Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances
In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on...
Uloženo v:
| Vydáno v: | Journal of fluid mechanics Ročník 972 |
|---|---|
| Hlavní autoři: | , , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Cambridge, UK
Cambridge University Press
04.10.2023
|
| Témata: | |
| ISSN: | 0022-1120, 1469-7645 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on the wall and induce mean streamline curvature in rough wall turbulence that leads to the intensification of turbulent motions in the outer region. The turbulent and fluctuating Mach numbers, the density and the velocity divergence fluctuation intensities suggest that the compressibility effects are enhanced by the increment of the free-stream Mach number and the implementation of the wall disturbances. The differences between the Reynolds and Favre average due to the density fluctuations constitute approximately $9\,\%$ of the mean velocity close to the wall and $30\,\%$ of the Reynolds stress near the edge of the boundary layer, indicating their non-negligibility in turbulent modelling strategies. The comparatively strong compressive events behaving as eddy shocklets are observed at the free-stream Mach number of $6$ only in the cases with wall disturbances. By further splitting the velocity into the solenoidal and dilatational components with the Helmholtz decomposition, we found that the dilatational motions are organized as travelling wave packets in the wall-parallel planes close to the wall and as forward inclined structures in the form of radiated waves in the vertical planes. Despite their increased magnitudes and higher portion in the Reynolds normal and shear stresses, the dilatational motions show no tendency of contributing significantly to the skin friction and the production of turbulent kinetic energy due to their mitigation by the cross-correlation between the solenoidal and dilatational velocity components. |
|---|---|
| AbstractList | In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on the wall and induce mean streamline curvature in rough wall turbulence that leads to the intensification of turbulent motions in the outer region. The turbulent and fluctuating Mach numbers, the density and the velocity divergence fluctuation intensities suggest that the compressibility effects are enhanced by the increment of the free-stream Mach number and the implementation of the wall disturbances. The differences between the Reynolds and Favre average due to the density fluctuations constitute approximately $9\,\%$ of the mean velocity close to the wall and $30\,\%$ of the Reynolds stress near the edge of the boundary layer, indicating their non-negligibility in turbulent modelling strategies. The comparatively strong compressive events behaving as eddy shocklets are observed at the free-stream Mach number of $6$ only in the cases with wall disturbances. By further splitting the velocity into the solenoidal and dilatational components with the Helmholtz decomposition, we found that the dilatational motions are organized as travelling wave packets in the wall-parallel planes close to the wall and as forward inclined structures in the form of radiated waves in the vertical planes. Despite their increased magnitudes and higher portion in the Reynolds normal and shear stresses, the dilatational motions show no tendency of contributing significantly to the skin friction and the production of turbulent kinetic energy due to their mitigation by the cross-correlation between the solenoidal and dilatational velocity components. In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall disturbances by exploiting direct numerical simulation databases at Mach numbers up to 6. Such wall disturbances enforce extra Reynolds shear stress on the wall and induce mean streamline curvature in rough wall turbulence that leads to the intensification of turbulent motions in the outer region. The turbulent and fluctuating Mach numbers, the density and the velocity divergence fluctuation intensities suggest that the compressibility effects are enhanced by the increment of the free-stream Mach number and the implementation of the wall disturbances. The differences between the Reynolds and Favre average due to the density fluctuations constitute approximately $9\,\%$ of the mean velocity close to the wall and $30\,\%$ of the Reynolds stress near the edge of the boundary layer, indicating their non-negligibility in turbulent modelling strategies. The comparatively strong compressive events behaving as eddy shocklets are observed at the free-stream Mach number of $6$ only in the cases with wall disturbances. By further splitting the velocity into the solenoidal and dilatational components with the Helmholtz decomposition, we found that the dilatational motions are organized as travelling wave packets in the wall-parallel planes close to the wall and as forward inclined structures in the form of radiated waves in the vertical planes. Despite their increased magnitudes and higher portion in the Reynolds normal and shear stresses, the dilatational motions show no tendency of contributing significantly to the skin friction and the production of turbulent kinetic energy due to their mitigation by the cross-correlation between the solenoidal and dilatational velocity components. |
| ArticleNumber | A32 |
| Author | Yu, Ming Zhou, QingQing Dong, SiWei Yuan, XianXu Xu, ChunXiao |
