Deep learning framework designed for high-performance lithium-ion batteries state monitoring

Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However...

Full description

Saved in:
Bibliographic Details
Published in:Renewable & sustainable energy reviews Vol. 218; p. 115803
Main Authors: Takyi-Aninakwa, Paul, Wang, Shunli, Liu, Guangchen, Fernandez, Carlos, Kang, Wenbin, Song, Yingze
Format: Journal Article
Language:English
Published: Elsevier Ltd 01.08.2025
Subjects:
ISSN:1364-0321
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However, their accuracy is limited due to the nonlinear adverse driving conditions batteries experience during operation and an over-reliance on raw battery information. In this work, a deep-stacked denoising autoencoder is established for a long short-term memory model that incorporates a transfer learning mechanism to estimate and study the SOC from an electrochemical perspective. More importantly, this proposed model is designed to extract and optimize the electrochemical features from the training data on a secondary scale, improving noise reduction and the precision of initial weights. This adaptation allows for accurate SOC estimation of batteries while minimizing interference and divergence. For large-scale applicability, the proposed model is tested with high-performance lithium-ion batteries featuring different morphologies under a range of complex loads and driving conditions. The experimental results highlight the distinct behaviors of the tested batteries. Moreover, the performance of the proposed model demonstrates its effectiveness and outperforms existing models, achieving a mean absolute error of 0.04721% and a coefficient of determination of 98.99%, facilitating more precise state monitoring of batteries through secondary feature extraction. •A DSDA-LSTM model enhances state monitoring for lithium-ion batteries in real-time.•The model optimizes secondary electrochemical feature extraction for accuracy improvement.•The challenges of noise and inaccurate initial weights in SOC estimation are solved.•Transfer learning boosts model performance across battery types and driving conditions.•Achieves superior state estimation accuracy with MAE of 0.04721 % and R2 of 98.99 %.
AbstractList Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However, their accuracy is limited due to the nonlinear adverse driving conditions batteries experience during operation and an over-reliance on raw battery information. In this work, a deep-stacked denoising autoencoder is established for a long short-term memory model that incorporates a transfer learning mechanism to estimate and study the SOC from an electrochemical perspective. More importantly, this proposed model is designed to extract and optimize the electrochemical features from the training data on a secondary scale, improving noise reduction and the precision of initial weights. This adaptation allows for accurate SOC estimation of batteries while minimizing interference and divergence. For large-scale applicability, the proposed model is tested with high-performance lithium-ion batteries featuring different morphologies under a range of complex loads and driving conditions. The experimental results highlight the distinct behaviors of the tested batteries. Moreover, the performance of the proposed model demonstrates its effectiveness and outperforms existing models, achieving a mean absolute error of 0.04721% and a coefficient of determination of 98.99%, facilitating more precise state monitoring of batteries through secondary feature extraction. •A DSDA-LSTM model enhances state monitoring for lithium-ion batteries in real-time.•The model optimizes secondary electrochemical feature extraction for accuracy improvement.•The challenges of noise and inaccurate initial weights in SOC estimation are solved.•Transfer learning boosts model performance across battery types and driving conditions.•Achieves superior state estimation accuracy with MAE of 0.04721 % and R2 of 98.99 %.
