: 5-8 year: 2012 ident: 10.1016/j.asoc.2025.113355_bib2 article-title: A decomposition-based hierarchical optimization algorithm for hot rolling batch scheduling problem publication-title: Int. J. Adv. Manuf. Technol. doi: 10.1007/s00170-011-3749-9 – volume: 132 year: 2021 ident: 10.1016/j.asoc.2025.113355_bib24 article-title: A hybrid multi-objective approach for real-time flexible production scheduling and rescheduling under dynamic environment in Industry 4.0 context publication-title: Comput. Oper. Res. doi: 10.1016/j.cor.2021.105267 – volume: 106 start-page: 317 issue: 2 year: 1998 ident: 10.1016/j.asoc.2025.113355_bib4 article-title: The hot strip mill production scheduling problem: a tabu search approach publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(97)00277-4 – start-page: 1 year: 2022 ident: 10.1016/j.asoc.2025.113355_bib16 article-title: The hot strip mill scheduling problem with uncertainty: robust optimization models and solution approaches publication-title: IEEE Trans. Cybern. – volume: 61 start-page: 774 issue: 3 year: 2023 ident: 10.1016/j.asoc.2025.113355_sbref20 article-title: Bi-objective coordinated production and transportation scheduling problem with sustainability: formulation and solution approaches publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.2017054 – volume: 15 issue: 12 year: 2020 ident: 10.1016/j.asoc.2025.113355_bib14 article-title: Research on hot rolling scheduling problem based on Two-phase Pareto algorithm publication-title: PLoS One doi: 10.1371/journal.pone.0241077 – volume: 64 year: 2021 ident: 10.1016/j.asoc.2025.113355_bib29 article-title: An improved simulated annealing algorithm with crossover operator for capacitated vehicle routing problem publication-title: Swarm Evolut. Comput. doi: 10.1016/j.swevo.2021.100911 – volume: 2015 year: 2015 ident: 10.1016/j.asoc.2025.113355_bib34 article-title: Performance metrics in multi-objective optimization – volume: 124 start-page: 267 issue: 2 year: 2000 ident: 10.1016/j.asoc.2025.113355_bib5 article-title: A multiple traveling salesman problem model for hot rolling scheduling in Shanghai Baoshan Iron & Steel Complex publication-title: Eur. J. Oper. Res. doi: 10.1016/S0377-2217(99)00380-X – volume: 2018 start-page: 1 year: 2018 ident: 10.1016/j.asoc.2025.113355_bib10 article-title: Integrated scheduling of reheating furnace and hot rolling based on improved multiobjective differential evolution publication-title: Complexity doi: 10.1155/2018/1919438 – volume: 60 start-page: 6205 issue: 20 year: 2022 ident: 10.1016/j.asoc.2025.113355_sbref22 article-title: A hybrid learning-based meta-heuristic algorithm for scheduling of an additive manufacturing system consisting of parallel SLM machines publication-title: Int. J. Prod. Res. doi: 10.1080/00207543.2021.1987550 – volume: 48 start-page: 516 year: 2017 ident: 10.1016/j.asoc.2025.113355_bib7 article-title: A mathematical model and two-stage heuristic for hot rolling scheduling in compact strip production publication-title: Appl. Math. Model. doi: 10.1016/j.apm.2017.03.067 – volume: 81 start-page: 492 year: 2018 ident: 10.1016/j.asoc.2025.113355_bib27 article-title: An improved multi-cores parallel artificial Bee colony optimization algorithm for parameters calibration of hydrological model publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2017.07.020 – volume: 116 start-page: 22 year: 2018 ident: 10.1016/j.asoc.2025.113355_bib8 article-title: A hybrid variable neighborhood search algorithm for the hot rolling batch scheduling problem in compact strip production publication-title: Comput. Ind. Eng. doi: 10.1016/j.cie.2017.12.013 – volume: 407 year: 2021 ident: 10.1016/j.asoc.2025.113355_bib9 article-title: Modeling and application for rolling scheduling problem based on TSP publication-title: Appl. Math. Comput. |
| SSID | ssj0016928 |
| Score | 2.4419682 |
| Snippet | Hot rolling is the core process of steel production, and its scheduling problem is the key to determining the rolling rhythm. Compared with traditional... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 113355 |
| SubjectTerms | Hot rolling scheduling Island model Multi-objective asymmetric vehicle routing model Parallel genetic algorithm Q-learning |
| Title | Reinforcement-learning-based parallel genetic algorithm for the multi-objective hot-rolling scheduling problem of wide-thick slab |
| URI | https://dx.doi.org/10.1016/j.asoc.2025.113355 |
| Volume | 179 |
| WOSCitedRecordID | wos001504749900004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1568-4946 databaseCode: AIEXJ dateStart: 20010601 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0016928 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3Pb9MwFLZKx4ELjF_a-CUfuFWekjqN4-NAQwxNE4IhOi6R7dhrSkiqLhm7cOA_5zmx06pDFSBxiSqrdqJ8X5-fX997H0IvDfzCWJYoQsciJrBDjYnQgSFSsihRUkspWqRP2OlpMp3y94PBD18Lc1Wwskyur_niv0INYwC2LZ39C7j7RWEAPgPocAXY4fpHwH_QbTNU1cb9iFOFuCB2u8pGttN3UejCKifrtldrcVEt83r2rc83bFMMSSXnnSkczaqaLF3rbjgKw9bkKthbJRrrbH7PM01s3vzXERBMrvu73sm9BGvfpq83td8r16PVX2YNvJOep5_d8CuRF3k_et64YO2sEflCr5Y5aTMSznNf1uaCGONJn_DqIms3qms6YxwnJOIuROmtdac9c8Pyd0GI-YEAUh_YW1i1Gtq1AN7oqP3RLmzXBffPHt-CW2hnzCY8GaKdw-Oj6bv-b6iYt-K8_YO4qqsuQXDzTr_3bNa8lbNddNcdM_BhR4_7aKDLB-iel_DAzqI_RD-3sQV7tmDHFtyzBcMcDGzBG2zBa2zBK7ZgxxZcGbxiC7ZseYQ-vTk6e_2WOFUOomgwrklsmDAxlSYzPFRWbiDjJppIppQWVPFIMsm5CSOTCEkFSwIT0jizrfMyFglKH6NhWZV6D2EayyjkgsuAR1GWUAHbCRNMRYaCoyzUPgr9G02Va1lvlVOK1OcmzlOLQmpRSDsU9tGon7PoGrZs_fbEA5U6l7NzJVPg1ZZ5T_5x3lN0Z0X_Z2hYLxv9HN1WV3V-uXzh6PcLit-tTw |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reinforcement-learning-based+parallel+genetic+algorithm+for+the+multi-objective+hot-rolling+scheduling+problem+of+wide-thick+slab&rft.jtitle=Applied+soft+computing&rft.au=Zhang%2C+Zhuolun&rft.au=Wang%2C+Bailin&rft.au=Yuan%2C+Shuaipeng&rft.au=Li%2C+Yiren&rft.date=2025-07-01&rft.pub=Elsevier+B.V&rft.issn=1568-4946&rft.volume=179&rft_id=info:doi/10.1016%2Fj.asoc.2025.113355&rft.externalDocID=S1568494625006660 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1568-4946&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1568-4946&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1568-4946&client=summon |