| Author_xml | – sequence: 1 givenname: Ming orcidid: 0000-0001-7772-833X surname: Yu fullname: Yu, Ming email: yum16@tsinghua.org.cn organization: 1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China – sequence: 2 givenname: QingQing surname: Zhou fullname: Zhou, QingQing organization: 1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China – sequence: 3 givenname: SiWei orcidid: 0000-0002-4725-2964 surname: Dong fullname: Dong, SiWei organization: 1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China – sequence: 4 givenname: XianXu orcidid: 0000-0002-7668-0116 surname: Yuan fullname: Yuan, XianXu organization: 1State Key Laboratory of Aerodynamics, Mianyang 621000, PR China – sequence: 5 givenname: ChunXiao orcidid: 0000-0001-5292-8052 surname: Xu fullname: Xu, ChunXiao organization: 2Key Laboratory of Applied Mechanics, Ministry of Education, Institute of Fluid Mechanics, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, PR China |
| BookMark | eNp1kEtLxDAYRYOM4Di68wcE3NqapI9MlzL4ggE3ui55amqb1CRF-u_NMIOC6CqEnPN9ufcULKyzCoALjHKMML3u9JATRIqcYnIElrism4zWZbUAS4QIyTAm6ASchtAhhAvU0CV437hh9CoEw01v4gyV1krEAI2FYRqVD84aAZmV8G3-vsbJ86lXNkLuJiuZn2HP5vSaHN4lH0YHP1nfQ2nCDmZWqHAGjjXrgzo_nCvwcnf7vHnItk_3j5ubbSYKRGJWSq6FlkLRmjPJa9ZojkVZyQphXahClxxRmWIVrMIKrUteNLLmHCFKOU3BVuByP3f07mNSIbadm7xNK1uypgQnBTeJIntKeBeCV7oVJrJonI2emb7FqN2V2qZS212pbSo1SVe_pNGbIeX_D88POBu4N_JV_XzlT-ELqYSNaw |
| CitedBy_id | crossref_primary_10_1007_s10346_025_02609_5 crossref_primary_10_1017_jfm_2025_10607 crossref_primary_10_1007_s11433_024_2481_8 crossref_primary_10_1016_j_ast_2025_110087 crossref_primary_10_1016_j_ijheatfluidflow_2024_109311 crossref_primary_10_1016_j_ast_2024_108879 |
| Cites_doi | 10.1017/jfm.2012.212 10.1017/jfm.2011.368 10.1017/jfm.2016.689 10.1016/j.jcp.2020.110060 10.1146/annurev-fluid-122109-160718 10.1115/1.4001492 10.1007/s00348-021-03279-4 10.1080/14685248.2017.1395514 10.1017/jfm.2016.459 10.1017/jfm.2012.474 10.2514/1.31729 10.1017/S0022112009993156 10.1186/s42774-022-00117-x 10.1103/PhysRevE.79.035301 10.1063/1.858071 10.2514/1.J061747 10.1090/qam/99793 10.1017/jfm.2013.620 10.1016/j.jcp.2018.08.058 10.1063/1.3622773 10.1016/j.compfluid.2012.02.027 10.1017/jfm.2021.888 10.1017/jfm.2015.230 10.1016/j.ijheatfluidflow.2013.02.006 10.1017/S0022112010005082 10.1017/S0022112003007705 10.1017/jfm.2022.393 10.1063/1.1516779 10.1017/jfm.2018.706 10.2514/8.1895 10.1063/1.4896280 10.1007/s10409-023-23075-x 10.1017/jfm.2015.172 10.1016/j.cpc.2021.107906 10.1063/1.1637604 10.1063/1.4942022 10.1103/PhysRevLett.109.054502 10.1063/5.0088405 10.1103/PhysRevFluids.5.052602 10.1080/14685240600827526 10.1017/jfm.2014.116 10.1017/jfm.2018.570 10.1017/S0022112009006752 10.1017/jfm.2015.711 10.1016/j.ijheatfluidflow.2016.01.007 10.1063/1.5123453 10.1063/5.0078691 10.2514/3.61193 10.1017/jfm.2020.542 10.1063/5.0141369 10.1073/pnas.2111144118 10.1063/1.5028294 10.2514/6.2007-3998 10.1063/1.4944657 10.1063/5.0055732 10.1103/PhysRevLett.103.264502 10.1063/5.0093852 10.1103/PhysRevFluids.4.123402 10.1063/1.5077081 10.1016/j.ijheatfluidflow.2019.02.001 10.3390/fluids6120448 10.1017/jfm.2022.80 10.2514/1.J057296 10.1017/jfm.2018.179 10.1016/j.jcp.2010.06.006 10.1063/1.2821908 10.1017/S0022112095004587 10.1006/jcph.1999.6238 10.1007/s00162-022-00623-0 10.1017/S0022112010005902 10.1146/annurev-fluid-062520-115127 10.1017/jfm.2019.867 10.1103/PhysRevE.97.043108 10.1017/jfm.2016.548 10.1017/S0022112010000959 10.1016/j.compfluid.2015.07.015 10.2514/2.862 10.1146/annurev.fluid.36.050802.122103 10.1063/5.0062596 10.1103/PhysRevFluids.2.023401 10.1103/PhysRevFluids.8.074604 10.1063/1.1843135 10.1016/j.ijft.2021.100077 10.1016/S0021-9991(03)00090-1 10.1017/S0022112006001534 10.1017/S0022112095004599 10.1063/1.1355682 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2023. Published by Cambridge University Press |
| Copyright_xml | – notice: The Author(s), 2023. Published by Cambridge University Press |
| DBID | AAYXX CITATION 3V. 7TB 7U5 7UA 7XB 88I 8FD 8FE 8FG 8FK 8G5 ABJCF ABUWG AEUYN AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F1W FR3 GNUQQ GUQSH H8D H96 HCIFZ KR7 L.G L6V L7M M2O M2P M7S MBDVC P5Z P62 PCBAR PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U S0W |
| DOI | 10.1017/jfm.2023.712 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts Water Resources Abstracts ProQuest Central (purchase pre-March 2016) Science Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest One Sustainability ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database ProQuest Central Student ProQuest Research Library Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources SciTech Premium Collection Civil Engineering Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Engineering Collection Advanced Technologies Database with Aerospace Research Library Science Database Engineering Database Research Library (Corporate) Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DELNET Engineering & Technology Collection |
| DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials SciTech Premium Collection ProQuest Central China Water Resources Abstracts Environmental Sciences and Pollution Management ProQuest One Applied & Life Sciences ProQuest One Sustainability Natural Science Collection ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Engineering Database ProQuest Science Journals (Alumni Edition) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic ProQuest One Academic (New) Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Collection Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Research Library (Alumni Edition) ProQuest Central Earth, Atmospheric & Aquatic Science Collection Aerospace Database ProQuest Engineering Collection ProQuest Central Korea ProQuest Research Library Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest Central Basic ProQuest Science Journals ProQuest SciTech Collection Advanced Technologies & Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) |