ArticleNumber 115803
Author Wang, Shunli
Song, Yingze
Takyi-Aninakwa, Paul
Liu, Guangchen
Fernandez, Carlos
Kang, Wenbin
Author_xml – sequence: 1
  givenname: Paul
  orcidid: 0000-0001-8210-6340
  surname: Takyi-Aninakwa
  fullname: Takyi-Aninakwa, Paul
  email: tapaul@swust.edu.cn, lingorocsta@hotmail.com
  organization: State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
– sequence: 2
  givenname: Shunli
  surname: Wang
  fullname: Wang, Shunli
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080, China
– sequence: 3
  givenname: Guangchen
  surname: Liu
  fullname: Liu, Guangchen
  organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080, China
– sequence: 4
  givenname: Carlos
  surname: Fernandez
  fullname: Fernandez, Carlos
  organization: Department of Energy Technology, Aalborg University, Pontoppidanstraede 111, Aalborg East, 9220, Denmark
– sequence: 5
  givenname: Wenbin
  surname: Kang
  fullname: Kang, Wenbin
  email: wenbin.kang@swust.edu.cn
  organization: State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
– sequence: 6
  givenname: Yingze
  surname: Song
  fullname: Song, Yingze
  organization: State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China
BookMark eNp9kMtKAzEUhrOoYFt9AVd5gRlz6VwKbqReoeBGd0LIJGfa1JmknETFtzelrlx0dQ78fD_nfDMy8cEDIVeclZzx-npXYgQsBRNVyXnVMjkhUy7rRcGk4OdkFuOOsRw0ckre7wD2dACN3vkN7VGP8B3wg1qIbuPB0j4g3brNttgD5n3U3gAdXNq6z7FwwdNOpwToINKYdAI6Bu9SwFx3Qc56PUS4_Jtz8vZw_7p6KtYvj8-r23VhJBOpqKCuO1Ytrei44KLtWqnbSjPDF7w2je46UVmhF8CbprWai8Ysc9xY0_PcUMk5EcdegyFGhF7t0Y0afxRn6uBE7dTBiTo4UUcnGWr_Qcbl-_NHCbUbTqM3RxTyU18up9E4yF6sQzBJ2eBO4b-X14ME
CitedBy_id crossref_primary_10_1016_j_apenergy_2025_126755
crossref_primary_10_1007_s11581_025_06350_w
crossref_primary_10_1016_j_measurement_2025_117994
crossref_primary_10_1016_j_ijoes_2025_101073
crossref_primary_10_1016_j_est_2025_117747
crossref_primary_10_1016_j_ijoes_2025_101107
Cites_doi 10.1016/j.energy.2022.125872
10.1016/j.jpowsour.2024.235272
10.1016/j.jpowsour.2020.228740
10.1016/j.energy.2023.127231
10.1016/j.est.2021.102440
10.1016/j.jechem.2023.10.049
10.1016/j.jallcom.2022.166137
10.1016/j.energy.2021.120451
10.1016/j.applthermaleng.2023.120303
10.1016/j.energy.2024.131602
10.1016/j.nanoen.2022.107214
10.3390/en13236366
10.1016/j.etran.2023.100302
10.2174/0122127976289702240212040839
10.1016/j.est.2022.104124
10.1016/j.est.2022.105844
10.3390/app12052305
10.1016/j.apenergy.2022.120091
10.1016/j.jpowsour.2024.235312
10.1016/j.jallcom.2024.174250
10.1016/j.rser.2022.112282
10.1016/j.heliyon.2024.e35780
10.1016/j.apenergy.2024.123056
10.1016/j.jpowsour.2020.228375
10.1016/j.jpowsour.2021.230892
10.1016/j.est.2020.101459
10.1016/j.energy.2024.132395
10.1016/j.apenergy.2022.120043
10.1016/j.rser.2024.114577
10.1016/j.energy.2022.125375
10.1016/j.energy.2022.123178
10.1016/j.energy.2022.125093
10.1016/j.rser.2023.113728
10.1016/j.est.2023.108974
10.1016/j.rser.2020.109994
10.1016/j.energy.2022.125083
10.1016/j.est.2021.103701
10.1016/j.est.2023.109758
10.1016/j.epsr.2022.108751
10.1002/eem2.12876
10.1140/epjs/s11734-022-00605-7
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.rser.2025.115803
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
ExternalDocumentID 10_1016_j_rser_2025_115803
S1364032125004769
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
AABNK
AAEDT
AAEDW
AAHCO
