Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances

In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of fluid mechanics Ročník 972
Hlavní autori: Yu, Ming, Zhou, QingQing, Dong, SiWei, Yuan, XianXu, Xu, ChunXiao
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Cambridge, UK Cambridge University Press 04.10.2023
Predmet:
ISSN:0022-1120, 1469-7645
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on the wall and induce mean streamline curvature in rough wall turbulence that leads to the intensification of turbulent motions in the outer region. The turbulent and fluctuating Mach numbers, the density and the velocity divergence fluctuation intensities suggest that the compressibility effects are enhanced by the increment of the free-stream Mach number and the implementation of the wall disturbances. The differences between the Reynolds and Favre average due to the density fluctuations constitute approximately $9\,\%$ of the mean velocity close to the wall and $30\,\%$ of the Reynolds stress near the edge of the boundary layer, indicating their non-negligibility in turbulent modelling strategies. The comparatively strong compressive events behaving as eddy shocklets are observed at the free-stream Mach number of $6$ only in the cases with wall disturbances. By further splitting the velocity into the solenoidal and dilatational components with the Helmholtz decomposition, we found that the dilatational motions are organized as travelling wave packets in the wall-parallel planes close to the wall and as forward inclined structures in the form of radiated waves in the vertical planes. Despite their increased magnitudes and higher portion in the Reynolds normal and shear stresses, the dilatational motions show no tendency of contributing significantly to the skin friction and the production of turbulent kinetic energy due to their mitigation by the cross-correlation between the solenoidal and dilatational velocity components.
AbstractList In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on the wall and induce mean streamline curvature in rough wall turbulence that leads to the intensification of turbulent motions in the outer region. The turbulent and fluctuating Mach numbers, the density and the velocity divergence fluctuation intensities suggest that the compressibility effects are enhanced by the increment of the free-stream Mach number and the implementation of the wall disturbances. The differences between the Reynolds and Favre average due to the density fluctuations constitute approximately $9\,\%$ of the mean velocity close to the wall and $30\,\%$ of the Reynolds stress near the edge of the boundary layer, indicating their non-negligibility in turbulent modelling strategies. The comparatively strong compressive events behaving as eddy shocklets are observed at the free-stream Mach number of $6$ only in the cases with wall disturbances. By further splitting the velocity into the solenoidal and dilatational components with the Helmholtz decomposition, we found that the dilatational motions are organized as travelling wave packets in the wall-parallel planes close to the wall and as forward inclined structures in the form of radiated waves in the vertical planes. Despite their increased magnitudes and higher portion in the Reynolds normal and shear stresses, the dilatational motions show no tendency of contributing significantly to the skin friction and the production of turbulent kinetic energy due to their mitigation by the cross-correlation between the solenoidal and dilatational velocity components.
In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on the wall and induce mean streamline curvature in rough wall turbulence that leads to the intensification of turbulent motions in the outer region. The turbulent and fluctuating Mach numbers, the density and the velocity divergence fluctuation intensities suggest that the compressibility effects are enhanced by the increment of the free-stream Mach number and the implementation of the wall disturbances. The differences between the Reynolds and Favre average due to the density fluctuations constitute approximately $9\,\%$ of the mean velocity close to the wall and $30\,\%$ of the Reynolds stress near the edge of the boundary layer, indicating their non-negligibility in turbulent modelling strategies. The comparatively strong compressive events behaving as eddy shocklets are observed at the free-stream Mach number of $6$ only in the cases with wall disturbances. By further splitting the velocity into the solenoidal and dilatational components with the Helmholtz decomposition, we found that the dilatational motions are organized as travelling wave packets in the wall-parallel planes close to the wall and as forward inclined structures in the form of radiated waves in the vertical planes. Despite their increased magnitudes and higher portion in the Reynolds normal and shear stresses, the dilatational motions show no tendency of contributing significantly to the skin friction and the production of turbulent kinetic energy due to their mitigation by the cross-correlation between the solenoidal and dilatational velocity components.
ArticleNumber A32
Author Yu, Ming
Zhou, QingQing
Dong, SiWei
Yuan, XianXu
Xu, ChunXiao
Author_xml – sequence: 1
  givenname: Ming
  orcidid: 0000-0001-7772-833X
  surname: Yu
  fullname: Yu, Ming
  email: yum16@tsinghua.org.cn
  organization: 1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
– sequence: 2
  givenname: QingQing
  surname: Zhou
  fullname: Zhou, QingQing
  organization: 1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
– sequence: 3
  givenname: SiWei
  orcidid: 0000-0002-4725-2964
  surname: Dong
  fullname: Dong, SiWei
  organization: 1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
– sequence: 4
  givenname: XianXu
  orcidid: 0000-0002-7668-0116
  surname: Yuan
  fullname: Yuan, XianXu
  organization: 1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China
– sequence: 5
  givenname: ChunXiao
  orcidid: 0000-0001-5292-8052
  surname: Xu
  fullname: Xu, ChunXiao
  organization: 2Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China
BookMark eNp1kEtLxDAYRYOM4Di68wcE3NqapI9MlzL4ggE3ui55amqb1CRF-u_NMIOC6CqEnPN9ufcULKyzCoALjHKMML3u9JATRIqcYnIElrism4zWZbUAS4QIyTAm6ASchtAhhAvU0CV437hh9CoEw01v4gyV1krEAI2FYRqVD84aAZmV8G3-vsbJ86lXNkLuJiuZn2HP5vSaHN4lH0YHP1nfQ2nCDmZWqHAGjjXrgzo_nCvwcnf7vHnItk_3j5ubbSYKRGJWSq6FlkLRmjPJa9ZojkVZyQphXahClxxRmWIVrMIKrUteNLLmHCFKOU3BVuByP3f07mNSIbadm7xNK1uypgQnBTeJIntKeBeCV7oVJrJonI2emb7FqN2V2qZS212pbSo1SVe_pNGbIeX_D88POBu4N_JV_XzlT-ELqYSNaw
CitedBy_id crossref_primary_10_1007_s10346_025_02609_5
crossref_primary_10_1017_jfm_2025_10607
crossref_primary_10_1007_s11433_024_2481_8
crossref_primary_10_1016_j_ast_2025_110087
crossref_primary_10_1016_j_ijheatfluidflow_2024_109311
crossref_primary_10_1016_j_ast_2024_108879
Cites_doi 10.1017/jfm.2012.212
10.1017/jfm.2011.368
10.1017/jfm.2016.689
10.1016/j.jcp.2020.110060
10.1146/annurev-fluid-122109-160718
10.1115/1.4001492
10.1007/s00348-021-03279-4
10.1080/14685248.2017.1395514
10.1017/jfm.2016.459
10.1017/jfm.2012.474
10.2514/1.31729
10.1017/S0022112009993156
10.1186/s42774-022-00117-x
10.1103/PhysRevE.79.035301
10.1063/1.858071
10.2514/1.J061747
10.1090/qam/99793
10.1017/jfm.2013.620
10.1016/j.jcp.2018.08.058
10.1063/1.3622773
10.1016/j.compfluid.2012.02.027
10.1017/jfm.2021.888
10.1017/jfm.2015.230
10.1016/j.ijheatfluidflow.2013.02.006
10.1017/S0022112010005082
10.1017/S0022112003007705
10.1017/jfm.2022.393
10.1063/1.1516779
10.1017/jfm.2018.706
10.2514/8.1895
10.1063/1.4896280
10.1007/s10409-023-23075-x
10.1017/jfm.2015.172
10.1016/j.cpc.2021.107906
10.1063/1.1637604
10.1063/1.4942022
10.1103/PhysRevLett.109.054502
10.1063/5.0088405
10.1103/PhysRevFluids.5.052602
10.1080/14685240600827526
10.1017/jfm.2014.116
10.1017/jfm.2018.570
10.1017/S0022112009006752
10.1017/jfm.2015.711
10.1016/j.ijheatfluidflow.2016.01.007
10.1063/1.5123453
10.1063/5.0078691
10.2514/3.61193
10.1017/jfm.2020.542
10.1063/5.0141369
10.1073/pnas.2111144118
10.1063/1.5028294
10.2514/6.2007-3998
10.1063/1.4944657
10.1063/5.0055732
10.1103/PhysRevLett.103.264502
10.1063/5.0093852
10.1103/PhysRevFluids.4.123402
10.1063/1.5077081
10.1016/j.ijheatfluidflow.2019.02.001
10.3390/fluids6120448
10.1017/jfm.2022.80
10.2514/1.J057296
10.1017/jfm.2018.179
10.1016/j.jcp.2010.06.006
10.1063/1.2821908
10.1017/S0022112095004587
10.1006/jcph.1999.6238
10.1007/s00162-022-00623-0
10.1017/S0022112010005902
10.1146/annurev-fluid-062520-115127
10.1017/jfm.2019.867
10.1103/PhysRevE.97.043108
10.1017/jfm.2016.548
10.1017/S0022112010000959
10.1016/j.compfluid.2015.07.015
10.2514/2.862
10.1146/annurev.fluid.36.050802.122103
10.1063/5.0062596
10.1103/PhysRevFluids.2.023401
10.1103/PhysRevFluids.8.074604
10.1063/1.1843135
10.1016/j.ijft.2021.100077
10.1016/S0021-9991(03)00090-1
10.1017/S0022112006001534
10.1017/S0022112095004599
10.1063/1.1355682
ContentType Journal Article
Copyright The Author(s), 2023. Published by Cambridge University Press
Copyright_xml – notice: The Author(s), 2023. Published by Cambridge University Press
DBID AAYXX
CITATION
3V.
7TB
7U5
7UA
7XB
88I
8FD
8FE
8FG
8FK
8G5
ABJCF
ABUWG
AEUYN
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
FR3
GNUQQ
GUQSH
H8D
H96
HCIFZ
KR7
L.G
L6V
L7M
M2O
M2P
M7S
MBDVC
P5Z
P62
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
S0W
DOI 10.1017/jfm.2023.712
DatabaseName CrossRef
ProQuest Central (Corporate)
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
Water Resources Abstracts
ProQuest Central (purchase pre-March 2016)
Science Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest One Sustainability
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Technology collection
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
ProQuest Central Student
Research Library Prep
Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
SciTech Premium Collection
Civil Engineering Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Research Library
Science Database
Engineering Database
Research Library (Corporate)
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
SciTech Premium Collection
ProQuest Central China
Water Resources Abstracts
Environmental Sciences and Pollution Management
ProQuest One Applied & Life Sciences
ProQuest One Sustainability
Natural Science Collection
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Collection
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Research Library (Alumni Edition)
ProQuest Central
Earth, Atmospheric & Aquatic Science Collection
Aerospace Database
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Research Library
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest Central Basic
ProQuest Science Journals
ProQuest SciTech Collection
Advanced Technologies & Aerospace Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni)
DatabaseTitleList
Research Library Prep
CrossRef
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Physics
EISSN 1469-7645
ExternalDocumentID 10_1017_jfm_2023_712
GroupedDBID -DZ
-E.
-~X
.DC
.FH
09C
09E
0E1
0R~
4.4
5GY
5VS
74X
74Y
7~V
8G5
AAAZR
AABES
AABWE
AACJH
AAEED
AAGFV
AAKTX
AAMNQ
AANRG
AARAB
AASVR
AAUIS
AAUKB
ABBXD
ABGDZ
ABITZ
ABJCF
ABJNI
ABKKG
ABMWE
ABMYL
ABQTM
ABQWD
ABROB
ABTCQ
ABZCX
ACBEA
ACBMC
ACCHT
ACGFO
ACGFS
ACGOD
ACIMK
ACIWK
ACQFJ
ACREK
ACUIJ
ACUYZ
ACWGA
ACYZP
ACZBM
ACZUX
ACZWT
ADCGK
ADDNB
ADFEC
ADFRT
ADGEJ
ADKIL
ADOCW
ADVJH
AEBAK
AEMTW
AENEX
AENGE
AEYYC
AFFUJ
AFKQG
AFKSM
AFLOS
AFLVW
AFRAH
AFUTZ
AGABE
AGBYD
AGJUD
AGOOT
AHQXX
AHRGI
AIDUJ
AIGNW
AIHIV
AIOIP
AISIE
AJ7
AJCYY
AJPFC
AJQAS
ALMA_UNASSIGNED_HOLDINGS
ALVPG
ALWZO
AQJOH
ARABE
ARAPS
ATUCA
AUXHV
BBLKV
BENPR
BGHMG
BHPHI
BLZWO
BMAJL
C0O
CBIIA
CCQAD
CFAFE
CHEAL
CJCSC
CS3
DOHLZ
DU5
E.L
EBS
F5P
HCIFZ
HG-
HST
HZ~
I.6
IH6
IOEEP
IS6
I~P
J36
J38
J3A
JHPGK
JQKCU
KCGVB
KFECR
L98
LW7
M-V
M2O
NIKVX
O9-
OYBOY
P2P
PYCCK
RAMDC
RCA
RNS
ROL
RR0
S6-
S6U
SAAAG
SC5
T9M
TAE
TN5
UT1
WFFJZ
WH7
WQ3
WXU
WXY
WYP
ZYDXJ
~02
29K
88I
8FE
8FG
8FH
8R4
8R5
AAYXX
ABUFD
ABUWG
ABVKB
ABVZP
ABXAU
ABXHF
ACDLN
ADMLS
AEUYN
AFFHD
AFKRA
AFZFC
AKMAY
AZQEC
BGLVJ
BKSAR
BPHCQ
CCPQU
CITATION
D-I
DC4
DWQXO
GNUQQ
GUQSH
L6V
LK5
M2P
M7R
M7S
P62
PCBAR
PHGZM
PHGZT
PQGLB
PQQKQ
PROAC
PTHSS
Q2X
S0W
3V.
7TB
7U5
7UA
7XB
8FD
8FK
C1K
F1W
FR3
H8D
H96
KR7
L.G
L7M
MBDVC
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c302t-4dbfcfdce76badb6a9fb1c45d501f3e3f4b07d6453a51e084b39d6bb0077b7013
IEDL.DBID M7S
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168421100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0022-1120
IngestDate Sat Aug 16 17:42:28 EDT 2025
Sat Nov 29 04:25:19 EST 2025
Tue Nov 18 20:52:05 EST 2025
Wed Mar 13 05:46:06 EDT 2024
IsPeerReviewed true
IsScholarly true
Keywords turbulent boundary layers
compressible turbulence
high-speed flow
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c302t-4dbfcfdce76badb6a9fb1c45d501f3e3f4b07d6453a51e084b39d6bb0077b7013
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-4725-2964
0000-0002-7668-0116
0000-0001-5292-8052
0000-0001-7772-833X
PQID 2872108419
PQPubID 34769
PageCount 33
ParticipantIDs proquest_journals_2872108419
crossref_citationtrail_10_1017_jfm_2023_712
crossref_primary_10_1017_jfm_2023_712
cambridge_journals_10_1017_jfm_2023_712
PublicationCentury 2000
PublicationDate 2023-10-04
PublicationDateYYYYMMDD 2023-10-04
PublicationDate_xml – month: 10
  year: 2023
  text: 2023-10-04
  day: 04
PublicationDecade 2020
PublicationPlace Cambridge, UK
PublicationPlace_xml – name: Cambridge, UK
– name: Cambridge
PublicationTitle Journal of fluid mechanics
PublicationTitleAlternate J. Fluid Mech
PublicationYear 2023
Publisher Cambridge University Press
Publisher_xml – name: Cambridge University Press
References 2012; 60
2002; 14
2023; 35
2017; 2
2014; 739
1962; 367
2010; 229
2018; 842
2014; 26
2009; 630
2022; 937
2016; 788
2020; 883
2011; 672
2022; 930
2011; 688
2018; 375
2020; 5
2021; 33
2018; 854
2018; 856
2015; 773
2004; 36
2015; 771
1933; 361
2021; 118
2022; 34
2018; 30
2011; 23
2006; 566
2001; 13
1970; 28
1979; 17
1991; 3
2007; 19
2016; 809
2021; 6
2019; 4
2010; 648
2019; 31
2019; 76
1954; 62
2015; 120
2021; 427
2016; 804
2013; 41
2006; 7
2021; 263
2016; 59
2004; 502
2020; 900
2012; 703
2012; 109
2014; 746
2018; 19
2009; 79
2021; 10
2021; 53
2011; 669
2000; 38
2023
2022
2022; 4
2010; 655
2004; 16
1951; 18
1995; 305
2010; 132
1999; 152
2008; 46
2011; 43
2018; 56
2016; 28
2005; 17
2022; 942
2018; 97
2021; 62
2009; 103
2012; 713
2003; 186
1957; 23
S0022112023007127_ref16
S0022112023007127_ref17
S0022112023007127_ref14
S0022112023007127_ref15
S0022112023007127_ref18
S0022112023007127_ref19
S0022112023007127_ref96
S0022112023007127_ref97
S0022112023007127_ref94
S0022112023007127_ref95
S0022112023007127_ref12
S0022112023007127_ref13
S0022112023007127_ref10
S0022112023007127_ref98
S0022112023007127_ref11
Smits (S0022112023007127_ref70) 2006
S0022112023007127_ref28
S0022112023007127_ref25
S0022112023007127_ref26
S0022112023007127_ref29
S0022112023007127_ref20
S0022112023007127_ref23
S0022112023007127_ref24
S0022112023007127_ref21
S0022112023007127_ref22
S0022112023007127_ref74
S0022112023007127_ref75
S0022112023007127_ref72
S0022112023007127_ref73
S0022112023007127_ref78
S0022112023007127_ref79
S0022112023007127_ref76
S0022112023007127_ref77
S0022112023007127_ref81
S0022112023007127_ref82
S0022112023007127_ref80
S0022112023007127_ref85
S0022112023007127_ref86
S0022112023007127_ref83
S0022112023007127_ref84
S0022112023007127_ref89
S0022112023007127_ref87
S0022112023007127_ref88
S0022112023007127_ref92
S0022112023007127_ref93
S0022112023007127_ref90
S0022112023007127_ref91
S0022112023007127_ref58
S0022112023007127_ref59
S0022112023007127_ref52
S0022112023007127_ref50
S0022112023007127_ref51
S0022112023007127_ref56
S0022112023007127_ref57
S0022112023007127_ref54
S0022112023007127_ref60
S0022112023007127_ref69
S0022112023007127_ref63
S0022112023007127_ref64
S0022112023007127_ref61
S0022112023007127_ref62
S0022112023007127_ref67
S0022112023007127_ref68
S0022112023007127_ref65
S0022112023007127_ref66
Morkovin (S0022112023007127_ref53) 1962; 367
S0022112023007127_ref71
S0022112023007127_ref38
S0022112023007127_ref39
S0022112023007127_ref36
S0022112023007127_ref37
S0022112023007127_ref5
S0022112023007127_ref31
S0022112023007127_ref6
S0022112023007127_ref7
S0022112023007127_ref8
Liepman (S0022112023007127_ref45) 1957; 23
Hama (S0022112023007127_ref30) 1954; 62
S0022112023007127_ref9
S0022112023007127_ref34
S0022112023007127_ref35
S0022112023007127_ref32
S0022112023007127_ref33
S0022112023007127_ref1
S0022112023007127_ref2
S0022112023007127_ref3
S0022112023007127_ref4
Nikuradse (S0022112023007127_ref55) 1933; 361
S0022112023007127_ref49
S0022112023007127_ref47
S0022112023007127_ref48
S0022112023007127_ref41
S0022112023007127_ref42
S0022112023007127_ref40
S0022112023007127_ref46
S0022112023007127_ref43
S0022112023007127_ref44
Gatski (S0022112023007127_ref27) 2013
References_xml – volume: 937
  start-page: A3
  year: 2022
  article-title: Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number
  publication-title: J. Fluid Mech.