| DatabaseTitleList | Research Library Prep CrossRef |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Physics |
| EISSN | 1469-7645 |
| ExternalDocumentID | 10_1017_jfm_2023_712 |
| GroupedDBID | -DZ -E. -~X .DC .FH 09C 09E 0E1 0R~ 4.4 5GY 5VS 74X 74Y 7~V 8G5 AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AAMNQ AANRG AARAB AASVR AAUIS AAUKB ABBXD ABGDZ ABITZ ABJCF ABJNI ABKKG ABMWE ABMYL ABQTM ABQWD ABROB ABTCQ ABZCX ACBEA ACBMC ACCHT ACGFO ACGFS ACGOD ACIMK ACIWK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADCGK ADDNB ADFEC ADFRT ADGEJ ADKIL ADOCW ADVJH AEBAK AEMTW AENEX AENGE AEYYC AFFUJ AFKQG AFKSM AFLOS AFLVW AFRAH AFUTZ AGABE AGBYD AGJUD AGOOT AHQXX AHRGI AIDUJ AIGNW AIHIV AIOIP AISIE AJ7 AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ARAPS ATUCA AUXHV BBLKV BENPR BGHMG BHPHI BLZWO BMAJL C0O CBIIA CCQAD CFAFE CHEAL CJCSC CS3 DOHLZ DU5 E.L EBS F5P HCIFZ HG- HST HZ~ I.6 IH6 IOEEP IS6 I~P J36 J38 J3A JHPGK JQKCU KCGVB KFECR L98 LW7 M-V M2O NIKVX O9- OYBOY P2P PYCCK RAMDC RCA RNS ROL RR0 S6- S6U SAAAG SC5 T9M TAE TN5 UT1 WFFJZ WH7 WQ3 WXU WXY WYP ZYDXJ ~02 29K 88I 8FE 8FG 8FH 8R4 8R5 AAYXX ABUFD ABUWG ABVKB ABVZP ABXAU ABXHF ACDLN ADMLS AEUYN AFFHD AFKRA AFZFC AKMAY AZQEC BGLVJ BKSAR BPHCQ CCPQU CITATION D-I DC4 DWQXO GNUQQ GUQSH L6V LK5 M2P M7R M7S P62 PCBAR PHGZM PHGZT PQGLB PQQKQ PROAC PTHSS Q2X S0W 3V. 7TB 7U5 7UA 7XB 8FD 8FK C1K F1W FR3 H8D H96 KR7 L.G L7M MBDVC PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c302t-4dbfcfdce76badb6a9fb1c45d501f3e3f4b07d6453a51e084b39d6bb0077b7013 |
| IEDL.DBID | M7S |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001168421100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0022-1120 |
| IngestDate | Sat Aug 16 17:42:28 EDT 2025 Sat Nov 29 04:25:19 EST 2025 Tue Nov 18 20:52:05 EST 2025 Wed Mar 13 05:46:06 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | turbulent boundary layers compressible turbulence high-speed flow |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c302t-4dbfcfdce76badb6a9fb1c45d501f3e3f4b07d6453a51e084b39d6bb0077b7013 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-4725-2964 0000-0002-7668-0116 0000-0001-5292-8052 0000-0001-7772-833X |
| PQID | 2872108419 |
| PQPubID | 34769 |
| PageCount | 33 |
| ParticipantIDs | proquest_journals_2872108419 crossref_citationtrail_10_1017_jfm_2023_712 crossref_primary_10_1017_jfm_2023_712 cambridge_journals_10_1017_jfm_2023_712 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-10-04 |
| PublicationDateYYYYMMDD | 2023-10-04 |
| PublicationDate_xml | – month: 10 year: 2023 text: 2023-10-04 day: 04 |
| PublicationDecade | 2020 |
| PublicationPlace | Cambridge, UK |
| PublicationPlace_xml | – name: Cambridge, UK – name: Cambridge |
| PublicationTitle | Journal of fluid mechanics |
| PublicationTitleAlternate | J. Fluid Mech |
| PublicationYear | 2023 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2012; 60 2002; 14 2023; 35 2017; 2 2014; 739 1962; 367 2010; 229 2018; 842 2014; 26 2009; 630 2022; 937 2016; 788 2020; 883 2011; 672 2022; 930 2011; 688 2018; 375 2020; 5 2021; 33 2018; 854 2018; 856 2015; 773 2004; 36 2015; 771 1933; 361 2021; 118 2022; 34 2018; 30 2011; 23 2006; 566 2001; 13 1970; 28 1979; 17 1991; 3 2007; 19 2016; 809 2021; 6 2019; 4 2010; 648 2019; 31 2019; 76 1954; 62 2015; 120 2021; 427 2016; 804 2013; 41 2006; 7 2021; 263 2016; 59 2004; 502 2020; 900 2012; 703 2012; 109 2014; 746 2018; 19 2009; 79 2021; 10 2021; 53 2011; 669 2000; 38 2023 2022 2022; 4 2010; 655 2004; 16 1951; 18 1995; 305 2010; 132 1999; 152 2008; 46 2011; 43 2018; 56 2016; 28 2005; 17 2022; 942 2018; 97 2021; 62 2009; 103 2012; 713 2003; 186 1957; 23 S0022112023007127_ref16 S0022112023007127_ref17 S0022112023007127_ref14 S0022112023007127_ref15 S0022112023007127_ref18 S0022112023007127_ref19 S0022112023007127_ref96 S0022112023007127_ref97 S0022112023007127_ref94 S0022112023007127_ref95 S0022112023007127_ref12 S0022112023007127_ref13 S0022112023007127_ref10 S0022112023007127_ref98 S0022112023007127_ref11 Smits (S0022112023007127_ref70) 2006 S0022112023007127_ref28 S0022112023007127_ref25 S0022112023007127_ref26 S0022112023007127_ref29 S0022112023007127_ref20 S0022112023007127_ref23 S0022112023007127_ref24 S0022112023007127_ref21 S0022112023007127_ref22 S0022112023007127_ref74 S0022112023007127_ref75 S0022112023007127_ref72 S0022112023007127_ref73 S0022112023007127_ref78 S0022112023007127_ref79 S0022112023007127_ref76 S0022112023007127_ref77 S0022112023007127_ref81 S0022112023007127_ref82 S0022112023007127_ref80 S0022112023007127_ref85 S0022112023007127_ref86 S0022112023007127_ref83 S0022112023007127_ref84 S0022112023007127_ref89 S0022112023007127_ref87 S0022112023007127_ref88 S0022112023007127_ref92 S0022112023007127_ref93 S0022112023007127_ref90 S0022112023007127_ref91 S0022112023007127_ref58 S0022112023007127_ref59 S0022112023007127_ref52 S0022112023007127_ref50 S0022112023007127_ref51 S0022112023007127_ref56 S0022112023007127_ref57 S0022112023007127_ref54 S0022112023007127_ref60 S0022112023007127_ref69 S0022112023007127_ref63 S0022112023007127_ref64 S0022112023007127_ref61 S0022112023007127_ref62 S0022112023007127_ref67 S0022112023007127_ref68 S0022112023007127_ref65 S0022112023007127_ref66 Morkovin (S0022112023007127_ref53) 1962; 367 S0022112023007127_ref71 S0022112023007127_ref38 S0022112023007127_ref39 S0022112023007127_ref36 S0022112023007127_ref37 S0022112023007127_ref5 S0022112023007127_ref31 S0022112023007127_ref6 S0022112023007127_ref7 S0022112023007127_ref8 Liepman (S0022112023007127_ref45) 1957; 23 Hama (S0022112023007127_ref30) 1954; 62 S0022112023007127_ref9 S0022112023007127_ref34 S0022112023007127_ref35 S0022112023007127_ref32 S0022112023007127_ref33 S0022112023007127_ref1 S0022112023007127_ref2 S0022112023007127_ref3 S0022112023007127_ref4 Nikuradse (S0022112023007127_ref55) 1933; 361 S0022112023007127_ref49 S0022112023007127_ref47 S0022112023007127_ref48 S0022112023007127_ref41 S0022112023007127_ref42 S0022112023007127_ref40 S0022112023007127_ref46 S0022112023007127_ref43 S0022112023007127_ref44 Gatski (S0022112023007127_ref27) 2013 |
| References_xml | – volume: 937 start-page: A3 year: 2022 article-title: Direct numerical simulation of hypersonic turbulent boundary layers: effect of spatial evolution and Reynolds number publication-title: J. Fluid Mech. – volume: 4 start-page: 123402 issue: 12 year: 2019 article-title: Genuine compressibility effects in wall-bounded turbulence publication-title: Phys. Rev. Fluids – volume: 132 issue: 4 year: 2010 article-title: Review of hydraulic roughness scales in the fully rough regime publication-title: Trans. ASME J. Fluids Engng – volume: 655 start-page: 419 year: 2010 end-page: 445 article-title: Direct numerical simulation of hypersonic turbulent boundary layers. Part 2. Effect of wall temperature publication-title: J. Fluid Mech. – volume: 30 start-page: 065109 issue: 6 year: 2018 article-title: Spectra and mach number scaling in compressible homogeneous shear turbulence publication-title: Phys. Fluids – volume: 19 start-page: 125101 issue: 12 year: 2007 article-title: Properties of d- and k-type roughness in a turbulent channel flow publication-title: Phys. Fluids – volume: 361 start-page: 1 year: 1933 article-title: Stromungsgesetze in rauhen rohren publication-title: VDI-Forschungsheft – volume: 19 start-page: 72 issue: 1 year: 2018 end-page: 105 article-title: Direct numerical simulation of a fully developed compressible wall turbulence over a wavy wall publication-title: J. Turbul. – volume: 2 start-page: 023401 issue: 2 year: 2017 article-title: Shocklet statistics in compressible isotropic turbulence publication-title: Phys. Rev. Fluids – volume: 31 start-page: 025107 issue: 2 year: 2019 article-title: Effect of compressibility on small scale statistics in homogeneous shear turbulence publication-title: Phys. Fluids – volume: 6 start-page: 448 issue: 12 year: 2021 article-title: Secondary flow in smooth and rough turbulent circular pipes: turbulence kinetic energy budgets publication-title: Fluids – volume: 5 start-page: 052602 issue: 5 year: 2020 article-title: Data-driven compressibility transformation for turbulent wall layers publication-title: Phys. Rev. Fluids – volume: 186 start-page: 652 issue: 2 year: 2003 end-page: 665 article-title: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations publication-title: J. Comput. Phys. – volume: 36 start-page: 173 year: 2004 end-page: 196 article-title: Turbulent flows over rough walls publication-title: Annu. Rev. Fluid Mech. – volume: 804 start-page: 130 year: 2016 end-page: 161 article-title: Turbulent flow over transitionally rough surfaces with varying roughness densities publication-title: J. Fluid Mech. – volume: 427 start-page: 110060 year: 2021 article-title: Preventing spurious pressure oscillations in split convective form discretization for compressible flows publication-title: J. Comput. Phys. – volume: 26 start-page: 101305 issue: 10 year: 2014 article-title: Roughness effects on wall-bounded turbulent flows publication-title: Phys. Fluids – volume: 900 start-page: R7 year: 2020 article-title: Scaling of rough-wall turbulence by the roughness height and steepness publication-title: J. Fluid Mech. – volume: 809 start-page: 793 year: 2016 end-page: 820 article-title: The influence of near-wall density and viscosity gradients on turbulence in channel flows publication-title: J. Fluid Mech. – volume: 3 start-page: 657 issue: 4 year: 1991 end-page: 664 article-title: Eddy shocklets in decaying compressible turbulence publication-title: Phys. Fluids – volume: 672 start-page: 245 year: 2011 end-page: 267 article-title: Direct numerical simulation of hypersonic turbulent boundary layers. Part 3. Effect of Mach number publication-title: J. Fluid Mech. – volume: 713 start-page: 588 year: 2012 end-page: 631 article-title: Effect of compressibility on the small-scale structures in isotropic turbulence publication-title: J. Fluid Mech. – volume: 103 start-page: 264502 issue: 26 year: 2009 article-title: Critical instability and friction scaling of fluid flows through pipes with rough inner surfaces publication-title: Phys. Rev. Lett. – volume: 746 start-page: 165 year: 2014 end-page: 192 article-title: Numerical study of acoustic radiation due to a supersonic turbulent boundary layer publication-title: J. Fluid Mech. – volume: 7 start-page: N73 year: 2006 article-title: DNS of turbulent channel flows with two-and three-dimensional roughness publication-title: J. Turbul. – volume: 33 start-page: 075106 issue: 7 year: 2021 article-title: Compressibility effects on hypersonic turbulent channel flow with cold walls publication-title: Phys. Fluids – volume: 10 start-page: 100077 year: 2021 article-title: A review on turbulent flow over rough surfaces: fundamentals and theories publication-title: Intl J. Thermofluids – volume: 854 start-page: 5 year: 2018 end-page: 33 article-title: Secondary motion in turbulent pipe flow with three-dimensional roughness publication-title: J. Fluid Mech. – volume: 375 start-page: 823 year: 2018 end-page: 853 article-title: Kinetic energy and entropy preserving schemes for compressible flows by split convective forms publication-title: J. Comput. Phys. – volume: 97 start-page: 043108 issue: 4 year: 2018 article-title: Effect of shock waves on the statistics and scaling in compressible isotropic turbulence publication-title: Phys. Rev. E – volume: 35 start-page: 025126 year: 2023 article-title: Effects of wall disturbances on the statistics of supersonic turbulent boundary layers publication-title: Phys. Fluids – volume: 23 start-page: 085102 issue: 8 year: 2011 article-title: Wall pressure fluctuations beneath supersonic turbulent boundary layers publication-title: Phys. Fluids – volume: 17 start-page: 035102 issue: 3 year: 2005 article-title: Experimental support for Townsend's Reynolds number similarity hypothesis on rough walls publication-title: Phys. Fluids – volume: 120 start-page: 57 year: 2015 end-page: 69 article-title: Resolution effects in compressible, turbulent boundary layer simulations publication-title: Comput. Fluids – volume: 31 start-page: 126101 issue: 12 year: 2019 article-title: Direct numerical simulation of effects of a micro-ramp on a hypersonic shock wave/boundary layer interaction publication-title: Phys. Fluids – volume: 53 start-page: 439 year: 2021 end-page: 471 article-title: Predicting the drag of rough surfaces publication-title: Annu. Rev. Fluid Mech. – volume: 14 start-page: L73 issue: 11 year: 2002 end-page: L76 article-title: Contribution of Reynolds stress distribution to the skin friction in wall-bounded flows publication-title: Phys. Fluids – volume: 79 start-page: 035301 issue: 3 year: 2009 article-title: Contribution of Reynolds stress distribution to the skin friction in compressible turbulent channel flows publication-title: Phys. Rev. E – volume: 46 start-page: 486 issue: 2 year: 2008 end-page: 497 article-title: Supersonic boundary layers with periodic surface roughness publication-title: AIAA J. – volume: 62 start-page: 333 year: 1954 end-page: 358 article-title: Boundary-layer characteristics for smooth and rough surfaces publication-title: Trans. Soc. Nav. Archit. Mar. Engrs – volume: 43 start-page: 163 year: 2011 end-page: 194 article-title: Numerical methods for high-speed flows publication-title: Annu. Rev. Fluid Mech. – volume: 17 start-page: 655 issue: 6 year: 1979 end-page: 657 article-title: Explicit expression for the smooth wall velocity distribution in a turbulent boundary layer publication-title: AIAA J. – year: 2023 article-title: Influences of wall disturbances on coherent structures in supersonic turbulent boundary layers publication-title: Acta Mech. Sin. – volume: 669 start-page: 397 year: 2011 end-page: 431 article-title: Direct numerical simulation of the turbulent boundary layer over a cube-roughened wall publication-title: J. Fluid Mech. – volume: 502 start-page: 273 year: 2004 end-page: 308 article-title: Direct numerical simulation of compressible turbulent channel flow between adiabatic and isothermal walls publication-title: J. Fluid Mech. – volume: 28 start-page: 026102 issue: 2 year: 2016 article-title: Mean velocity scaling for compressible wall turbulence with heat transfer publication-title: Phys. Fluids – start-page: 865 year: 2022 end-page: 886 article-title: Numerical tripping of high-speed turbulent boundary layers publication-title: Theor. Comput. Fluid Dyn. – volume: 771 start-page: 743 year: 2015 end-page: 777 article-title: A systematic investigation of roughness height and wavelength in turbulent pipe flow in the transitionally rough regime publication-title: J. Fluid Mech. – volume: 305 start-page: 185 year: 1995 end-page: 218 article-title: Compressible turbulent channel flows: DNS results and modelling publication-title: J. Fluid Mech. – volume: 842 start-page: 428 year: 2018 end-page: 468 article-title: Dns of compressible turbulent boundary layers and assessment of data/scaling-law quality publication-title: J. Fluid Mech. – volume: 33 start-page: 095108 issue: 9 year: 2021 article-title: Solenoidal linear forcing for compressible, statistically steady, homogeneous isotropic turbulence with reduced turbulent Mach number oscillation publication-title: Phys. Fluids – volume: 34 start-page: 065139 issue: 6 year: 2022 article-title: Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. Part I. One-point statistics publication-title: Phys. Fluids – volume: 4 start-page: 23 year: 2022 article-title: Notes on the hypersonic boundary layer transition publication-title: Adv. Aerodyn. – volume: 62 start-page: 1 issue: 9 year: 2021 end-page: 13 article-title: Effects of roughness on a turbulent boundary layer in hypersonic flow publication-title: Exp. Fluids – volume: 56 start-page: 4297 issue: 11 year: 2018 end-page: 4311 article-title: Direct numerical simulation database for supersonic and hypersonic turbulent boundary layers publication-title: AIAA J. – volume: 804 start-page: 578 year: 2016 end-page: 607 article-title: Pressure fluctuations induced by a hypersonic turbulent boundary layer publication-title: J. Fluid Mech. – volume: 942 start-page: A44 year: 2022 article-title: Direct numerical simulation of supersonic turbulent flows over rough surfaces publication-title: J. Fluid Mech. – volume: 28 start-page: 293 issue: 2 year: 1970 end-page: 296 article-title: Boundary conditions on the vector and scalar potentials in viscous three-dimensional hydrodynamics publication-title: Q. Appl. Math. – start-page: 1021 year: 2023 end-page: 1031 article-title: Hypersonic boundary-layer instability suppression by transverse microgrooves with machining flaw publication-title: AIAA J. – volume: 109 start-page: 054502 issue: 5 year: 2012 article-title: Mach-number-invariant mean-velocity profile of compressible turbulent boundary layers publication-title: Phys. Rev. Lett. – volume: 856 start-page: 470 year: 2018 end-page: 503 article-title: Cross-flow-type breakdown induced by distributed roughness in the boundary layer of a hypersonic capsule configuration publication-title: J. Fluid Mech. – volume: 118 start-page: e2111144118 issue: 34 year: 2021 article-title: Velocity transformation for compressible wall-bounded turbulent flows with and without heat transfer publication-title: PNAS – volume: 34 start-page: 016109 issue: 1 year: 2022 article-title: Supersonic turbulent channel flows over spanwise-oriented grooves publication-title: Phys. Fluids – volume: 305 start-page: 159 year: 1995 end-page: 183 article-title: A numerical study of turbulent supersonic isothermal-wall channel flow publication-title: J. Fluid Mech. – volume: 60 start-page: 58 year: 2012 end-page: 60 article-title: An efficient, parallel low-storage implementation of Klein's turbulence generator for LES and DNS publication-title: Comput. Fluids – volume: 34 start-page: 065140 issue: 6 year: 2022 article-title: Wall shear stress, pressure and heat flux fluctuations in compressible wall-bounded turbulence. Part II. Spectra, correlation and nonlinear interactions publication-title: Phys. Fluids – volume: 41 start-page: 2 year: 2013 end-page: 15 article-title: Numerical simulation of fully-developed compressible flows over wavy surfaces publication-title: Intl J. Heat Fluid Flow – volume: 773 start-page: 418 year: 2015 end-page: 431 article-title: A fast direct numerical simulation method for characterising hydraulic roughness publication-title: J. Fluid Mech. – volume: 788 start-page: 614 year: 2016 end-page: 639 article-title: Passive scalars in turbulent channel flow at high Reynolds number publication-title: J. Fluid Mech. – volume: 13 start-page: 1415 issue: 5 year: 2001 end-page: 1430 article-title: Direct numerical simulation of decaying compressible turbulence and shocklet statistics publication-title: Phys. Fluids – volume: 630 start-page: 225 year: 2009 end-page: 265 article-title: Response of supersonic turbulent boundary layers to local and global mechanical distortions publication-title: J. Fluid Mech. – volume: 28 start-page: 045105 issue: 4 year: 2016 article-title: Crosshatch roughness distortions on a hypersonic turbulent boundary layer publication-title: Phys. Fluids – volume: 18 start-page: 145 issue: 3 year: 1951 end-page: 160 article-title: Turbulent boundary layer in compressible fluids publication-title: Intl J. Aeronaut. Space Sci. – volume: 883 start-page: A11 year: 2020 article-title: Effect of flow topology on the kinetic energy flux in compressible isotropic turbulence publication-title: J. Fluid Mech. – volume: 23 start-page: 784 issue: 10 year: 1957 article-title: Note on the mach number effect upon the skin friction of rough surfaces publication-title: J. Aeronaut. Sci. – volume: 739 start-page: 392 year: 2014 end-page: 420 article-title: A generalized Reynolds analogy for compressible wall-bounded turbulent flows publication-title: J. Fluid Mech. – volume: 38 start-page: 1804 issue: 10 year: 2000 end-page: 1821 article-title: Flow properties of a supersonic turbulent boundary layer with wall roughness publication-title: AIAA J. – volume: 703 start-page: 255 year: 2012 end-page: 278 article-title: Flow topology in compressible turbulent boundary layer publication-title: J. Fluid Mech. – volume: 688 start-page: 120 year: 2011 end-page: 168 article-title: Turbulence in supersonic boundary layers at moderate Reynolds number publication-title: J. Fluid Mech. – volume: 367 start-page: 26 issue: 380 year: 1962 article-title: Effects of compressibility on turbulent flows publication-title: Mécanique Turbul. – volume: 152 start-page: 517 issue: 2 year: 1999 end-page: 549 article-title: Large-eddy simulation of the shock/turbulence interaction publication-title: J. Comput. Phys. – volume: 930 start-page: A1 year: 2022 article-title: About the influences of compressibility, heat transfer and pressure gradients in compressible turbulent boundary layers publication-title: J. Fluid Mech. – volume: 263 start-page: 107906 year: 2021 article-title: STREAmS: a high-fidelity accelerated solver for direct numerical simulation of compressible turbulent flows publication-title: Comput. Phys. Commun. – volume: 16 start-page: 530 issue: 3 year: 2004 end-page: 545 article-title: Direct numerical simulation and analysis of a spatially evolving supersonic turbulent boundary layer at $M= 2.25$ publication-title: Phys. Fluids – volume: 76 start-page: 100 year: 2019 end-page: 112 article-title: Direct numerical simulation of supersonic pipe flow at moderate Reynolds number publication-title: Intl J. Heat Fluid Flow – volume: 648 start-page: 325 year: 2010 end-page: 349 article-title: On the dynamical relevance of coherent vortical structures in turbulent boundary layers publication-title: J. Fluid Mech. – volume: 566 start-page: 357 year: 2006 end-page: 376 article-title: Effect of wall-boundary disturbances on turbulent channel flows publication-title: J. Fluid Mech. – volume: 229 start-page: 7180 issue: 19 year: 2010 end-page: 7190 article-title: Generalized conservative approximations of split convective derivative operators publication-title: J. Comput. Phys. – volume: 59 start-page: 33 year: 2016 end-page: 49 article-title: Reynolds and Mach number effects in compressible turbulent channel flow publication-title: Intl J. Heat Fluid Flow – ident: S0022112023007127_ref83 doi: 10.1017/jfm.2012.212 – ident: S0022112023007127_ref63 doi: 10.1017/jfm.2011.368 – ident: S0022112023007127_ref58 doi: 10.1017/jfm.2016.689 – ident: S0022112023007127_ref69 doi: 10.1016/j.jcp.2020.110060 – ident: S0022112023007127_ref62 doi: 10.1146/annurev-fluid-122109-160718 – volume-title: Compressibility, Turbulence and High Speed Flow year: 2013 ident: S0022112023007127_ref27 – ident: S0022112023007127_ref22 doi: 10.1115/1.4001492 – ident: S0022112023007127_ref87 doi: 10.1007/s00348-021-03279-4 – ident: S0022112023007127_ref72 doi: 10.1080/14685248.2017.1395514 – ident: S0022112023007127_ref48 doi: 10.1017/jfm.2016.459 – ident: S0022112023007127_ref82 doi: 10.1017/jfm.2012.474 – ident: S0022112023007127_ref20 doi: 10.2514/1.31729 – ident: S0022112023007127_ref64 doi: 10.1017/S0022112009993156 – ident: S0022112023007127_ref88 doi: 10.1186/s42774-022-00117-x – ident: S0022112023007127_ref28 doi: 10.1103/PhysRevE.79.035301 – ident: S0022112023007127_ref43 doi: 10.1063/1.858071 – ident: S0022112023007127_ref74 – ident: S0022112023007127_ref46 doi: 10.2514/1.J061747 – ident: S0022112023007127_ref31 doi: 10.1090/qam/99793 – ident: S0022112023007127_ref98 doi: 10.1017/jfm.2013.620 – volume: 367 start-page: 26 year: 1962 ident: S0022112023007127_ref53 article-title: Effects of compressibility on turbulent flows publication-title: Mécanique Turbul. – ident: S0022112023007127_ref39 doi: 10.1016/j.jcp.2018.08.058 – ident: S0022112023007127_ref3 doi: 10.1063/1.3622773 – ident: S0022112023007127_ref37 doi: 10.1016/j.compfluid.2012.02.027 – volume: 23 start-page: 784 year: 1957 ident: S0022112023007127_ref45 article-title: Note on the mach number effect upon the skin friction of rough surfaces publication-title: J. Aeronaut. Sci. – ident: S0022112023007127_ref85 doi: 10.1017/jfm.2021.888 – ident: S0022112023007127_ref10 doi: 10.1017/jfm.2015.230 – ident: S0022112023007127_ref76 doi: 10.1016/j.ijheatfluidflow.2013.02.006 – ident: S0022112023007127_ref35 – ident: S0022112023007127_ref42 doi: 10.1017/S0022112010005082 – ident: S0022112023007127_ref1 – ident: S0022112023007127_ref52 doi: 10.1017/S0022112003007705 – ident: S0022112023007127_ref51 doi: 10.1017/jfm.2022.393 – ident: S0022112023007127_ref26 doi: 10.1063/1.1516779 – ident: S0022112023007127_ref14 doi: 10.1017/jfm.2018.706 – ident: S0022112023007127_ref77 doi: 10.2514/8.1895 – ident: S0022112023007127_ref23 doi: 10.1063/1.4896280 – ident: S0022112023007127_ref94 doi: 10.1007/s10409-023-23075-x – ident: S0022112023007127_ref6 doi: 10.1017/jfm.2015.172 – ident: S0022112023007127_ref2 doi: 10.1016/j.cpc.2021.107906 – ident: S0022112023007127_ref66 doi: 10.1063/1.1637604 – ident: S0022112023007127_ref75 doi: 10.1063/1.4942022 – ident: S0022112023007127_ref97 doi: 10.1103/PhysRevLett.109.054502 – ident: S0022112023007127_ref89 doi: 10.1063/5.0088405 – ident: S0022112023007127_ref78 doi: 10.1103/PhysRevFluids.5.052602 – ident: S0022112023007127_ref13 – ident: S0022112023007127_ref56 doi: 10.1080/14685240600827526 – ident: S0022112023007127_ref17 doi: 10.1017/jfm.2014.116 – ident: S0022112023007127_ref7 doi: 10.1017/jfm.2018.570 – ident: S0022112023007127_ref21 doi: 10.1017/S0022112009006752 – ident: S0022112023007127_ref65 doi: 10.1017/jfm.2015.711 – ident: S0022112023007127_ref49 doi: 10.1016/j.ijheatfluidflow.2016.01.007 – ident: S0022112023007127_ref71 doi: 10.1063/1.5123453 – ident: S0022112023007127_ref95 doi: 10.1063/5.0078691 – ident: S0022112023007127_ref54 doi: 10.2514/3.61193 – ident: S0022112023007127_ref47 doi: 10.1017/jfm.2020.542 – ident: S0022112023007127_ref91 doi: 10.1063/5.0141369 – ident: S0022112023007127_ref29 doi: 10.1073/pnas.2111144118 – ident: S0022112023007127_ref8 doi: 10.1063/1.5028294 – ident: S0022112023007127_ref4 doi: 10.2514/6.2007-3998 – ident: S0022112023007127_ref60 doi: 10.1063/1.4944657 – ident: S0022112023007127_ref92 doi: 10.1063/5.0055732 – volume: 62 start-page: 333 year: 1954 ident: S0022112023007127_ref30 article-title: Boundary-layer characteristics for smooth and rough surfaces publication-title: Trans. Soc. Nav. Archit. Mar. Engrs – ident: S0022112023007127_ref73 doi: 10.1103/PhysRevLett.103.264502 – ident: S0022112023007127_ref90 doi: 10.1063/5.0093852 – ident: S0022112023007127_ref93 doi: 10.1103/PhysRevFluids.4.123402 – ident: S0022112023007127_ref9 doi: 10.1063/1.5077081 – ident: S0022112023007127_ref50 doi: 10.1016/j.ijheatfluidflow.2019.02.001 – volume: 361 start-page: 1 year: 1933 ident: S0022112023007127_ref55 article-title: Stromungsgesetze in rauhen rohren publication-title: VDI-Forschungsheft – ident: S0022112023007127_ref57 doi: 10.3390/fluids6120448 – ident: S0022112023007127_ref32 doi: 10.1017/jfm.2022.80 – ident: S0022112023007127_ref96 doi: 10.2514/1.J057296 – ident: S0022112023007127_ref86 doi: 10.1017/jfm.2018.179 – ident: S0022112023007127_ref61 doi: 10.1016/j.jcp.2010.06.006 – ident: S0022112023007127_ref44 doi: 10.1063/1.2821908 – ident: S0022112023007127_ref12 doi: 10.1017/S0022112095004587 – ident: S0022112023007127_ref19 doi: 10.1006/jcph.1999.6238 – ident: S0022112023007127_ref5 doi: 10.1007/s00162-022-00623-0 – volume-title: Turbulent Shear Layers in Supersonic Flow year: 2006 ident: S0022112023007127_ref70 – ident: S0022112023007127_ref16 doi: 10.1017/S0022112010005902 – ident: S0022112023007127_ref11 doi: 10.1146/annurev-fluid-062520-115127 – ident: S0022112023007127_ref81 doi: 10.1017/jfm.2019.867 – ident: S0022112023007127_ref80 doi: 10.1103/PhysRevE.97.043108 – ident: S0022112023007127_ref18 doi: 10.1017/jfm.2016.548 – ident: S0022112023007127_ref15 doi: 10.1017/S0022112010000959 – ident: S0022112023007127_ref67 doi: 10.1016/j.compfluid.2015.07.015 – ident: S0022112023007127_ref40 doi: 10.2514/2.862 – ident: S0022112023007127_ref34 doi: 10.1146/annurev.fluid.36.050802.122103 – ident: S0022112023007127_ref84 doi: 10.1063/5.0062596 – ident: S0022112023007127_ref79 doi: 10.1103/PhysRevFluids.2.023401 – ident: S0022112023007127_ref41 doi: 10.1103/PhysRevFluids.8.074604 – ident: S0022112023007127_ref24 doi: 10.1063/1.1843135 – ident: S0022112023007127_ref36 doi: 10.1016/j.ijft.2021.100077 – ident: S0022112023007127_ref38 doi: 10.1016/S0021-9991(03)00090-1 – ident: S0022112023007127_ref25 doi: 10.1017/S0022112006001534 – ident: S0022112023007127_ref33 doi: 10.1017/S0022112095004599 – ident: S0022112023007127_ref68 doi: 10.1063/1.1355682 – ident: S0022112023007127_ref59 |
| SSID | ssj0013097 |
| Score | 2.469865 |
| Snippet | In the present study, we investigate the compressibility effects in supersonic and hypersonic turbulent boundary layers under the influence of wall... |
| SourceID | proquest crossref cambridge |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Boundary layers Components Compressibility Compressibility effects Cross correlation Density Direct numerical simulation Disturbances Energy Free flow Friction Heat Hypotheses JFM Papers Kinetic energy Mach number Mathematical models Mitigation Numerical analysis Reynolds stress Rivers Shear stress Skin Skin friction Streamlines Traveling waves Turbulence Turbulent boundary layer Validity Velocity Viscosity Wave packets |
| Title | Compressibility effects in supersonic and hypersonic turbulent boundary layers subject to wall disturbances |
| URI | https://www.cambridge.org/core/product/identifier/S0022112023007127/type/journal_article https://www.proquest.com/docview/2872108419 |
| Volume | 972 |
| WOSCitedRecordID | wos001168421100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVPQU databaseName: Advanced Technologies & Aerospace Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: P5Z dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/hightechjournals providerName: ProQuest – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: PCBAR dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Engineering Database customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M7S dateStart: 20010101 isFulltext: true titleUrlDefault: http://search.proquest.com providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: BENPR dateStart: 20010101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Research Library customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2O dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/pqrl providerName: ProQuest – providerCode: PRVPQU databaseName: Science Database (ProQuest) customDbUrl: eissn: 1469-7645 dateEnd: 20241207 omitProxy: false ssIdentifier: ssj0013097 issn: 0022-1120 databaseCode: M2P dateStart: 20010101 isFulltext: true titleUrlDefault: https://search.proquest.com/sciencejournals providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT-MwEB7xWCQ4ANsF8ax8YMUBZTdvNycECMQBlQoWCXGJ_Ii1hSotTQvqv2fGdVs4wIVLoiiTh_KNx5_tLzMABw10m1BL4SVKhB5GP-5lPEo9LdI444ZIiEX6ijebjfv7rOUm3Conq5zERBuodVfRHPlfZPY4OmnEQXbce_aoahStrroSGvOwSFkSQivdu52tIvgZn2QLR17hO-E7pYx-NPQbehj94VSLcpZW4WP39DE62y7nYu27L7sOq45sspOxd_yEuaKswZojnsw166oGK--yEtZgyapCVfULnihaWKGsldCOmFN_sHbJqmHPkvW2YqLU7P9oeoidmBxSZ8akrdnUH7GOIGaP10ia9mGDLnsVnQ7T6GNoTI5XbcDdxfm_s0vPVWfwVOSHAy_W0iijVcFTKbRMRWZkoOJEJ35goiIysfS5TuMkEklQ4MeQUaZTKSmBkOQIziYslN2y2AIW86RIcezSIHomokAknHOluNS4N8bfhsMpQLlrY1U-1qfxHKHMCcocodyGowl8uXJJzqnWRucT699T6944uccndnsTmGePn2G88_XpXVimG1kFYLwHC4P-sNiHH-pl0K76dVg8PW-2buroueG13bbq1otx20oe3gByu_ml |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB5RaAU9lDaAoFDYQ1EPlcGPtTc-IFTRIhBpVKlU4mb24RWByAlxAsqf4jcys7GTcqA3Dj1Zlse70u6389j9dgbgcxNhExolvVjL0EPtJ7xURIlnZMJTYckJcTPdEu128-Ii_TUHD_VdGKJV1jrRKWrT07RHvo-ePUYnTR6kh_1bj6pG0elqXUJjAouzfHyPIVt5cPod53c3DI9_nB-deFVVAU9Hfjj0uFFWW6NzkShpVCJTqwLNYxP7gY3yyHLlC5PwOJJxkGOPKkpNohQlvlECPSZs9xUscNL-jir4e3Zq4aeizk6OfoxfEe0pRfW1pWvvYbQnqPblLI3DU3P41Bo4E3e8_L8Nznt4VznT7NsE_R9gLi8asFw51qxSW2UD3v6VdbEBbxzrVZcrcEPa0BGBHUV4zCp2C-sUrBz1XTDS0UwWhl2Np69opNWIjDVTribVYMy6kiIX_EfRthYb9ti97HaZwTWEwrSwylX48yJDsQbzRa_I14FxEecJxmZNcj9lFMhYCKG1UAaf1vob8GUKiKzSIWU24d-JDKGTEXQyhM4GfK3hkukqiTvVEuk-I707le5Pkpc8I7dVw2rW_QxTH__9eQcWT85_trLWaftsE5aoUcd25FswPxyM8k_wWt8NO-Vg260WBpcvjcBHbiJUUQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Compressibility+effects+in+supersonic+and+hypersonic+turbulent+boundary+layers+subject+to+wall+disturbances&rft.jtitle=Journal+of+fluid+mechanics&rft.au=Yu%2C+Ming&rft.au=Zhou%2C+QingQing&rft.au=Dong%2C+SiWei&rft.au=Yuan%2C+XianXu&rft.date=2023-10-04&rft.pub=Cambridge+University+Press&rft.issn=0022-1120&rft.eissn=1469-7645&rft.volume=972&rft_id=info:doi/10.1017%2Fjfm.2023.712&rft.externalDocID=10_1017_jfm_2023_712 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1120&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1120&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1120&client=summon |