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AATTM
AAXKI
AAXUO
AAYWO
ABFNM
ABJNI
ABMAC
ABWVN
ABXDB
ACDAQ
ACGFS
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADHUB
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRNS
AGUBO
AGYEJ
AHIDL
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
KOM
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSH
SSR
SSZ
T5K
Y6R
ZCA
~G-
9DU
AAYXX
ACLOT
CITATION
EFKBS
EFLBG
~HD
ID FETCH-LOGICAL-c302t-5e66b059d2b12128b83a85a0c1416c7abb25d2a4e1778da127c95a07dcf1c3053
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494775300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1364-0321
IngestDate Tue Nov 18 21:13:52 EST 2025
Sat Nov 29 07:54:58 EST 2025
Sat Jun 14 16:53:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Lithium-ion batteries
Long short-term memory
State of charge estimation
Deep-stacked denoising autoencoder
Secondary scale feature extraction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c302t-5e66b059d2b12128b83a85a0c1416c7abb25d2a4e1778da127c95a07dcf1c3053
ORCID 0000-0001-8210-6340
ParticipantIDs crossref_primary_10_1016_j_rser_2025_115803
crossref_citationtrail_10_1016_j_rser_2025_115803
elsevier_sciencedirect_doi_10_1016_j_rser_2025_115803
PublicationCentury 2000
PublicationDate August 2025
2025-08-00
PublicationDateYYYYMMDD 2025-08-01
PublicationDate_xml – month: 08
  year: 2025
  text: August 2025
PublicationDecade 2020
PublicationTitle Renewable & sustainable energy reviews
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Mehdi (bib9) 2022; 922
Xu, Zhang, Jiang, Wang (bib42) 2022; 327
Hong, Wang, Chen, Wang, Qu (bib15) 2020; 30
Xu (bib14) 2022; 45
Kumar Thakur (bib26) 2023; 226
Mehdi (bib36) 2025
Chen, Feng, Jiang, Zhu (bib22) 2021; 227
Amiri, Håkansson, Burheim, Lamb (bib13) 2024; 200
Duan, Song, Peng, Xiao, Shao, Song (bib32) 2020; 13
Wang, Li, Cao, Li (bib34) 2024; 620
Peng, Takyi-Aninakwa, Wang, Masahudu, Yang, Guerrero (bib31) 2024; 76
Fasahat, Manthouri (bib40) 2020; 469
Chen, Lu, Chen, Cheng, Xuan (bib23) 2022; 12
Shah (bib35) 2024; 622
Wang, Feng, Liu, Gu, Ball (bib8) 2022; 49
Kuang, Zhou, Xu, Li, Xu (bib33) 2024; 300
Lin (bib27) Aug 30 2024; 10
Takyi-Aninakwa, Wang, Zhang, Li, Xu, Fernandez (bib37) 2022; 260
Ma, Hu, Cheng (bib21) 2021; 37
Ali, Khan, Abbas, Choi (bib17) 2022; 55
Joshi, Dandotiya, Ramesh, Panchal (bib25) 2023
Takyi-Aninakwa (bib38) 2024; 363
Yang, Wang, Takyi-Aninakwa, Yang, Fernandez (bib6) 2023; 73
Zhou (bib5) 2024; 19
Arjun, Perumal (bib16) 2024; 17
Ma, Guo, Wang, Zhang, Peng, Chen (bib43) 2022; 260
Joe, Arumuga Perumal (bib7) 2022/09/01 2022; 231
Wang, Chen, Zhang (bib44) 2022; 244
Wang, Li, Zhang (bib2) 2023; 188
Zhang, Li (bib18) 2022; 161
Sun, Li, You (bib12) 2020; 131
Takyi-Aninakwa, Wang, Zhang, Yang, Fernandez (bib29) 2023; 273
Takyi-Aninakwa, Wang, Zhang, Yang, Fernandez (bib39) 2022; 326
Zhang, Guo, Dou, Zhang (bib10) 2020; 479
Qian (bib30) 2024; 294
Song, Wei, Song, Cai, Liu, Zhang (bib11) 2024; 70
Bai (bib41) 2022; 213
Liow (bib4) 2022; 98
Chen, Zhao, Zhang, Shen, Shen, Liu (bib20) 2022; 521
Mehdi, Ali, Maqsood, Abbas, Lee (bib3) 2024/06/15/2024; 988
Guo, Ma (bib28) 2023; 263
Yu, Wang, Yang, Li (bib19) 2024; 90
Chen, Zhang, Wu, Cheng, Zhu (bib24) 2023; 262
Ge, Jin, Wang, Zhang (bib1) 2024; 305
Mehdi (10.1016/j.rser.2025.115803_bib9) 2022; 922
Duan (10.1016/j.rser.2025.115803_bib32) 2020; 13
Takyi-Aninakwa (10.1016/j.rser.2025.115803_bib39) 2022; 326
Wang (10.1016/j.rser.2025.115803_bib34) 2024; 620
Hong (10.1016/j.rser.2025.115803_bib15) 2020; 30
Mehdi (10.1016/j.rser.2025.115803_bib3) 2024; 988
Wang (10.1016/j.rser.2025.115803_bib8) 2022; 49
Zhou (10.1016/j.rser.2025.115803_bib5) 2024; 19
Chen (10.1016/j.rser.2025.115803_bib20) 2022; 521
Chen (10.1016/j.rser.2025.115803_bib22) 2021; 227
Yu (10.1016/j.rser.2025.115803_bib19) 2024; 90
Ge (10.1016/j.rser.2025.115803_bib1) 2024; 305
Song (10.1016/j.rser.2025.115803_bib11) 2024; 70
Peng (10.1016/j.rser.2025.115803_bib31) 2024; 76
Amiri (10.1016/j.rser.2025.115803_bib13) 2024; 200
Ma (10.1016/j.rser.2025.115803_bib21) 2021; 37
Takyi-Aninakwa (10.1016/j.rser.2025.115803_bib29) 2023; 273
Shah (10.1016/j.rser.2025.115803_bib35) 2024; 622
Guo (10.1016/j.rser.2025.115803_bib28) 2023; 263
Takyi-Aninakwa (10.1016/j.rser.2025.115803_bib38) 2024; 363
Yang (10.1016/j.rser.2025.115803_bib6) 2023; 73
Kumar Thakur (10.1016/j.rser.2025.115803_bib26) 2023; 226
Takyi-Aninakwa (10.1016/j.rser.2025.115803_bib37) 2022; 260
Wang (10.1016/j.rser.2025.115803_bib44) 2022; 244
Chen (10.1016/j.rser.2025.115803_bib24) 2023; 262
Ali (10.1016/j.rser.2025.115803_bib17) 2022; 55
Joshi (10.1016/j.rser.2025.115803_bib25) 2023
Fasahat (10.1016/j.rser.2025.115803_bib40) 2020; 469
Xu (10.1016/j.rser.2025.115803_bib14) 2022; 45
Lin (10.1016/j.rser.2025.115803_bib27) 2024; 10
Bai (10.1016/j.rser.2025.115803_bib41) 2022; 213
Kuang (10.1016/j.rser.2025.115803_bib33) 2024; 300
Sun (10.1016/j.rser.2025.115803_bib12) 2020; 131
Zhang (10.1016/j.rser.2025.115803_bib18) 2022; 161
Arjun (10.1016/j.rser.2025.115803_bib16) 2024; 17
Ma (10.1016/j.rser.2025.115803_bib43) 2022; 260
Wang (10.1016/j.rser.2025.115803_bib2) 2023; 188
Xu (10.1016/j.rser.2025.115803_bib42) 2022; 327
Liow (10.1016/j.rser.2025.115803_bib4) 2022; 98
Zhang (10.1016/j.rser.2025.115803_bib10) 2020; 479
Mehdi (10.1016/j.rser.2025.115803_bib36) 2025
Joe (10.1016/j.rser.2025.115803_bib7) 2022; 231
Qian (10.1016/j.rser.2025.115803_bib30) 2024; 294
Chen (10.1016/j.rser.2025.115803_bib23) 2022; 12
References_xml – volume: 213
  start-page: 1
  year: 2022
  end-page: 17
  ident: bib41
  article-title: State of charge estimation for lithium-ion batteries under varying temperature conditions based on adaptive dual extended Kalman filter
  publication-title: Elec Power Syst Res
– volume: 273
  start-page: 1
  year: 2023
  end-page: 16
  ident: bib29
  article-title: A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures
  publication-title: Energy
– volume: 300
  start-page: 1
  year: 2024
  end-page: 21
  ident: bib33
  article-title: State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter
  publication-title: Energy
– volume: 55
  year: 2022
  ident: bib17
  article-title: Prediction of hydrogen storage in dibenzyltoluene empowered with machine learning
  publication-title: J Energy Storage
– volume: 469
  start-page: 1
  year: 2020
  end-page: 8
  ident: bib40
  article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short-term memory neural networks
  publication-title: J Power Sources
– start-page: 1
  year: 2023
  end-page: 8
  ident: bib25
  article-title: Numerical analysis of battery thermal management system using passive cooling technique
  publication-title: SAE Tech. Pap.
– volume: 30
  start-page: 1
  year: 2020
  end-page: 12
  ident: bib15
  article-title: Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles
  publication-title: J Energy Storage
– volume: 49
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib8
  article-title: A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system
  publication-title: J Energy Storage
– volume: 244
  start-page: 1
  year: 2022
  end-page: 13
  ident: bib44
  article-title: Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning
  publication-title: Energy
– volume: 988
  year: 2024/06/15/2024
  ident: bib3
  article-title: Synthesis of nickel phosphate nanowires as a bifunctional catalyst for water electrolysis in alkaline media
  publication-title: J Alloys Compd
– volume: 922
  year: 2022
  ident: bib9
  article-title: The effect of boron-doped carbon nanotubes blended with active layers in achieving high-efficiency polymer solar cells and X-ray detectors
  publication-title: J Alloys Compd
– volume: 226
  year: 2023
  ident: bib26
  article-title: A state-of-the art review on advancing battery thermal management systems for fast-charging
  publication-title: Appl Therm Eng
– volume: 262
  start-page: 1
  year: 2023
  end-page: 14
  ident: bib24
  article-title: SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output
  publication-title: Energy
– volume: 263
  start-page: 1
  year: 2023
  end-page: 8
  ident: bib28
  article-title: A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation
  publication-title: Energy
– volume: 326
  start-page: 1
  year: 2022
  end-page: 21
  ident: bib39
  article-title: An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries
  publication-title: Appl Energy
– volume: 327
  start-page: 1
  year: 2022
  end-page: 14
  ident: bib42
  article-title: Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery
  publication-title: Appl Energy
– volume: 73
  start-page: 1
  year: 2023
  end-page: 17
  ident: bib6
  article-title: Improved noise bias compensation-equivalent circuit modeling strategy for battery state of charge estimation adaptive to strong electromagnetic interference
  publication-title: J Energy Storage
– volume: 10
  year: Aug 30 2024
  ident: bib27
  article-title: Deep learning-based state of charge estimation for electric vehicle batteries: overcoming technological bottlenecks
  publication-title: Heliyon
– volume: 227
  start-page: 1
  year: 2021
  end-page: 8
  ident: bib22
  article-title: State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network
  publication-title: Energy
– volume: 188
  year: 2023
  ident: bib2
  article-title: Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation
  publication-title: Renew Sustain Energy Rev
– volume: 90
  start-page: 191
  year: 2024
  end-page: 204
  ident: bib19
  article-title: Machine learning in metal-ion battery research: advancing material prediction, characterization, and status evaluation
  publication-title: J Energy Chem
– volume: 622
  start-page: 1
  year: 2024
  end-page: 13
  ident: bib35
  article-title: A hybrid deep learning framework integrating bidirectional sliding windows, TCN, and external attention for accurate state-of-charge estimation in lithium-ion batteries
  publication-title: J Power Sources
– volume: 305
  start-page: 1
  year: 2024
  end-page: 16
  ident: bib1
  article-title: A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries
  publication-title: Energy
– year: 2025
  ident: bib36
  article-title: Enhanced electrochemical performance and theoretical insights of Ni‐intercalated Ti3C2TxMXene
  publication-title: Energy Environ. Mater.
– volume: 260
  year: 2022
  ident: bib43
  article-title: Robust state of charge estimation for Li-ion batteries based on cubature Kalman filter with generalized maximum correntropy criterion
  publication-title: Energy
– volume: 19
  year: 2024
  ident: bib5
  article-title: A statistical distribution-based pack-integrated model towards state estimation for lithium-ion batteries
  publication-title: eTransport.
– volume: 17
  start-page: 196
  year: 2024
  end-page: 207
  ident: bib16
  article-title: Computational modelling of heat transfer through aluminium metal foams for LiFePO
  publication-title: Recent Pat Mech Eng
– volume: 260
  start-page: 1
  year: 2022
  end-page: 15
  ident: bib37
  article-title: An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries
  publication-title: Energy
– volume: 231
  start-page: 2865
  year: 2022/09/01 2022
  end-page: 2877
  ident: bib7
  article-title: Computational analysis of fluid immersed active cooling for battery thermal management using thermal lattice Boltzmann method
  publication-title: Eur Phys J Spec Top
– volume: 479
  start-page: 1
  year: 2020
  end-page: 11
  ident: bib10
  article-title: A rapid online calculation method for state of health of lithium-ion battery based on coulomb counting method and differential voltage analysis
  publication-title: J Power Sources
– volume: 37
  start-page: 1
  year: 2021
  end-page: 10
  ident: bib21
  article-title: State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network
  publication-title: J Energy Storage
– volume: 294
  start-page: 1
  year: 2024
  end-page: 16
  ident: bib30
  article-title: A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions
  publication-title: Energy
– volume: 161
  year: 2022
  ident: bib18
  article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review
  publication-title: Renew Sustain Energy Rev
– volume: 363
  start-page: 1
  year: 2024
  end-page: 18
  ident: bib38
  article-title: Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data
  publication-title: Appl Energy
– volume: 13
  year: 2020
  ident: bib32
  article-title: An improved gated recurrent unit network model for state-of-charge estimation of lithium-ion battery
  publication-title: Energies
– volume: 12
  year: 2022
  ident: bib23
  article-title: An improved gated recurrent unit neural network for state-of-charge estimation of lithium-ion battery
  publication-title: Appl Sci
– volume: 620
  start-page: 1
  year: 2024
  end-page: 14
  ident: bib34
  article-title: A hybrid model for state of charge estimation of lithium-ion batteries utilizing improved adaptive extended Kalman filter and long short-term memory neural network
  publication-title: J Power Sources
– volume: 131
  start-page: 1
  year: 2020
  end-page: 15
  ident: bib12
  article-title: Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer
  publication-title: Renew Sustain Energy Rev
– volume: 70
  start-page: 1
  year: 2024
  end-page: 21
  ident: bib11
  article-title: Advanced detections for deciphering the catalytic reaction behaviors of lithium–sulfur batteries
  publication-title: Energy Storage Mater
– volume: 76
  start-page: 1
  year: 2024
  end-page: 16
  ident: bib31
  article-title: A hybrid-aided approach with adaptive state update for estimating the state-of-charge of LiFePO4 batteries considering temperature uncertainties
  publication-title: J Energy Storage
– volume: 521
  start-page: 1
  year: 2022
  end-page: 13
  ident: bib20
  article-title: State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network
  publication-title: J Power Sources
– volume: 200
  year: 2024
  ident: bib13
  article-title: Lithium-ion battery digitalization: combining physics-based models and machine learning
  publication-title: Renew Sustain Energy Rev
– volume: 45
  year: 2022
  ident: bib14
  article-title: State of charge estimation for liquid metal battery based on an improved sliding mode observer
  publication-title: J Energy Storage
– volume: 98
  start-page: 1
  year: 2022
  end-page: 8
  ident: bib4
  article-title: Machine learning assisted synthesis of lithium-ion batteries cathode materials
  publication-title: Nano Energy
– volume: 263
  start-page: 1
  year: 2023
  ident: 10.1016/j.rser.2025.115803_bib28
  article-title: A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125872
– volume: 620
  start-page: 1
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib34
  article-title: A hybrid model for state of charge estimation of lithium-ion batteries utilizing improved adaptive extended Kalman filter and long short-term memory neural network
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2024.235272
– volume: 479
  start-page: 1
  year: 2020
  ident: 10.1016/j.rser.2025.115803_bib10
  article-title: A rapid online calculation method for state of health of lithium-ion battery based on coulomb counting method and differential voltage analysis
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228740
– volume: 273
  start-page: 1
  year: 2023
  ident: 10.1016/j.rser.2025.115803_bib29
  article-title: A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures
  publication-title: Energy
  doi: 10.1016/j.energy.2023.127231
– volume: 37
  start-page: 1
  year: 2021
  ident: 10.1016/j.rser.2025.115803_bib21
  article-title: State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.102440
– volume: 90
  start-page: 191
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib19
  article-title: Machine learning in metal-ion battery research: advancing material prediction, characterization, and status evaluation
  publication-title: J Energy Chem
  doi: 10.1016/j.jechem.2023.10.049
– volume: 922
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib9
  article-title: The effect of boron-doped carbon nanotubes blended with active layers in achieving high-efficiency polymer solar cells and X-ray detectors
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2022.166137
– volume: 227
  start-page: 1
  year: 2021
  ident: 10.1016/j.rser.2025.115803_bib22
  article-title: State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network
  publication-title: Energy
  doi: 10.1016/j.energy.2021.120451
– volume: 226
  year: 2023
  ident: 10.1016/j.rser.2025.115803_bib26
  article-title: A state-of-the art review on advancing battery thermal management systems for fast-charging
  publication-title: Appl Therm Eng
  doi: 10.1016/j.applthermaleng.2023.120303
– volume: 300
  start-page: 1
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib33
  article-title: State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter
  publication-title: Energy
  doi: 10.1016/j.energy.2024.131602
– volume: 98
  start-page: 1
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib4
  article-title: Machine learning assisted synthesis of lithium-ion batteries cathode materials
  publication-title: Nano Energy
  doi: 10.1016/j.nanoen.2022.107214
– volume: 13
  issue: 23
  year: 2020
  ident: 10.1016/j.rser.2025.115803_bib32
  article-title: An improved gated recurrent unit network model for state-of-charge estimation of lithium-ion battery
  publication-title: Energies
  doi: 10.3390/en13236366
– volume: 19
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib5
  article-title: A statistical distribution-based pack-integrated model towards state estimation for lithium-ion batteries
  publication-title: eTransport.
  doi: 10.1016/j.etran.2023.100302
– volume: 17
  start-page: 196
  issue: 3
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib16
  article-title: Computational modelling of heat transfer through aluminium metal foams for LiFePO4 battery cooling, recent patents on mechanical engineering
  publication-title: Recent Pat Mech Eng
  doi: 10.2174/0122127976289702240212040839
– volume: 49
  start-page: 1
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib8
  article-title: A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.104124
– volume: 55
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib17
  article-title: Prediction of hydrogen storage in dibenzyltoluene empowered with machine learning
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2022.105844
– volume: 12
  issue: 5
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib23
  article-title: An improved gated recurrent unit neural network for state-of-charge estimation of lithium-ion battery
  publication-title: Appl Sci
  doi: 10.3390/app12052305
– volume: 327
  start-page: 1
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib42
  article-title: Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120091
– volume: 622
  start-page: 1
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib35
  article-title: A hybrid deep learning framework integrating bidirectional sliding windows, TCN, and external attention for accurate state-of-charge estimation in lithium-ion batteries
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2024.235312
– volume: 988
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib3
  article-title: Synthesis of nickel phosphate nanowires as a bifunctional catalyst for water electrolysis in alkaline media
  publication-title: J Alloys Compd
  doi: 10.1016/j.jallcom.2024.174250
– volume: 161
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib18
  article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2022.112282
– volume: 10
  issue: 16
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib27
  article-title: Deep learning-based state of charge estimation for electric vehicle batteries: overcoming technological bottlenecks
  publication-title: Heliyon
  doi: 10.1016/j.heliyon.2024.e35780
– volume: 363
  start-page: 1
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib38
  article-title: Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2024.123056
– volume: 469
  start-page: 1
  year: 2020
  ident: 10.1016/j.rser.2025.115803_bib40
  article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short-term memory neural networks
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2020.228375
– volume: 521
  start-page: 1
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib20
  article-title: State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network
  publication-title: J Power Sources
  doi: 10.1016/j.jpowsour.2021.230892
– volume: 30
  start-page: 1
  year: 2020
  ident: 10.1016/j.rser.2025.115803_bib15
  article-title: Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2020.101459
– volume: 305
  start-page: 1
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib1
  article-title: A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2024.132395
– volume: 326
  start-page: 1
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib39
  article-title: An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2022.120043
– volume: 200
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib13
  article-title: Lithium-ion battery digitalization: combining physics-based models and machine learning
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2024.114577
– volume: 262
  start-page: 1
  year: 2023
  ident: 10.1016/j.rser.2025.115803_bib24
  article-title: SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125375
– volume: 244
  start-page: 1
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib44
  article-title: Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning
  publication-title: Energy
  doi: 10.1016/j.energy.2022.123178
– volume: 294
  start-page: 1
  issue: 130764
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib30
  article-title: A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions
  publication-title: Energy
– volume: 260
  start-page: 1
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib37
  article-title: An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125093
– volume: 70
  start-page: 1
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib11
  article-title: Advanced detections for deciphering the catalytic reaction behaviors of lithium–sulfur batteries
  publication-title: Energy Storage Mater
– volume: 188
  year: 2023
  ident: 10.1016/j.rser.2025.115803_bib2
  article-title: Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2023.113728
– volume: 73
  start-page: 1
  year: 2023
  ident: 10.1016/j.rser.2025.115803_bib6
  article-title: Improved noise bias compensation-equivalent circuit modeling strategy for battery state of charge estimation adaptive to strong electromagnetic interference
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.108974
– volume: 131
  start-page: 1
  year: 2020
  ident: 10.1016/j.rser.2025.115803_bib12
  article-title: Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer
  publication-title: Renew Sustain Energy Rev
  doi: 10.1016/j.rser.2020.109994
– volume: 260
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib43
  article-title: Robust state of charge estimation for Li-ion batteries based on cubature Kalman filter with generalized maximum correntropy criterion
  publication-title: Energy
  doi: 10.1016/j.energy.2022.125083
– volume: 45
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib14
  article-title: State of charge estimation for liquid metal battery based on an improved sliding mode observer
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2021.103701
– volume: 76
  start-page: 1
  year: 2024
  ident: 10.1016/j.rser.2025.115803_bib31
  article-title: A hybrid-aided approach with adaptive state update for estimating the state-of-charge of LiFePO4 batteries considering temperature uncertainties
  publication-title: J Energy Storage
  doi: 10.1016/j.est.2023.109758
– start-page: 1
  year: 2023
  ident: 10.1016/j.rser.2025.115803_bib25
  article-title: Numerical analysis of battery thermal management system using passive cooling technique
  publication-title: SAE Tech. Pap.
– volume: 213
  start-page: 1
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib41
  article-title: State of charge estimation for lithium-ion batteries under varying temperature conditions based on adaptive dual extended Kalman filter
  publication-title: Elec Power Syst Res
  doi: 10.1016/j.epsr.2022.108751
– year: 2025
  ident: 10.1016/j.rser.2025.115803_bib36
  article-title: Enhanced electrochemical performance and theoretical insights of Ni‐intercalated Ti3C2TxMXene
  publication-title: Energy Environ. Mater.
  doi: 10.1002/eem2.12876
– volume: 231
  start-page: 2865
  issue: 13
  year: 2022
  ident: 10.1016/j.rser.2025.115803_bib7
  article-title: Computational analysis of fluid immersed active cooling for battery thermal management using thermal lattice Boltzmann method
  publication-title: Eur Phys J Spec Top
  doi: 10.1140/epjs/s11734-022-00605-7
SSID ssj0015873
Score 2.5278409
Snippet Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS)...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 115803
SubjectTerms Deep-stacked denoising autoencoder
Lithium-ion batteries
Long short-term memory
Secondary scale feature extraction
State of charge estimation
Title Deep learning framework designed for high-performance lithium-ion batteries state monitoring
URI https://dx.doi.org/10.1016/j.rser.2025.115803
Volume 218
WOSCitedRecordID wos001494775300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 1364-0321
  databaseCode: AIEXJ
  dateStart: 19970301
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0015873
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcqvIlSinygVvkKnHiODmuSlGLUIVEEXtAimzHoWm36SrddMu_Z5zETrqgCpC4RKt47UQzbyeT2ffGCL2VBQxwHRNRME2iKBQQBxUjsdQxlTqEnL3dteQjPzlJZrP002SyslqYmzmvquT2Nl38V1fDOXC2kc7-hbvdonACPoPT4Qhuh-MfOf6d1gu7GcR3r7DkKy9vuRqQXxpioelSTBYj0QBk42dlc0kMGmTbcxNeob1WbuRdtr_72j7kbDtviJKrVnhl0HM9EmLpTk_YNzodagMXP0oyhbsSFyuxzkr8auvWZ001Lx1NqGzawn0Do4AuB-Q71e8DUc-v7pQvKHPkub6mZnU1A4nJhOEwjogfdtppG6dpF6h_ifld-eF8vwYn7ptLwGOAJX44POEc7_CzWdisC4mfH_E4fYA2KWcphMPN6fHh7IP7A4olLTnB3Uivt-qogetX-n1OM8pTTrfRVv-CgacdMJ6gia6eosejtpPP0DcDEWwhgh1EsIUIBljgdYjgEUSwgwhuIYIHiDxHX94fnh4ckX6XDaJCny4J03EsIcnOqQzAMIlMQpEw4asAcnXFhZSU5VREOuA8yUVAuUphmOeqCGAFFr5AG9VVpV8i7BexXyhfUy7zSAkmjWxaU6rTgtJChDsosHbKVN-C3uyEMs8s1_A8M7bNjG2zzrY7yHNzFl0Dlnu_zaz5sz6F7FLDDNByz7xX_zhvFz0aQP0abSzrRu-hh-pmWV7Xb3pQ_QRJ65t2
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+framework+designed+for+high-performance+lithium-ion+batteries+state+monitoring&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Takyi-Aninakwa%2C+Paul&rft.au=Wang%2C+Shunli&rft.au=Liu%2C+Guangchen&rft.au=Fernandez%2C+Carlos&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.volume=218&rft_id=info:doi/10.1016%2Fj.rser.2025.115803&rft.externalDocID=S1364032125004769
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon