Deep learning framework designed for high-performance lithium-ion batteries state monitoring
Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However...
Saved in:
| Published in: | Renewable & sustainable energy reviews Vol. 218; p. 115803 |
|---|---|
| Main Authors: | , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
01.08.2025
|
| Subjects: | |
| ISSN: | 1364-0321 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However, their accuracy is limited due to the nonlinear adverse driving conditions batteries experience during operation and an over-reliance on raw battery information. In this work, a deep-stacked denoising autoencoder is established for a long short-term memory model that incorporates a transfer learning mechanism to estimate and study the SOC from an electrochemical perspective. More importantly, this proposed model is designed to extract and optimize the electrochemical features from the training data on a secondary scale, improving noise reduction and the precision of initial weights. This adaptation allows for accurate SOC estimation of batteries while minimizing interference and divergence. For large-scale applicability, the proposed model is tested with high-performance lithium-ion batteries featuring different morphologies under a range of complex loads and driving conditions. The experimental results highlight the distinct behaviors of the tested batteries. Moreover, the performance of the proposed model demonstrates its effectiveness and outperforms existing models, achieving a mean absolute error of 0.04721% and a coefficient of determination of 98.99%, facilitating more precise state monitoring of batteries through secondary feature extraction.
•A DSDA-LSTM model enhances state monitoring for lithium-ion batteries in real-time.•The model optimizes secondary electrochemical feature extraction for accuracy improvement.•The challenges of noise and inaccurate initial weights in SOC estimation are solved.•Transfer learning boosts model performance across battery types and driving conditions.•Achieves superior state estimation accuracy with MAE of 0.04721 % and R2 of 98.99 %. |
|---|---|
| AbstractList | Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS) applications. Deep learning methods have become increasingly popular, driving significant advancements in battery research across various fields. However, their accuracy is limited due to the nonlinear adverse driving conditions batteries experience during operation and an over-reliance on raw battery information. In this work, a deep-stacked denoising autoencoder is established for a long short-term memory model that incorporates a transfer learning mechanism to estimate and study the SOC from an electrochemical perspective. More importantly, this proposed model is designed to extract and optimize the electrochemical features from the training data on a secondary scale, improving noise reduction and the precision of initial weights. This adaptation allows for accurate SOC estimation of batteries while minimizing interference and divergence. For large-scale applicability, the proposed model is tested with high-performance lithium-ion batteries featuring different morphologies under a range of complex loads and driving conditions. The experimental results highlight the distinct behaviors of the tested batteries. Moreover, the performance of the proposed model demonstrates its effectiveness and outperforms existing models, achieving a mean absolute error of 0.04721% and a coefficient of determination of 98.99%, facilitating more precise state monitoring of batteries through secondary feature extraction.
•A DSDA-LSTM model enhances state monitoring for lithium-ion batteries in real-time.•The model optimizes secondary electrochemical feature extraction for accuracy improvement.•The challenges of noise and inaccurate initial weights in SOC estimation are solved.•Transfer learning boosts model performance across battery types and driving conditions.•Achieves superior state estimation accuracy with MAE of 0.04721 % and R2 of 98.99 %. |
| ArticleNumber | 115803 |
| Author | Wang, Shunli Song, Yingze Takyi-Aninakwa, Paul Liu, Guangchen Fernandez, Carlos Kang, Wenbin |
| Author_xml | – sequence: 1 givenname: Paul orcidid: 0000-0001-8210-6340 surname: Takyi-Aninakwa fullname: Takyi-Aninakwa, Paul email: tapaul@swust.edu.cn, lingorocsta@hotmail.com organization: State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China – sequence: 2 givenname: Shunli surname: Wang fullname: Wang, Shunli organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080, China – sequence: 3 givenname: Guangchen surname: Liu fullname: Liu, Guangchen organization: College of Electric Power, Inner Mongolia University of Technology, Hohhot, 010080, China – sequence: 4 givenname: Carlos surname: Fernandez fullname: Fernandez, Carlos organization: Department of Energy Technology, Aalborg University, Pontoppidanstraede 111, Aalborg East, 9220, Denmark – sequence: 5 givenname: Wenbin surname: Kang fullname: Kang, Wenbin email: wenbin.kang@swust.edu.cn organization: State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China – sequence: 6 givenname: Yingze surname: Song fullname: Song, Yingze organization: State Key Laboratory of Environment-friendly Energy Materials, School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang, 621010, China |
| BookMark | eNp9kMtKAzEUhrOoYFt9AVd5gRlz6VwKbqReoeBGd0LIJGfa1JmknETFtzelrlx0dQ78fD_nfDMy8cEDIVeclZzx-npXYgQsBRNVyXnVMjkhUy7rRcGk4OdkFuOOsRw0ckre7wD2dACN3vkN7VGP8B3wg1qIbuPB0j4g3brNttgD5n3U3gAdXNq6z7FwwdNOpwToINKYdAI6Bu9SwFx3Qc56PUS4_Jtz8vZw_7p6KtYvj8-r23VhJBOpqKCuO1Ytrei44KLtWqnbSjPDF7w2je46UVmhF8CbprWai8Ysc9xY0_PcUMk5EcdegyFGhF7t0Y0afxRn6uBE7dTBiTo4UUcnGWr_Qcbl-_NHCbUbTqM3RxTyU18up9E4yF6sQzBJ2eBO4b-X14ME |
| CitedBy_id | crossref_primary_10_1016_j_apenergy_2025_126755 crossref_primary_10_1007_s11581_025_06350_w crossref_primary_10_1016_j_measurement_2025_117994 crossref_primary_10_1016_j_ijoes_2025_101073 crossref_primary_10_1016_j_est_2025_117747 crossref_primary_10_1016_j_ijoes_2025_101107 |
| Cites_doi | 10.1016/j.energy.2022.125872 10.1016/j.jpowsour.2024.235272 10.1016/j.jpowsour.2020.228740 10.1016/j.energy.2023.127231 10.1016/j.est.2021.102440 10.1016/j.jechem.2023.10.049 10.1016/j.jallcom.2022.166137 10.1016/j.energy.2021.120451 10.1016/j.applthermaleng.2023.120303 10.1016/j.energy.2024.131602 10.1016/j.nanoen.2022.107214 10.3390/en13236366 10.1016/j.etran.2023.100302 10.2174/0122127976289702240212040839 10.1016/j.est.2022.104124 10.1016/j.est.2022.105844 10.3390/app12052305 10.1016/j.apenergy.2022.120091 10.1016/j.jpowsour.2024.235312 10.1016/j.jallcom.2024.174250 10.1016/j.rser.2022.112282 10.1016/j.heliyon.2024.e35780 10.1016/j.apenergy.2024.123056 10.1016/j.jpowsour.2020.228375 10.1016/j.jpowsour.2021.230892 10.1016/j.est.2020.101459 10.1016/j.energy.2024.132395 10.1016/j.apenergy.2022.120043 10.1016/j.rser.2024.114577 10.1016/j.energy.2022.125375 10.1016/j.energy.2022.123178 10.1016/j.energy.2022.125093 10.1016/j.rser.2023.113728 10.1016/j.est.2023.108974 10.1016/j.rser.2020.109994 10.1016/j.energy.2022.125083 10.1016/j.est.2021.103701 10.1016/j.est.2023.109758 10.1016/j.epsr.2022.108751 10.1002/eem2.12876 10.1140/epjs/s11734-022-00605-7 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.rser.2025.115803 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| ExternalDocumentID | 10_1016_j_rser_2025_115803 S1364032125004769 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ AABNK AAEDT AAEDW AAHCO AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AATTM AAXKI AAXUO AAYWO ABFNM ABJNI ABMAC ABWVN ABXDB ACDAQ ACGFS ACRLP ACRPL ACVFH ADBBV ADCNI ADEZE ADHUB ADMUD ADNMO AEBSH AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AFXIZ AGCQF AGHFR AGQPQ AGRNS AGUBO AGYEJ AHIDL AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU APXCP ASPBG AVWKF AXJTR AZFZN BELTK BKOJK BLXMC BNPGV CS3 DU5 EBS EFJIC EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-Q GBLVA HVGLF HZ~ IHE J1W JARJE KOM M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SDP SES SEW SPC SPCBC SSH SSR SSZ T5K Y6R ZCA ~G- 9DU AAYXX ACLOT CITATION EFKBS EFLBG ~HD |
| ID | FETCH-LOGICAL-c302t-5e66b059d2b12128b83a85a0c1416c7abb25d2a4e1778da127c95a07dcf1c3053 |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001494775300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1364-0321 |
| IngestDate | Tue Nov 18 21:13:52 EST 2025 Sat Nov 29 07:54:58 EST 2025 Sat Jun 14 16:53:17 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Lithium-ion batteries Long short-term memory State of charge estimation Deep-stacked denoising autoencoder Secondary scale feature extraction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c302t-5e66b059d2b12128b83a85a0c1416c7abb25d2a4e1778da127c95a07dcf1c3053 |
| ORCID | 0000-0001-8210-6340 |
| ParticipantIDs | crossref_primary_10_1016_j_rser_2025_115803 crossref_citationtrail_10_1016_j_rser_2025_115803 elsevier_sciencedirect_doi_10_1016_j_rser_2025_115803 |
| PublicationCentury | 2000 |