– volume: 4
  start-page: 123402
  issue: 12
  year: 2019
  article-title: Genuine compressibility effects in wall-bounded turbulence
  publication-title: Phys. Rev. Fluids
– volume: 132
  issue: 4
  year: 2010
  article-title: Review of hydraulic roughness scales in the fully rough regime
  publication-title: Trans. ASME J. Fluids Engng
– volume: 655
  start-page: 419
  year: 2010
  end-page: 445
  article-title: Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature
  publication-title: J. Fluid Mech.
– volume: 30
  start-page: 065109
  issue: 6
  year: 2018
  article-title: Spectra and mach number scaling in compressible homogeneous shear turbulence
  publication-title: Phys. Fluids
– volume: 19
  start-page: 125101
  issue: 12
  year: 2007
  article-title: Properties of d- and k-type roughness in a turbulent channel flow
  publication-title: Phys. Fluids
– volume: 361
  start-page: 1
  year: 1933
  article-title: Stromungsgesetze in rauhen rohren
  publication-title: VDI-Forschungsheft
– volume: 19
  start-page: 72
  issue: 1
  year: 2018
  end-page: 105
  article-title: Direct numerical simulation of a fully developed compressible wall turbulence over a wavy wall
  publication-title: J. Turbul.
– volume: 2
  start-page: 023401
  issue: 2
  year: 2017
  article-title: Shocklet statistics in compressible isotropic turbulence
  publication-title: Phys. Rev. Fluids
– volume: 31
  start-page: 025107
  issue: 2
  year: 2019
  article-title: Effect of compressibility on small scale statistics in homogeneous shear turbulence
  publication-title: Phys. Fluids
– volume: 6
  start-page: 448
  issue: 12
  year: 2021
  article-title: Secondary flow in smooth and rough turbulent circular pipes: turbulence kinetic energy budgets
  publication-title: Fluids
– volume: 5
  start-page: 052602
  issue: 5
  year: 2020
  article-title: Data-driven compressibility transformation for turbulent wall layers
  publication-title: Phys. Rev. Fluids
– volume: 186
  start-page: 652
  issue: 2
  year: 2003
  end-page: 665
  article-title: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations
  publication-title: J. Comput. Phys.
– volume: 36
  start-page: 173
  year: 2004
  end-page: 196
  article-title: Turbulent flows over rough walls
  publication-title: Annu. Rev. Fluid Mech.
– volume: 804
  start-page: 130
  year: 2016
  end-page: 161
  article-title: Turbulent flow over transitionally rough surfaces with varying roughness densities
  publication-title: J. Fluid Mech.
– volume: 427
  start-page: 110060
  year: 2021
  article-title: Preventing spurious pressure oscillations in split convective form discretization for compressible flows
  publication-title: J. Comput. Phys.
– volume: 26
  start-page: 101305
  issue: 10
  year: 2014
  article-title: Roughness effects on wall-bounded turbulent flows
  publication-title: Phys. Fluids
– volume: 900
  start-page: R7
  year: 2020
  article-title: Scaling of rough-wall turbulence by the roughness height and steepness
  publication-title: J. Fluid Mech.
– volume: 809
  start-page: 793
  year: 2016
  end-page: 820
  article-title: The influence of near-wall density and viscosity gradients on turbulence in channel flows
  publication-title: J. Fluid Mech.
– volume: 3
  start-page: 657
  issue: 4
  year: 1991
  end-page: 664
  article-title: Eddy shocklets in decaying compressible turbulence
  publication-title: Phys. Fluids
– volume: 672
  start-page: 245
  year: 2011
  end-page: 267
  article-title: Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number
  publication-title: J. Fluid Mech.
– volume: 713
  start-page: 588
  year: 2012
  end-page: 631
  article-title: Effect of compressibility on the small-scale structures in isotropic turbulence
  publication-title: J. Fluid Mech.
– volume: 103
  start-page: 264502
  issue: 26
  year: 2009
  article-title: Critical instability and friction scaling of fluid flows through pipes with rough inner surfaces
  publication-title: Phys. Rev. Lett.
– volume: 746
  start-page: 165
  year: 2014
  end-page: 192
  article-title: Numerical study of acoustic radiation due to a supersonic turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 7
  start-page: N73
  year: 2006
  article-title: DNS of turbulent channel flows with two-and three-dimensional roughness
  publication-title: J. Turbul.