| PublicationDate | August 2025 2025-08-00 |
| PublicationDateYYYYMMDD | 2025-08-01 |
| PublicationDate_xml | – month: 08 year: 2025 text: August 2025 |
| PublicationDecade | 2020 |
| PublicationTitle | Renewable & sustainable energy reviews |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Mehdi (bib9) 2022; 922 Xu, Zhang, Jiang, Wang (bib42) 2022; 327 Hong, Wang, Chen, Wang, Qu (bib15) 2020; 30 Xu (bib14) 2022; 45 Kumar Thakur (bib26) 2023; 226 Mehdi (bib36) 2025 Chen, Feng, Jiang, Zhu (bib22) 2021; 227 Amiri, Håkansson, Burheim, Lamb (bib13) 2024; 200 Duan, Song, Peng, Xiao, Shao, Song (bib32) 2020; 13 Wang, Li, Cao, Li (bib34) 2024; 620 Peng, Takyi-Aninakwa, Wang, Masahudu, Yang, Guerrero (bib31) 2024; 76 Fasahat, Manthouri (bib40) 2020; 469 Chen, Lu, Chen, Cheng, Xuan (bib23) 2022; 12 Shah (bib35) 2024; 622 Wang, Feng, Liu, Gu, Ball (bib8) 2022; 49 Kuang, Zhou, Xu, Li, Xu (bib33) 2024; 300 Lin (bib27) Aug 30 2024; 10 Takyi-Aninakwa, Wang, Zhang, Li, Xu, Fernandez (bib37) 2022; 260 Ma, Hu, Cheng (bib21) 2021; 37 Ali, Khan, Abbas, Choi (bib17) 2022; 55 Joshi, Dandotiya, Ramesh, Panchal (bib25) 2023 Takyi-Aninakwa (bib38) 2024; 363 Yang, Wang, Takyi-Aninakwa, Yang, Fernandez (bib6) 2023; 73 Zhou (bib5) 2024; 19 Arjun, Perumal (bib16) 2024; 17 Ma, Guo, Wang, Zhang, Peng, Chen (bib43) 2022; 260 Joe, Arumuga Perumal (bib7) 2022/09/01 2022; 231 Wang, Chen, Zhang (bib44) 2022; 244 Wang, Li, Zhang (bib2) 2023; 188 Zhang, Li (bib18) 2022; 161 Sun, Li, You (bib12) 2020; 131 Takyi-Aninakwa, Wang, Zhang, Yang, Fernandez (bib29) 2023; 273 Takyi-Aninakwa, Wang, Zhang, Yang, Fernandez (bib39) 2022; 326 Zhang, Guo, Dou, Zhang (bib10) 2020; 479 Qian (bib30) 2024; 294 Song, Wei, Song, Cai, Liu, Zhang (bib11) 2024; 70 Bai (bib41) 2022; 213 Liow (bib4) 2022; 98 Chen, Zhao, Zhang, Shen, Shen, Liu (bib20) 2022; 521 Mehdi, Ali, Maqsood, Abbas, Lee (bib3) 2024/06/15/2024; 988 Guo, Ma (bib28) 2023; 263 Yu, Wang, Yang, Li (bib19) 2024; 90 Chen, Zhang, Wu, Cheng, Zhu (bib24) 2023; 262 Ge, Jin, Wang, Zhang (bib1) 2024; 305 Mehdi (10.1016/j.rser.2025.115803_bib9) 2022; 922 Duan (10.1016/j.rser.2025.115803_bib32) 2020; 13 Takyi-Aninakwa (10.1016/j.rser.2025.115803_bib39) 2022; 326 Wang (10.1016/j.rser.2025.115803_bib34) 2024; 620 Hong (10.1016/j.rser.2025.115803_bib15) 2020; 30 Mehdi (10.1016/j.rser.2025.115803_bib3) 2024; 988 Wang (10.1016/j.rser.2025.115803_bib8) 2022; 49 Zhou (10.1016/j.rser.2025.115803_bib5) 2024; 19 Chen (10.1016/j.rser.2025.115803_bib20) 2022; 521 Chen (10.1016/j.rser.2025.115803_bib22) 2021; 227 Yu (10.1016/j.rser.2025.115803_bib19) 2024; 90 Ge (10.1016/j.rser.2025.115803_bib1) 2024; 305 Song (10.1016/j.rser.2025.115803_bib11) 2024; 70 Peng (10.1016/j.rser.2025.115803_bib31) 2024; 76 Amiri (10.1016/j.rser.2025.115803_bib13) 2024; 200 Ma (10.1016/j.rser.2025.115803_bib21) 2021; 37 Takyi-Aninakwa (10.1016/j.rser.2025.115803_bib29) 2023; 273 Shah (10.1016/j.rser.2025.115803_bib35) 2024; 622 Guo (10.1016/j.rser.2025.115803_bib28) 2023; 263 Takyi-Aninakwa (10.1016/j.rser.2025.115803_bib38) 2024; 363 Yang (10.1016/j.rser.2025.115803_bib6) 2023; 73 Kumar Thakur (10.1016/j.rser.2025.115803_bib26) 2023; 226 Takyi-Aninakwa (10.1016/j.rser.2025.115803_bib37) 2022; 260 Wang (10.1016/j.rser.2025.115803_bib44) 2022; 244 Chen (10.1016/j.rser.2025.115803_bib24) 2023; 262 Ali (10.1016/j.rser.2025.115803_bib17) 2022; 55 Joshi (10.1016/j.rser.2025.115803_bib25) 2023 Fasahat (10.1016/j.rser.2025.115803_bib40) 2020; 469 Xu (10.1016/j.rser.2025.115803_bib14) 2022; 45 Lin (10.1016/j.rser.2025.115803_bib27) 2024; 10 Bai (10.1016/j.rser.2025.115803_bib41) 2022; 213 Kuang (10.1016/j.rser.2025.115803_bib33) 2024; 300 Sun (10.1016/j.rser.2025.115803_bib12) 2020; 131 Zhang (10.1016/j.rser.2025.115803_bib18) 2022; 161 Arjun (10.1016/j.rser.2025.115803_bib16) 2024; 17 Ma (10.1016/j.rser.2025.115803_bib43) 2022; 260 Wang (10.1016/j.rser.2025.115803_bib2) 2023; 188 Xu (10.1016/j.rser.2025.115803_bib42) 2022; 327 Liow (10.1016/j.rser.2025.115803_bib4) 2022; 98 Zhang (10.1016/j.rser.2025.115803_bib10) 2020; 479 Mehdi (10.1016/j.rser.2025.115803_bib36) 2025 Joe (10.1016/j.rser.2025.115803_bib7) 2022; 231 Qian (10.1016/j.rser.2025.115803_bib30) 2024; 294 Chen (10.1016/j.rser.2025.115803_bib23) 2022; 12 |
| References_xml | – volume: 213 start-page: 1 year: 2022 end-page: 17 ident: bib41 article-title: State of charge estimation for lithium-ion batteries under varying temperature conditions based on adaptive dual extended Kalman filter publication-title: Elec Power Syst Res – volume: 273 start-page: 1 year: 2023 end-page: 16 ident: bib29 article-title: A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures publication-title: Energy – volume: 300 start-page: 1 year: 2024 end-page: 21 ident: bib33 article-title: State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter publication-title: Energy – volume: 55 year: 2022 ident: bib17 article-title: Prediction of hydrogen storage in dibenzyltoluene empowered with machine learning publication-title: J Energy Storage – volume: 469 start-page: 1 year: 2020 end-page: 8 ident: bib40 article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short-term memory neural networks publication-title: J Power Sources – start-page: 1 year: 2023 end-page: 8 ident: bib25 article-title: Numerical analysis of battery thermal management system using passive cooling technique publication-title: SAE Tech. Pap. – volume: 30 start-page: 1 year: 2020 end-page: 12 ident: bib15 article-title: Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles publication-title: J Energy Storage – volume: 49 start-page: 1 year: 2022 end-page: 15 ident: bib8 article-title: A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system publication-title: J Energy Storage – volume: 244 start-page: 1 year: 2022 end-page: 13 ident: bib44 article-title: Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning publication-title: Energy – volume: 988 year: 2024/06/15/2024 ident: bib3 article-title: Synthesis of nickel phosphate nanowires as a bifunctional catalyst for water electrolysis in alkaline media publication-title: J Alloys Compd – volume: 922 year: 2022 ident: bib9 article-title: The effect of boron-doped carbon nanotubes blended with active layers in achieving high-efficiency polymer solar cells and X-ray detectors publication-title: J Alloys Compd – volume: 226 year: 2023 ident: bib26 article-title: A state-of-the art review on advancing battery thermal management systems for fast-charging publication-title: Appl Therm Eng – volume: 262 start-page: 1 year: 2023 end-page: 14 ident: bib24 article-title: SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output publication-title: Energy – volume: 263 start-page: 1 year: 2023 end-page: 8 ident: bib28 article-title: A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation publication-title: Energy – volume: 326 start-page: 1 year: 2022 end-page: 21 ident: bib39 article-title: An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries publication-title: Appl Energy – volume: 327 start-page: 1 year: 2022 end-page: 14 ident: bib42 article-title: Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery publication-title: Appl Energy – volume: 73 start-page: 1 year: 2023 end-page: 17 ident: bib6 article-title: Improved noise bias compensation-equivalent circuit modeling strategy for battery state of charge estimation adaptive to strong electromagnetic interference publication-title: J Energy Storage – volume: 10 year: Aug 30 2024 ident: bib27 article-title: Deep learning-based state of charge estimation for electric vehicle batteries: overcoming technological bottlenecks publication-title: Heliyon – volume: 227 start-page: 1 year: 2021 end-page: 8 ident: bib22 article-title: State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network publication-title: Energy – volume: 188 year: 2023 ident: bib2 article-title: Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation publication-title: Renew Sustain Energy Rev – volume: 90 start-page: 191 year: 2024 end-page: 204 ident: bib19 article-title: Machine learning in metal-ion battery research: advancing material prediction, characterization, and status evaluation publication-title: J Energy Chem – volume: 622 start-page: 1 year: 2024 end-page: 13 ident: bib35 article-title: A hybrid deep learning framework integrating bidirectional sliding windows, TCN, and external attention for accurate state-of-charge estimation in lithium-ion batteries publication-title: J Power Sources – volume: 305 start-page: 1 year: 2024 end-page: 16 ident: bib1 article-title: A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries publication-title: Energy – year: 2025 ident: bib36 article-title: Enhanced electrochemical performance and theoretical insights of Ni‐intercalated Ti3C2TxMXene publication-title: Energy Environ. Mater. – volume: 260 year: 2022 ident: bib43 article-title: Robust state of charge estimation for Li-ion batteries based on cubature Kalman filter with generalized maximum correntropy criterion publication-title: Energy – volume: 19 year: 2024 ident: bib5 article-title: A statistical distribution-based pack-integrated model towards state estimation for lithium-ion batteries publication-title: eTransport. – volume: 17 start-page: 196 year: 2024 end-page: 207 ident: bib16 article-title: Computational modelling of heat transfer through aluminium metal foams for LiFePO publication-title: Recent Pat Mech Eng – volume: 260 start-page: 1 year: 2022 end-page: 15 ident: bib37 article-title: An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries publication-title: Energy – volume: 231 start-page: 2865 year: 2022/09/01 2022 end-page: 2877 ident: bib7 article-title: Computational analysis of fluid immersed active cooling for battery thermal management using thermal lattice Boltzmann method publication-title: Eur Phys J Spec Top – volume: 479 start-page: 1 year: 2020 end-page: 11 ident: bib10 article-title: A rapid online calculation method for state of health of lithium-ion battery based on coulomb counting method and differential voltage analysis publication-title: J Power Sources – volume: 37 start-page: 1 year: 2021 end-page: 10 ident: bib21 article-title: State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network publication-title: J Energy Storage – volume: 294 start-page: 1 year: 2024 end-page: 16 ident: bib30 article-title: A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions publication-title: Energy – volume: 161 year: 2022 ident: bib18 article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review publication-title: Renew Sustain Energy Rev – volume: 363 start-page: 1 year: 2024 end-page: 18 ident: bib38 article-title: Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data publication-title: Appl Energy – volume: 13 year: 2020 ident: bib32 article-title: An improved gated recurrent unit network model for state-of-charge estimation of lithium-ion battery publication-title: Energies – volume: 12 year: 2022 ident: bib23 article-title: An improved gated recurrent unit neural network for state-of-charge estimation of lithium-ion battery publication-title: Appl Sci – volume: 620 start-page: 1 year: 2024 end-page: 14 ident: bib34 article-title: A hybrid model for state of charge estimation of lithium-ion batteries utilizing improved adaptive extended Kalman filter and long short-term memory neural network publication-title: J Power Sources – volume: 131 start-page: 1 year: 2020 end-page: 15 ident: bib12 article-title: Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer publication-title: Renew Sustain Energy Rev – volume: 70 start-page: 1 year: 2024 end-page: 21 ident: bib11 article-title: Advanced detections for deciphering the catalytic reaction behaviors of lithium–sulfur batteries publication-title: Energy Storage Mater – volume: 76 start-page: 1 year: 2024 end-page: 16 ident: bib31 article-title: A hybrid-aided approach with adaptive state update for estimating the state-of-charge of LiFePO4 batteries considering temperature uncertainties publication-title: J Energy Storage – volume: 521 start-page: 1 year: 2022 end-page: 13 ident: bib20 article-title: State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network publication-title: J Power Sources – volume: 200 year: 2024 ident: bib13 article-title: Lithium-ion battery digitalization: combining physics-based models and machine learning publication-title: Renew Sustain Energy Rev – volume: 45 year: 2022 ident: bib14 article-title: State of charge estimation for liquid metal battery based on an improved sliding mode observer publication-title: J Energy Storage – volume: 98 start-page: 1 year: 2022 end-page: 8 ident: bib4 article-title: Machine learning assisted synthesis of lithium-ion batteries cathode materials publication-title: Nano Energy – volume: 263 start-page: 1 year: 2023 ident: 10.1016/j.rser.2025.115803_bib28 article-title: A comparative study of different deep learning algorithms for lithium-ion batteries on state-of-charge estimation publication-title: Energy doi: 10.1016/j.energy.2022.125872 – volume: 620 start-page: 1 year: 2024 ident: 10.1016/j.rser.2025.115803_bib34 article-title: A hybrid model for state of charge estimation of lithium-ion batteries utilizing improved adaptive extended Kalman filter and long short-term memory neural network publication-title: J Power Sources doi: 10.1016/j.jpowsour.2024.235272 – volume: 479 start-page: 1 year: 2020 ident: 10.1016/j.rser.2025.115803_bib10 article-title: A rapid online calculation method for state of health of lithium-ion battery based on coulomb counting method and differential voltage analysis publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228740 – volume: 273 start-page: 1 year: 2023 ident: 10.1016/j.rser.2025.115803_bib29 article-title: A hybrid probabilistic correction model for the state of charge estimation of lithium-ion batteries considering dynamic currents and temperatures publication-title: Energy doi: 10.1016/j.energy.2023.127231 – volume: 37 start-page: 1 year: 2021 ident: 10.1016/j.rser.2025.115803_bib21 article-title: State of charge and state of energy estimation for lithium-ion batteries based on a long short-term memory neural network publication-title: J Energy Storage doi: 10.1016/j.est.2021.102440 – volume: 90 start-page: 191 year: 2024 ident: 10.1016/j.rser.2025.115803_bib19 article-title: Machine learning in metal-ion battery research: advancing material prediction, characterization, and status evaluation publication-title: J Energy Chem doi: 10.1016/j.jechem.2023.10.049 – volume: 922 year: 2022 ident: 10.1016/j.rser.2025.115803_bib9 article-title: The effect of boron-doped carbon nanotubes blended with active layers in achieving high-efficiency polymer solar cells and X-ray detectors publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2022.166137 – volume: 227 start-page: 1 year: 2021 ident: 10.1016/j.rser.2025.115803_bib22 article-title: State of charge estimation of lithium-ion battery using denoising autoencoder and gated recurrent unit recurrent neural network publication-title: Energy doi: 10.1016/j.energy.2021.120451 – volume: 226 year: 2023 ident: 10.1016/j.rser.2025.115803_bib26 article-title: A state-of-the art review on advancing battery thermal management systems for fast-charging publication-title: Appl Therm Eng doi: 10.1016/j.applthermaleng.2023.120303 – volume: 300 start-page: 1 year: 2024 ident: 10.1016/j.rser.2025.115803_bib33 article-title: State-of-charge estimation hybrid method for lithium-ion batteries using BiGRU and AM co-modified Seq2Seq network and H-infinity filter publication-title: Energy doi: 10.1016/j.energy.2024.131602 – volume: 98 start-page: 1 year: 2022 ident: 10.1016/j.rser.2025.115803_bib4 article-title: Machine learning assisted synthesis of lithium-ion batteries cathode materials publication-title: Nano Energy doi: 10.1016/j.nanoen.2022.107214 – volume: 13 issue: 23 year: 2020 ident: 10.1016/j.rser.2025.115803_bib32 article-title: An improved gated recurrent unit network model for state-of-charge estimation of lithium-ion battery publication-title: Energies doi: 10.3390/en13236366 – volume: 19 year: 2024 ident: 10.1016/j.rser.2025.115803_bib5 article-title: A statistical distribution-based pack-integrated model towards state estimation for lithium-ion batteries publication-title: eTransport. doi: 10.1016/j.etran.2023.100302 – volume: 17 start-page: 196 issue: 3 year: 2024 ident: 10.1016/j.rser.2025.115803_bib16 article-title: Computational modelling of heat transfer through aluminium metal foams for LiFePO4 battery cooling, recent patents on mechanical engineering publication-title: Recent Pat Mech Eng doi: 10.2174/0122127976289702240212040839 – volume: 49 start-page: 1 year: 2022 ident: 10.1016/j.rser.2025.115803_bib8 article-title: A novel method of parameter identification and state of charge estimation for lithium-ion battery energy storage system publication-title: J Energy Storage doi: 10.1016/j.est.2022.104124 – volume: 55 year: 2022 ident: 10.1016/j.rser.2025.115803_bib17 article-title: Prediction of hydrogen storage in dibenzyltoluene empowered with machine learning publication-title: J Energy Storage doi: 10.1016/j.est.2022.105844 – volume: 12 issue: 5 year: 2022 ident: 10.1016/j.rser.2025.115803_bib23 article-title: An improved gated recurrent unit neural network for state-of-charge estimation of lithium-ion battery publication-title: Appl Sci doi: 10.3390/app12052305 – volume: 327 start-page: 1 year: 2022 ident: 10.1016/j.rser.2025.115803_bib42 article-title: Dual fuzzy-based adaptive extended Kalman filter for state of charge estimation of liquid metal battery publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120091 – volume: 622 start-page: 1 year: 2024 ident: 10.1016/j.rser.2025.115803_bib35 article-title: A hybrid deep learning framework integrating bidirectional sliding windows, TCN, and external attention for accurate state-of-charge estimation in lithium-ion batteries publication-title: J Power Sources doi: 10.1016/j.jpowsour.2024.235312 – volume: 988 year: 2024 ident: 10.1016/j.rser.2025.115803_bib3 article-title: Synthesis of nickel phosphate nanowires as a bifunctional catalyst for water electrolysis in alkaline media publication-title: J Alloys Compd doi: 10.1016/j.jallcom.2024.174250 – volume: 161 year: 2022 ident: 10.1016/j.rser.2025.115803_bib18 article-title: Prognostics and health management of lithium-ion battery using deep learning methods: a review publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2022.112282 – volume: 10 issue: 16 year: 2024 ident: 10.1016/j.rser.2025.115803_bib27 article-title: Deep learning-based state of charge estimation for electric vehicle batteries: overcoming technological bottlenecks publication-title: Heliyon doi: 10.1016/j.heliyon.2024.e35780 – volume: 363 start-page: 1 year: 2024 ident: 10.1016/j.rser.2025.115803_bib38 article-title: Enhanced extended-input LSTM with an adaptive singular value decomposition UKF for LIB SOC estimation using full-cycle current rate and temperature data publication-title: Appl Energy doi: 10.1016/j.apenergy.2024.123056 – volume: 469 start-page: 1 year: 2020 ident: 10.1016/j.rser.2025.115803_bib40 article-title: State of charge estimation of lithium-ion batteries using hybrid autoencoder and long short-term memory neural networks publication-title: J Power Sources doi: 10.1016/j.jpowsour.2020.228375 – volume: 521 start-page: 1 year: 2022 ident: 10.1016/j.rser.2025.115803_bib20 article-title: State of health estimation for lithium-ion batteries based on temperature prediction and gated recurrent unit neural network publication-title: J Power Sources doi: 10.1016/j.jpowsour.2021.230892 – volume: 30 start-page: 1 year: 2020 ident: 10.1016/j.rser.2025.115803_bib15 article-title: Online joint-prediction of multi-forward-step battery SOC using LSTM neural networks and multiple linear regression for real-world electric vehicles publication-title: J Energy Storage doi: 10.1016/j.est.2020.101459 – volume: 305 start-page: 1 year: 2024 ident: 10.1016/j.rser.2025.115803_bib1 article-title: A novel data-driven IBA-ELM model for SOH/SOC estimation of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2024.132395 – volume: 326 start-page: 1 year: 2022 ident: 10.1016/j.rser.2025.115803_bib39 article-title: An optimized long short-term memory-weighted fading extended Kalman filtering model with wide temperature adaptation for the state of charge estimation of lithium-ion batteries publication-title: Appl Energy doi: 10.1016/j.apenergy.2022.120043 – volume: 200 year: 2024 ident: 10.1016/j.rser.2025.115803_bib13 article-title: Lithium-ion battery digitalization: combining physics-based models and machine learning publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2024.114577 – volume: 262 start-page: 1 year: 2023 ident: 10.1016/j.rser.2025.115803_bib24 article-title: SOC estimation for lithium-ion battery using the LSTM-RNN with extended input and constrained output publication-title: Energy doi: 10.1016/j.energy.2022.125375 – volume: 244 start-page: 1 year: 2022 ident: 10.1016/j.rser.2025.115803_bib44 article-title: Lithium-ion battery state-of-charge estimation for small target sample sets using the improved GRU-based transfer learning publication-title: Energy doi: 10.1016/j.energy.2022.123178 – volume: 294 start-page: 1 issue: 130764 year: 2024 ident: 10.1016/j.rser.2025.115803_bib30 article-title: A CNN-SAM-LSTM hybrid neural network for multi-state estimation of lithium-ion batteries under dynamical operating conditions publication-title: Energy – volume: 260 start-page: 1 year: 2022 ident: 10.1016/j.rser.2025.115803_bib37 article-title: An optimized relevant long short-term memory-squared gain extended Kalman filter for the state of charge estimation of lithium-ion batteries publication-title: Energy doi: 10.1016/j.energy.2022.125093 – volume: 70 start-page: 1 year: 2024 ident: 10.1016/j.rser.2025.115803_bib11 article-title: Advanced detections for deciphering the catalytic reaction behaviors of lithium–sulfur batteries publication-title: Energy Storage Mater – volume: 188 year: 2023 ident: 10.1016/j.rser.2025.115803_bib2 article-title: Bioinspired spiking spatiotemporal attention framework for lithium-ion batteries state-of-health estimation publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2023.113728 – volume: 73 start-page: 1 year: 2023 ident: 10.1016/j.rser.2025.115803_bib6 article-title: Improved noise bias compensation-equivalent circuit modeling strategy for battery state of charge estimation adaptive to strong electromagnetic interference publication-title: J Energy Storage doi: 10.1016/j.est.2023.108974 – volume: 131 start-page: 1 year: 2020 ident: 10.1016/j.rser.2025.115803_bib12 article-title: Combined internal resistance and state-of-charge estimation of lithium-ion battery based on extended state observer publication-title: Renew Sustain Energy Rev doi: 10.1016/j.rser.2020.109994 – volume: 260 year: 2022 ident: 10.1016/j.rser.2025.115803_bib43 article-title: Robust state of charge estimation for Li-ion batteries based on cubature Kalman filter with generalized maximum correntropy criterion publication-title: Energy doi: 10.1016/j.energy.2022.125083 – volume: 45 year: 2022 ident: 10.1016/j.rser.2025.115803_bib14 article-title: State of charge estimation for liquid metal battery based on an improved sliding mode observer publication-title: J Energy Storage doi: 10.1016/j.est.2021.103701 – volume: 76 start-page: 1 year: 2024 ident: 10.1016/j.rser.2025.115803_bib31 article-title: A hybrid-aided approach with adaptive state update for estimating the state-of-charge of LiFePO4 batteries considering temperature uncertainties publication-title: J Energy Storage doi: 10.1016/j.est.2023.109758 – start-page: 1 year: 2023 ident: 10.1016/j.rser.2025.115803_bib25 article-title: Numerical analysis of battery thermal management system using passive cooling technique publication-title: SAE Tech. Pap. – volume: 213 start-page: 1 year: 2022 ident: 10.1016/j.rser.2025.115803_bib41 article-title: State of charge estimation for lithium-ion batteries under varying temperature conditions based on adaptive dual extended Kalman filter publication-title: Elec Power Syst Res doi: 10.1016/j.epsr.2022.108751 – year: 2025 ident: 10.1016/j.rser.2025.115803_bib36 article-title: Enhanced electrochemical performance and theoretical insights of Ni‐intercalated Ti3C2TxMXene publication-title: Energy Environ. Mater. doi: 10.1002/eem2.12876 – volume: 231 start-page: 2865 issue: 13 year: 2022 ident: 10.1016/j.rser.2025.115803_bib7 article-title: Computational analysis of fluid immersed active cooling for battery thermal management using thermal lattice Boltzmann method publication-title: Eur Phys J Spec Top doi: 10.1140/epjs/s11734-022-00605-7 |
| SSID | ssj0015873 |
| Score | 2.5278409 |
| Snippet | Accurate state of charge (SOC) estimation is crucial for ensuring the safety of batteries, especially in real-time battery management system (BMS)... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 115803 |
| SubjectTerms | Deep-stacked denoising autoencoder Lithium-ion batteries Long short-term memory Secondary scale feature extraction State of charge estimation |
| Title | Deep learning framework designed for high-performance lithium-ion batteries state monitoring |
| URI | https://dx.doi.org/10.1016/j.rser.2025.115803 |
| Volume | 218 |
| WOSCitedRecordID | wos001494775300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 1364-0321 databaseCode: AIEXJ dateStart: 19970301 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0015873 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Nb9QwELWWlgMcqvIlSinygVvkKnHiODmuSlGLUIVEEXtAimzHoWm36SrddMu_Z5zETrqgCpC4RKt47UQzbyeT2ffGCL2VBQxwHRNRME2iKBQQBxUjsdQxlTqEnL3dteQjPzlJZrP002SyslqYmzmvquT2Nl38V1fDOXC2kc7-hbvdonACPoPT4Qhuh-MfOf6d1gu7GcR3r7DkKy9vuRqQXxpioelSTBYj0QBk42dlc0kMGmTbcxNeob1WbuRdtr_72j7kbDtviJKrVnhl0HM9EmLpTk_YNzodagMXP0oyhbsSFyuxzkr8auvWZ001Lx1NqGzawn0Do4AuB-Q71e8DUc-v7pQvKHPkub6mZnU1A4nJhOEwjogfdtppG6dpF6h_ifld-eF8vwYn7ptLwGOAJX44POEc7_CzWdisC4mfH_E4fYA2KWcphMPN6fHh7IP7A4olLTnB3Uivt-qogetX-n1OM8pTTrfRVv-CgacdMJ6gia6eosejtpPP0DcDEWwhgh1EsIUIBljgdYjgEUSwgwhuIYIHiDxHX94fnh4ckX6XDaJCny4J03EsIcnOqQzAMIlMQpEw4asAcnXFhZSU5VREOuA8yUVAuUphmOeqCGAFFr5AG9VVpV8i7BexXyhfUy7zSAkmjWxaU6rTgtJChDsosHbKVN-C3uyEMs8s1_A8M7bNjG2zzrY7yHNzFl0Dlnu_zaz5sz6F7FLDDNByz7xX_zhvFz0aQP0abSzrRu-hh-pmWV7Xb3pQ_QRJ65t2 |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Deep+learning+framework+designed+for+high-performance+lithium-ion+batteries+state+monitoring&rft.jtitle=Renewable+%26+sustainable+energy+reviews&rft.au=Takyi-Aninakwa%2C+Paul&rft.au=Wang%2C+Shunli&rft.au=Liu%2C+Guangchen&rft.au=Fernandez%2C+Carlos&rft.date=2025-08-01&rft.pub=Elsevier+Ltd&rft.issn=1364-0321&rft.volume=218&rft_id=info:doi/10.1016%2Fj.rser.2025.115803&rft.externalDocID=S1364032125004769 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1364-0321&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1364-0321&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1364-0321&client=summon |