– volume: 33
  start-page: 075106
  issue: 7
  year: 2021
  article-title: Compressibility effects on hypersonic turbulent channel flow with cold walls
  publication-title: Phys. Fluids
– volume: 10
  start-page: 100077
  year: 2021
  article-title: A review on turbulent flow over rough surfaces: fundamentals and theories
  publication-title: Intl J. Thermofluids
– volume: 854
  start-page: 5
  year: 2018
  end-page: 33
  article-title: Secondary motion in turbulent pipe flow with three-dimensional roughness
  publication-title: J. Fluid Mech.
– volume: 375
  start-page: 823
  year: 2018
  end-page: 853
  article-title: Kinetic energy and entropy preserving schemes for compressible flows by split convective forms
  publication-title: J. Comput. Phys.
– volume: 97
  start-page: 043108
  issue: 4
  year: 2018
  article-title: Effect of shock waves on the statistics and scaling in compressible isotropic turbulence
  publication-title: Phys. Rev. E
– volume: 35
  start-page: 025126
  year: 2023
  article-title: Effects of wall disturbances on the statistics of supersonic turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 23
  start-page: 085102
  issue: 8
  year: 2011
  article-title: Wall pressure fluctuations beneath supersonic turbulent boundary layers
  publication-title: Phys. Fluids
– volume: 17
  start-page: 035102
  issue: 3
  year: 2005
  article-title: Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls
  publication-title: Phys. Fluids
– volume: 120
  start-page: 57
  year: 2015
  end-page: 69
  article-title: Resolution effects in compressible, turbulent boundary layer simulations
  publication-title: Comput. Fluids
– volume: 31
  start-page: 126101
  issue: 12
  year: 2019
  article-title: Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction
  publication-title: Phys. Fluids
– volume: 53
  start-page: 439
  year: 2021
  end-page: 471
  article-title: Predicting the drag of rough surfaces
  publication-title: Annu. Rev. Fluid Mech.
– volume: 14
  start-page: L73
  issue: 11
  year: 2002
  end-page: L76
  article-title: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows
  publication-title: Phys. Fluids
– volume: 79
  start-page: 035301
  issue: 3
  year: 2009
  article-title: Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows
  publication-title: Phys. Rev. E
– volume: 46
  start-page: 486
  issue: 2
  year: 2008
  end-page: 497
  article-title: Supersonic boundary layers with periodic surface roughness
  publication-title: AIAA J.
– volume: 62
  start-page: 333
  year: 1954
  end-page: 358
  article-title: Boundary-layer characteristics for smooth and rough surfaces
  publication-title: Trans. Soc. Nav. Archit. Mar. Engrs
– volume: 43
  start-page: 163
  year: 2011
  end-page: 194
  article-title: Numerical methods for high-speed flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 17
  start-page: 655
  issue: 6
  year: 1979
  end-page: 657
  article-title: Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer
  publication-title: AIAA J.
– year: 2023
  article-title: Influences of wall disturbances on coherent structures in supersonic turbulent boundary layers
  publication-title: Acta Mech. Sin.
– volume: 669
  start-page: 397
  year: 2011
  end-page: 431
  article-title: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall
  publication-title: J. Fluid Mech.
– volume: 502
  start-page: 273
  year: 2004
  end-page: 308
  article-title: Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 026102
  issue: 2
  year: 2016
  article-title: Mean velocity scaling for compressible wall turbulence with heat transfer
  publication-title: Phys. Fluids
– start-page: 865
  year: 2022
  end-page: 886
  article-title: Numerical tripping of high-speed turbulent boundary layers
  publication-title: Theor. Comput. Fluid Dyn.
– volume: 771
  start-page: 743
  year: 2015
  end-page: 777
  article-title: A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime
  publication-title: J. Fluid Mech.
– volume: 305
  start-page: 185
  year: 1995
  end-page: 218
  article-title: Compressible turbulent channel flows: DNS results and modelling
  publication-title: J. Fluid Mech.
– volume: 842
  start-page: 428
  year: 2018
  end-page: 468
  article-title: Dns of compressible turbulent boundary layers and assessment of data/scaling-law quality
  publication-title: J. Fluid Mech.
– volume: 33
  start-page: 095108
  issue: 9
  year: 2021
  article-title: Solenoidal linear forcing for compressible, statistically steady, homogeneous isotropic turbulence with reduced turbulent Mach number oscillation
  publication-title: Phys. Fluids
– volume: 34
  start-page: 065139
  issue: 6
  year: 2022
  article-title: Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. Part I. One-point statistics
  publication-title: Phys. Fluids
– volume: 4
  start-page: 23
  year: 2022
  article-title: Notes on the hypersonic boundary layer transition
  publication-title: Adv. Aerodyn.
– volume: 62
  start-page: 1
  issue: 9
  year: 2021
  end-page: 13
  article-title: Effects of roughness on a turbulent boundary layer in hypersonic flow
  publication-title: Exp. Fluids
– volume: 56
  start-page: 4297
  issue: 11
  year: 2018
  end-page: 4311
  article-title: Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers
  publication-title: AIAA J.
– volume: 804
  start-page: 578
  year: 2016
  end-page: 607
  article-title: Pressure fluctuations induced by a hypersonic turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 942
  start-page: A44
  year: 2022
  article-title: Direct numerical simulation of supersonic turbulent flows over rough surfaces
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 293
  issue: 2
  year: 1970
  end-page: 296
  article-title: Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics
  publication-title: Q. Appl. Math.
– start-page: 1021
  year: 2023
  end-page: 1031
  article-title: Hypersonic boundary-layer instability suppression by transverse microgrooves with machining flaw
  publication-title: AIAA J.
– volume: 109
  start-page: 054502
  issue: 5
  year: 2012
  article-title: Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers
  publication-title: Phys. Rev. Lett.
– volume: 856
  start-page: 470
  year: 2018
  end-page: 503
  article-title: Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration
  publication-title: J. Fluid Mech.
– volume: 118
  start-page: e2111144118
  issue: 34
  year: 2021
  article-title: Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer
  publication-title: PNAS
– volume: 34
  start-page: 016109
  issue: 1
  year: 2022
  article-title: Supersonic turbulent channel flows over spanwise-oriented grooves
  publication-title: Phys. Fluids
– volume: 305
  start-page: 159
  year: 1995
  end-page: 183
  article-title: A numerical study of turbulent supersonic isothermal-wall channel flow
  publication-title: J. Fluid Mech.
– volume: 60
  start-page: 58
  year: 2012
  end-page: 60
  article-title: An efficient, parallel low-storage implementation of Klein's turbulence generator for LES and DNS
  publication-title: Comput. Fluids
– volume: 34
  start-page: 065140
  issue: 6
  year: 2022
  article-title: Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. Part II. Spectra, correlation and nonlinear interactions
  publication-title: Phys. Fluids
– volume: 41
  start-page: 2
  year: 2013
  end-page: 15
  article-title: Numerical simulation of fully-developed compressible flows over wavy surfaces
  publication-title: Intl J. Heat Fluid Flow
– volume: 773
  start-page: 418
  year: 2015
  end-page: 431
  article-title: A fast direct numerical simulation method for characterising hydraulic roughness
  publication-title: J. Fluid Mech.
– volume: 788
  start-page: 614
  year: 2016
  end-page: 639
  article-title: Passive scalars in turbulent channel flow at high Reynolds number
  publication-title: J. Fluid Mech.
– volume: 13
  start-page: 1415
  issue: 5
  year: 2001
  end-page: 1430
  article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics
  publication-title: Phys. Fluids
– volume: 630
  start-page: 225
  year: 2009
  end-page: 265
  article-title: Response of supersonic turbulent boundary layers to local and global mechanical distortions
  publication-title: J. Fluid Mech.
– volume: 28
  start-page: 045105
  issue: 4
  year: 2016
  article-title: Crosshatch roughness distortions on a hypersonic turbulent boundary layer
  publication-title: Phys. Fluids
– volume: 18
  start-page: 145
  issue: 3
  year: 1951
  end-page: 160
  article-title: Turbulent boundary layer in compressible fluids
  publication-title: Intl J. Aeronaut. Space Sci.
– volume: 883
  start-page: A11
  year: 2020
  article-title: Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence
  publication-title: J. Fluid Mech.
– volume: 23
  start-page: 784
  issue: 10
  year: 1957
  article-title: Note on the mach number effect upon the skin friction of rough surfaces
  publication-title: J. Aeronaut. Sci.
– volume: 739
  start-page: 392
  year: 2014
  end-page: 420
  article-title: A generalized Reynolds analogy for compressible wall-bounded turbulent flows
  publication-title: J. Fluid Mech.
– volume: 38
  start-page: 1804
  issue: 10
  year: 2000
  end-page: 1821
  article-title: Flow properties of a supersonic turbulent boundary layer with wall roughness
  publication-title: AIAA J.
– volume: 703
  start-page: 255
  year: 2012
  end-page: 278
  article-title: Flow topology in compressible turbulent boundary layer
  publication-title: J. Fluid Mech.
– volume: 688
  start-page: 120
  year: 2011
  end-page: 168
  article-title: Turbulence in supersonic boundary layers at moderate Reynolds number
  publication-title: J. Fluid Mech.
– volume: 367
  start-page: 26
  issue: 380
  year: 1962
  article-title: Effects of compressibility on turbulent flows
  publication-title: Mécanique Turbul.
– volume: 152
  start-page: 517
  issue: 2
  year: 1999
  end-page: 549
  article-title: Large-eddy simulation of the shock/turbulence interaction
  publication-title: J. Comput. Phys.
– volume: 930
  start-page: A1
  year: 2022
  article-title: About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 263
  start-page: 107906
  year: 2021
  article-title: STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows
  publication-title: Comput. Phys. Commun.
– volume: 16
  start-page: 530
  issue: 3
  year: 2004
  end-page: 545
  article-title: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M= 2.25$
  publication-title: Phys. Fluids
– volume: 76
  start-page: 100
  year: 2019
  end-page: 112
  article-title: Direct numerical simulation of supersonic pipe flow at moderate Reynolds number
  publication-title: Intl J. Heat Fluid Flow
– volume: 648
  start-page: 325
  year: 2010
  end-page: 349
  article-title: On the dynamical relevance of coherent vortical structures in turbulent boundary layers
  publication-title: J. Fluid Mech.
– volume: 566
  start-page: 357
  year: 2006
  end-page: 376
  article-title: Effect of wall-boundary disturbances on turbulent channel flows
  publication-title: J. Fluid Mech.
– volume: 229
  start-page: 7180
  issue: 19
  year: 2010
  end-page: 7190
  article-title: Generalized conservative approximations of split convective derivative operators
  publication-title: J. Comput. Phys.
– volume: 59
  start-page: 33
  year: 2016
  end-page: 49
  article-title: Reynolds and Mach number effects in compressible turbulent channel flow
  publication-title: Intl J. Heat Fluid Flow
– ident: S0022112023007127_ref83
  doi: 10.1017/jfm.2012.212
– ident: S0022112023007127_ref63
  doi: 10.1017/jfm.2011.368
– ident: S0022112023007127_ref58
  doi: 10.1017/jfm.2016.689
– ident: S0022112023007127_ref69
  doi: 10.1016/j.jcp.2020.110060
– ident: S0022112023007127_ref62
  doi: 10.1146/annurev-fluid-122109-160718
– volume-title: Compressibility, Turbulence and High Speed Flow
  year: 2013
  ident: S0022112023007127_ref27
– ident: S0022112023007127_ref22
  doi: 10.1115/1.4001492
– ident: S0022112023007127_ref87
  doi: 10.1007/s00348-021-03279-4
– ident: S0022112023007127_ref72
  doi: 10.1080/14685248.2017.1395514
– ident: S0022112023007127_ref48
  doi: 10.1017/jfm.2016.459
– ident: S0022112023007127_ref82
  doi: 10.1017/jfm.2012.474
– ident: S0022112023007127_ref20
  doi: 10.2514/1.31729
– ident: S0022112023007127_ref64
  doi: 10.1017/S0022112009993156
– ident: S0022112023007127_ref88
  doi: 10.1186/s42774-022-00117-x
– ident: S0022112023007127_ref28
  doi: 10.1103/PhysRevE.79.035301
– ident: S0022112023007127_ref43
  doi: 10.1063/1.858071
– ident: S0022112023007127_ref74
– ident: S0022112023007127_ref46
  doi: 10.2514/1.J061747
– ident: S0022112023007127_ref31
  doi: 10.1090/qam/99793
– ident: S0022112023007127_ref98
  doi: 10.1017/jfm.2013.620
– volume: 367
  start-page: 26
  year: 1962
  ident: S0022112023007127_ref53
  article-title: Effects of compressibility on turbulent flows
  publication-title: Mécanique Turbul.
– ident: S0022112023007127_ref39
  doi: 10.1016/j.jcp.2018.08.058
– ident: S0022112023007127_ref3
  doi: 10.1063/1.3622773
– ident: S0022112023007127_ref37
  doi: 10.1016/j.compfluid.2012.02.027
– volume: 23
  start-page: 784
  year: 1957
  ident: S0022112023007127_ref45
  article-title: Note on the mach number effect upon the skin friction of rough surfaces
  publication-title: J. Aeronaut. Sci.
– ident: S0022112023007127_ref85
  doi: 10.1017/jfm.2021.888
– ident: S0022112023007127_ref10
  doi: 10.1017/jfm.2015.230
– ident: S0022112023007127_ref76
  doi: 10.1016/j.ijheatfluidflow.2013.02.006
– ident: S0022112023007127_ref35
– ident: S0022112023007127_ref42
  doi: 10.1017/S0022112010005082
– ident: S0022112023007127_ref1
– ident: S0022112023007127_ref52
  doi: 10.1017/S0022112003007705
– ident: S0022112023007127_ref51
  doi: 10.1017/jfm.2022.393
– ident: S0022112023007127_ref26
  doi: 10.1063/1.1516779
– ident: S0022112023007127_ref14
  doi: 10.1017/jfm.2018.706
– ident: S0022112023007127_ref77
  doi: 10.2514/8.1895
– ident: S0022112023007127_ref23
  doi: 10.1063/1.4896280
– ident: S0022112023007127_ref94
  doi: 10.1007/s10409-023-23075-x
– ident: S0022112023007127_ref6
  doi: 10.1017/jfm.2015.172
– ident: S0022112023007127_ref2
  doi: 10.1016/j.cpc.2021.107906
– ident: S0022112023007127_ref66
  doi: 10.1063/1.1637604
– ident: S0022112023007127_ref75
  doi: 10.1063/1.4942022
– ident: S0022112023007127_ref97
  doi: 10.1103/PhysRevLett.109.054502
– ident: S0022112023007127_ref89
  doi: 10.1063/5.0088405
– ident: S0022112023007127_ref78
  doi: 10.1103/PhysRevFluids.5.052602
– ident: S0022112023007127_ref13
– ident: S0022112023007127_ref56
  doi: 10.1080/14685240600827526
– ident: S0022112023007127_ref17
  doi: 10.1017/jfm.2014.116
– ident: S0022112023007127_ref7
  doi: 10.1017/jfm.2018.570
– ident: S0022112023007127_ref21
  doi: 10.1017/S0022112009006752
– ident: S0022112023007127_ref65
  doi: 10.1017/jfm.2015.711
– ident: S0022112023007127_ref49
  doi: 10.1016/j.ijheatfluidflow.2016.01.007
– ident: S0022112023007127_ref71
  doi: 10.1063/1.5123453
– ident: S0022112023007127_ref95
  doi: 10.1063/5.0078691
– ident: S0022112023007127_ref54
  doi: 10.2514/3.61193
– ident: S0022112023007127_ref47
  doi: 10.1017/jfm.2020.542
– ident: S0022112023007127_ref91
  doi: 10.1063/5.0141369
– ident: S0022112023007127_ref29
  doi: 10.1073/pnas.2111144118
– ident: S0022112023007127_ref8
  doi: 10.1063/1.5028294
– ident: S0022112023007127_ref4
  doi: 10.2514/6.2007-3998
– ident: S0022112023007127_ref60
  doi: 10.1063/1.4944657
– ident: S0022112023007127_ref92
  doi: 10.1063/5.0055732
– volume: 62
  start-page: 333
  year: 1954
  ident: S0022112023007127_ref30
  article-title: Boundary-layer characteristics for smooth and rough surfaces
  publication-title: Trans. Soc. Nav. Archit. Mar. Engrs
– ident: S0022112023007127_ref73
  doi: 10.1103/PhysRevLett.103.264502
– ident: S0022112023007127_ref90
  doi: 10.1063/5.0093852
– ident: S0022112023007127_ref93
  doi: 10.1103/PhysRevFluids.4.123402
– ident: S0022112023007127_ref9
  doi: 10.1063/1.5077081
– ident: S0022112023007127_ref50
  doi: 10.1016/j.ijheatfluidflow.2019.02.001
– volume: 361
  start-page: 1
  year: 1933
  ident: S0022112023007127_ref55
  article-title: Stromungsgesetze in rauhen rohren
  publication-title: VDI-Forschungsheft
– ident: S0022112023007127_ref57
  doi: 10.3390/fluids6120448
– ident: S0022112023007127_ref32
  doi: 10.1017/jfm.2022.80
– ident: S0022112023007127_ref96
  doi: 10.2514/1.J057296
– ident: S0022112023007127_ref86
  doi: 10.1017/jfm.2018.179
– ident: S0022112023007127_ref61
  doi: 10.1016/j.jcp.2010.06.006
– ident: S0022112023007127_ref44
  doi: 10.1063/1.2821908
– ident: S0022112023007127_ref12
  doi: 10.1017/S0022112095004587
– ident: S0022112023007127_ref19
  doi: 10.1006/jcph.1999.6238
– ident: S0022112023007127_ref5
  doi: 10.1007/s00162-022-00623-0
– volume-title: Turbulent Shear Layers in Supersonic Flow
  year: 2006
  ident: S0022112023007127_ref70
– ident: S0022112023007127_ref16
  doi: 10.1017/S0022112010005902
– ident: S0022112023007127_ref11
  doi: 10.1146/annurev-fluid-062520-115127
– ident: S0022112023007127_ref81
  doi: 10.1017/jfm.2019.867
– ident: S0022112023007127_ref80
  doi: 10.1103/PhysRevE.97.043108
– ident: S0022112023007127_ref18
  doi: 10.1017/jfm.2016.548
– ident: S0022112023007127_ref15
  doi: 10.1017/S0022112010000959
– ident: S0022112023007127_ref67
  doi: 10.1016/j.compfluid.2015.07.015
– ident: S0022112023007127_ref40
  doi: 10.2514/2.862
– ident: S0022112023007127_ref34
  doi: 10.1146/annurev.fluid.36.050802.122103
– ident: S0022112023007127_ref84
  doi: 10.1063/5.0062596
– ident: S0022112023007127_ref79
  doi: 10.1103/PhysRevFluids.2.023401
– ident: S0022112023007127_ref41
  doi: 10.1103/PhysRevFluids.8.074604
– ident: S0022112023007127_ref24
  doi: 10.1063/1.1843135
– ident: S0022112023007127_ref36
  doi: 10.1016/j.ijft.2021.100077
– ident: S0022112023007127_ref38
  doi: 10.1016/S0021-9991(03)00090-1
– ident: S0022112023007127_ref25
  doi: 10.1017/S0022112006001534
– ident: S0022112023007127_ref33
  doi: 10.1017/S0022112095004599
– ident: S0022112023007127_ref68
  doi: 10.1063/1.1355682
– ident: S0022112023007127_ref59
SSID ssj0013097
Score 2.469865
Snippet In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall...
SourceID proquest
crossref
cambridge
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Boundary layers
Components
Compressibility
Compressibility effects
Cross correlation
Density
Direct numerical simulation
Disturbances
Energy
Free flow
Friction
Heat
Hypotheses
JFM Papers
Kinetic energy
Mach number
Mathematical models
Mitigation
Numerical analysis
Reynolds stress
Rivers
Shear stress
Skin
Skin friction
Streamlines
Traveling waves
Turbulence
Turbulent boundary layer
Validity
Velocity
Viscosity
Wave packets
Title Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances
URI https://www.cambridge.org/core/product/identifier/S0022112023007127/type/journal_article
https://www.proquest.com/docview/2872108419
Volume 972
WOSCitedRecordID wos001168421100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVPQU
  databaseName: Advanced Technologies & Aerospace Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: P5Z
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/hightechjournals
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: PCBAR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Engineering Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M7S
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: BENPR
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Research Library
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2O
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/pqrl
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Science Database
  customDbUrl:
  eissn: 1469-7645
  dateEnd: 20241207
  omitProxy: false
  ssIdentifier: ssj0013097
  issn: 0022-1120
  databaseCode: M2P
  dateStart: 20010101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/sciencejournals
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9NAEB5BWyQ4UBpAbSnRHkA9IFM_1l77VAFq1FMaAZUqLtbOPkTayEnjBJR_z85mk5BDuXBZyfL6of1mZ8a7n78BeGctpck5RqiKPOKYlFFplIlUhVIkusAcS19sQvT75c1NNQgLbm2gVa58onfUeqxojfzMZfbu66TkSXU-uY-oahTtroYSGo9hl1QSUk_d-7bZRYgrsVILd3lFHIjvJBl9a-k39DT7KKgW5UZWYTs8bXtnH3J6-__7si_geUg22aeldRzAI9N0YD8knixM67YDz_5SJezAE88KVe1LuCNv4YmynkK7YIH9wYYNa-cTn6wPFZONZj8X60MXxHBOwYyhr9k0XbCRpMzeXYO07MNmY_ZbjkZMOxtzncnw2ldw3bv4_uUyCtUZIpXF6SziGq2yWhlRoNRYyMpioniu8zixmcksx1jogueZzBPjBgOzymGPJCCEwoHzGnaacWMOgaUWtRssqcrSJUhpURlpSTdeJNZqnvIjOF0DVIc51tZLfpqoHZQ1QVk7KI_gwwq-WgWRc6q1MXqg9_t178lS3OOBficrmDeP32B8_O_Tb-Ap3cgzAPkJ7Mymc_MW9tSv2bCddmH380V_8LXrLDe98u2g663YtYP8xx9Davtn
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3NT9RAFH9B0AgH0EUDiDoHiQdT7Me00x6MISiBgBsTMeFW5s1HXN101-0uZP8p_kbnzba7csAbB49NX2eamd-8j5nfvAfwxlpyk1MMUGVpwDHKg9woE6gCpYh0hinmvtiE6Hbzi4vi6xLctHdhiFbZ6kSvqPVA0R75e-fZu-gk51Hxcfg7oKpRdLraltCYweLUTK9dyFZ_OPnk5ncvjo8-nx8eB01VgUAlYTwOuEarrFZGZCg1ZrKwGCme6jSMbGISyzEUOuNpItPIuB4xKdw_IyW-QeE8JtfuA1jhpP09VfDb4tQiLESbndz5MWFDtKcU1T8tXXuPk31BtS8XaRxum8Pb1sCbuKON_21wnsB640yzgxn6n8KSqTqw0TjWrFFbdQfW_sq62IFHnvWq6k34RdrQE4E9RXjKGnYL61Wsngx9MNJTTFaa_ZjOH52RxgkZa4a-JtVoyvqSIhf3DdK2FhsP2LXs95l2a8gJ08Kqn8H3exmK57BcDSqzBSy2qN3kSJXnzgGMs8JIS3nxRWSt5jHfhrdzQJSNDqnLGf9OlA46JUGndNDZhnctXErVJHGnWiL9O6T35tLDWfKSO-R2W1gtul9gauffr1_D4-PzL2fl2Un39AWsUqOe7ch3YXk8mpiX8FBdjXv16JVfLQwu7xuBfwAD-VYT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressibility+effects+in+supersonic+and+hypersonic+turbulent+boundary+layers+subject+to+wall+disturbances&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Yu%2C+Ming&rft.au=Zhou%2C+QingQing&rft.au=Dong%2C+SiWei&rft.au=Yuan%2C+XianXu&rft.date=2023-10-04&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=972&rft_id=info:doi/10.1017%2Fjfm.2023.712&rft.externalDocID=10_1017_jfm_2023_712
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon