Noise adaptive spatiotemporal neural networks for deformation prediction of high rockfill dams

Deformation prediction is a crucial approach in structural health monitoring of high rockfill dams, significantly contributing to their construction and operational safety. However, the monitoring data of high rockfill dams exhibits significant volatility due to the influence of construction process...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems with applications Vol. 294; p. 128836
Main Authors: Wang, Zijian, Ma, Gang, Ai, Zhitao, Ding, Qianru, Zhou, Wei
Format: Journal Article
Language:English
Published: Elsevier Ltd 15.12.2025
Subjects:
ISSN:0957-4174
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Deformation prediction is a crucial approach in structural health monitoring of high rockfill dams, significantly contributing to their construction and operational safety. However, the monitoring data of high rockfill dams exhibits significant volatility due to the influence of construction process and water level fluctuations, posing challenges for data-driven deformation prediction. This study proposes a novel deformation prediction model based on spatiotemporal fusion neural network for enhancing prediction accuracy and robustness to noise. Specifically, the graph convolutional network and Long Short-term memory Network are combined to converge multi-point spatial features and excavate historical temporal information. Then, probabilistic prediction method obtains parameters through the linear layer for loss function, which improves model adaptation to data noise. The parameter shared Seq2Seq structure is designed to enhance the model’s ability to learn the correlation between loads and settlement, thereby enabling accurate prediction of deformation monitoring data with drift characteristics. Eventually, by incorporating the above model structure, loss function and training strategy, deformation prediction is accomplished. Application on a high rockfill dam shows that the proposed model realizes more accurate deformation prediction, with an error (MAE) less than 1.0c m, outperforming various conventional prediction methods. The reliability of the noise adaptation module and the application value for anomaly detection are further validated, which provides a valuable reference for data-driven deformation prediction methods in rockfill dams and other geotechnical engineering projects. The code is available at https://github.com/WHU-Wzj/Dam-deformation-prediction.
AbstractList Deformation prediction is a crucial approach in structural health monitoring of high rockfill dams, significantly contributing to their construction and operational safety. However, the monitoring data of high rockfill dams exhibits significant volatility due to the influence of construction process and water level fluctuations, posing challenges for data-driven deformation prediction. This study proposes a novel deformation prediction model based on spatiotemporal fusion neural network for enhancing prediction accuracy and robustness to noise. Specifically, the graph convolutional network and Long Short-term memory Network are combined to converge multi-point spatial features and excavate historical temporal information. Then, probabilistic prediction method obtains parameters through the linear layer for loss function, which improves model adaptation to data noise. The parameter shared Seq2Seq structure is designed to enhance the model’s ability to learn the correlation between loads and settlement, thereby enabling accurate prediction of deformation monitoring data with drift characteristics. Eventually, by incorporating the above model structure, loss function and training strategy, deformation prediction is accomplished. Application on a high rockfill dam shows that the proposed model realizes more accurate deformation prediction, with an error (MAE) less than 1.0c m, outperforming various conventional prediction methods. The reliability of the noise adaptation module and the application value for anomaly detection are further validated, which provides a valuable reference for data-driven deformation prediction methods in rockfill dams and other geotechnical engineering projects. The code is available at https://github.com/WHU-Wzj/Dam-deformation-prediction.
ArticleNumber 128836
Author Ai, Zhitao
Ma, Gang
Wang, Zijian
Zhou, Wei
Ding, Qianru
Author_xml – sequence: 1
  givenname: Zijian
  orcidid: 0009-0004-2439-6078
  surname: Wang
  fullname: Wang, Zijian
  organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China
– sequence: 2
  givenname: Gang
  orcidid: 0000-0002-1865-5721
  surname: Ma
  fullname: Ma, Gang
  email: magang630@whu.edu.cn
  organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China
– sequence: 3
  givenname: Zhitao
  surname: Ai
  fullname: Ai, Zhitao
  organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China
– sequence: 4
  givenname: Qianru
  surname: Ding
  fullname: Ding, Qianru
  organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China
– sequence: 5
  givenname: Wei
  surname: Zhou
  fullname: Zhou, Wei
  organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China
BookMark eNp9kD1PwzAQhj0UibbwB5j8BxLOdlInEguq-JIqWGDFsuwLdZvEkR1a8e9JGiaGLvfecM9J77Mgs9a3SMgNg5QBW93uUoxHnXLgecp4UYjVjMyhzGWSMZldkkWMOwAmAeScfL56F5Fqq7veHZDGTvfO99h0Puiatvg9RX_0YR9p5QO1OMxmPGtpF9A6c1p9Rbfua0uDN_vK1TW1uolX5KLSdcTrv1ySj8eH9_Vzsnl7elnfbxIjgPdJVjBALBlHaYTmgBIzkKwyZiXRilxYqLiVXGDBMC-N4IZLnaHG0gKUmVgSPv01wccYsFJdcI0OP4qBGq2onRqtqNGKmqwMUPEPMq4_9eqDdvV59G5CcSh1cBhUNA5bM9gIaHplvTuH_wJkeYQ0
CitedBy_id crossref_primary_10_1016_j_engstruct_2025_121395
Cites_doi 10.1109/TPAMI.2024.3443141
10.1177/1475921719872939
10.1016/j.enggeo.2023.107281
10.1016/j.earscirev.2019.102895
10.1109/TIA.2020.2992945
10.3389/feart.2024.1399602
10.1016/j.compgeo.2023.105757
10.1016/j.aei.2019.100991
10.1016/j.aei.2023.102016
10.1155/2023/4101604
10.1109/TNNLS.2022.3152527
10.3390/su142316025
10.1016/j.istruc.2024.108056
10.1016/j.compgeo.2023.105320
10.1016/j.ijforecast.2019.07.001
10.1016/j.enggeo.2021.106488
10.1016/j.aei.2023.102175
10.1007/s11356-021-16749-3
10.1016/j.eswa.2025.126619
10.1016/j.autcon.2024.105794
10.1162/neco.1997.9.8.1735
10.3390/info14110598
10.1016/j.eswa.2022.117272
10.1002/stc.1997
10.1016/j.sigpro.2024.109581
10.1016/j.eswa.2025.126624
10.1016/j.engappai.2024.109310
10.1016/j.istruc.2024.108094
10.1109/TNN.2008.2005605
10.3390/engproc2023039023
10.1177/14759217211009780
10.1007/s11831-015-9157-9
10.1007/s13349-022-00641-w
10.1016/J.ENG.2016.04.001
10.1016/j.knosys.2021.107537
10.1177/14759217241244549
10.1016/j.compgeo.2024.106323
10.1007/s13349-023-00733-1
10.1016/j.eswa.2023.122022
10.1016/j.jmsy.2024.07.008
10.1016/j.engappai.2025.110483
10.1016/j.simpa.2022.100329
10.1016/j.ijsolstr.2022.111763
ContentType Journal Article
Copyright 2025 Elsevier Ltd
Copyright_xml – notice: 2025 Elsevier Ltd
DBID AAYXX
CITATION
DOI 10.1016/j.eswa.2025.128836
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
ExternalDocumentID 10_1016_j_eswa_2025_128836
S0957417425024534
GroupedDBID --K
--M
.DC
.~1
0R~
13V
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
9JO
AAAKF
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARIN
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMVD
ABUCO
ABUFD
ACDAQ
ACGFS
ACHRH
ACLOT
ACNTT
ACRLP
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AFJKZ
AFPUW
AFTJW
AGHFR
AGUBO
AGUMN
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AKBMS
AKRWK
AKYEP
ALEQD
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
AOUOD
APLSM
APXCP
AXJTR
BJAXD
BKOJK
BLXMC
BNSAS
CS3
DU5
EBS
EFJIC
EFKBS
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
HAMUX
IHE
J1W
JJJVA
KOM
LG9
LY1
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SDS
SES
SEW
SPC
SPCBC
SSB
SSD
SSL
SST
SSV
SSZ
T5K
TN5
~G-
~HD
29G
9DU
AAAKG
AAQXK
AAYXX
ABKBG
ABWVN
ABXDB
ACNNM
ACRPL
ADJOM
ADMUD
ADNMO
AGQPQ
ASPBG
AVWKF
AZFZN
CITATION
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
WUQ
XPP
ZMT
ID FETCH-LOGICAL-c302t-4810ee912e7c3a20e7e4071fcc67ed353d0f2d723e81e59c32c27a4eae9d00943
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001524419000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0957-4174
IngestDate Sat Nov 29 06:56:23 EST 2025
Tue Nov 18 21:45:04 EST 2025
Sun Oct 19 01:43:08 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Structural health monitoring
Parameter shared encoder-decoder
Rockfill dams
Spatiotemporal fusion
Probabilistic prediction
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c302t-4810ee912e7c3a20e7e4071fcc67ed353d0f2d723e81e59c32c27a4eae9d00943
ORCID 0000-0002-1865-5721
0009-0004-2439-6078
ParticipantIDs crossref_primary_10_1016_j_eswa_2025_128836
crossref_citationtrail_10_1016_j_eswa_2025_128836
elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128836
PublicationCentury 2000
PublicationDate 2025-12-15
PublicationDateYYYYMMDD 2025-12-15
PublicationDate_xml – month: 12
  year: 2025
  text: 2025-12-15
  day: 15
PublicationDecade 2020
PublicationTitle Expert systems with applications
PublicationYear 2025
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Li, Bao, Gao, Shu, Zhang, Xie, Zhang (b0105) 2021; 21
Ding, Guo, Fan, Liu, Gong, Zhou, Ma (b0050) 2023; 325
23.
Chen, Lu, Guo, Fan, Guo, Gu, Li, Liu (b0035) 2025; 71
Kim, Kim, Tae, Park, Choi, Choo (b0100) 2022
Chen, Chen, Hu, Gu, Guo, Qin (b0030) 2023; 58
Mei, Ma, Wang, Wu, Zhou (b0160) 2022; 251
Tian, Chen, Lu, Li, Chen (b0205) 2024; 138
Kang, Li, Zhang, Ma, Wen (b0095) 2024; 168
Ma, Chi (b0155) 2016; 2
Salinas, Flunkert, Gasthaus, Januschowski (b0175) 2020; 36
Rozendo, do Nascimento, Roberto, de Faria, Silva, Tosta, Neves (b0165) 2022; 13
Su, Fu, Lin, Lai, Zheng, Lin, He (b0200) 2025; 271
Casolaro, Capone, Iannuzzo, Camastra (b0020) 2023; 14
Liu, Carling, Hu, Wang, Zhou, Zhou, Liu, Lai, Zhang (b0135) 2019; 197
Zhang, Fu, Ou, Liu, Hu (b0240) 2022; 14
Kang, Liu, Li (b0090) 2019; 19
Liu, Wang, Ma, Zhou, Cheng (b0140) 2024; 15
Lu, Gu, Gu, Shao, Yuan (b0145) 2025; 149
Yang, Xiang, Shen, Sun (b0230) 2022; 14
Liu, Li, Hua, Zhao, Gao (b0120) 2024; 76
Kang, Liu, Li, Li (b0085) 2017; 24
Shao, Liu (b0185) 2024
Ai, Ma, Zhang, Cheng, Zou, Zhou, Pozo (b0005) 2023; 2023
Salazar, Morán, Toledo, Oñate (b0170) 2015; 24
Chen, Wang, Tong, Cai, Zhu, Liu (b0025) 2021; 233
Jin, Koh, Wen, Zambon, Alippi, Webb, King, Pan (b0080) 2024; 46
Song, Kim, Park, Shin, Lee (b0195) 2023; 34
Li, Yin, Zhang, Qiu (b0110) 2022; 13
Liu, Wen, Su (b0125) 2024; 238
Jeong, Ferguson, Hou, Lynch, Sohn, Law (b0070) 2019; 42
Ghaderpour, E., Dadkhah, H., Dabiri, H., Bozzano, F., Mugnozza, G. S., & Mazzanti, P. (2023). Precipitation time series analysis and forecasting for Italian Regions.
Jiang, Fu, Liu, Fan, Song, Ai, Xiao, Wang, Yang (b0075) 2025; 271
Ma, Ai, Guo, Li, Chen, Zhou (b0150) 2024; 55 %N 10
Hochreiter, Schmidhuber (b0065) 1997; 9
Willm, Beaujoint (b0220) 1967
Cheng, Ma, Zhang, Chang, Zhou (b0040) 2023; 163
Ghaderpour, Pagiatakis, Mugnozza, Mazzanti (b0060) 2024; 223
Liu, Li, Wang, Huang, Wu, Li (b0115) 2023; 56
Ai, Ma, Zhang, Liu, Deng, Chang, Zhou (b0010) 2024; 171
Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b0180) 2009; 20
Liu, He, Sun, Shen, Wang (b0130) 2023; 157
Wen, Zhou, Su (b0215) 2022; 201
Zhang, Luo, Qin, Tang, Zhou, Feng (b0250) 2022; 53
Wu, Ma, Ai, Yang, Zhou (b0225) 2024; 55
Deng, Gao, Huang, Wan, Zhang, He (b0045) 2025; 71
Sivasuriyan, Vijayan, Munusami, Devarajan (b0190) 2022; 29
Yu, Han, Yang, Yang (b0235) 2020; 56
Cao, Bao, Liu, Li, Yuan, Hu (b0015) 2023; 14
Tian, Li, Luo, Zhang, Lu (b0210) 2024; 24
Zhang, Jing, Chen, Gao, Xu (b0245) 2022; 297
Liu (10.1016/j.eswa.2025.128836_b0125) 2024; 238
Sivasuriyan (10.1016/j.eswa.2025.128836_b0190) 2022; 29
Ma (10.1016/j.eswa.2025.128836_b0150) 2024; 55 %N 10
Salazar (10.1016/j.eswa.2025.128836_b0170) 2015; 24
Scarselli (10.1016/j.eswa.2025.128836_b0180) 2009; 20
Kim (10.1016/j.eswa.2025.128836_b0100) 2022
Jiang (10.1016/j.eswa.2025.128836_b0075) 2025; 271
Chen (10.1016/j.eswa.2025.128836_b0030) 2023; 58
Willm (10.1016/j.eswa.2025.128836_b0220) 1967
Ma (10.1016/j.eswa.2025.128836_b0155) 2016; 2
Shao (10.1016/j.eswa.2025.128836_b0185) 2024
Liu (10.1016/j.eswa.2025.128836_b0135) 2019; 197
Su (10.1016/j.eswa.2025.128836_b0200) 2025; 271
Mei (10.1016/j.eswa.2025.128836_b0160) 2022; 251
Chen (10.1016/j.eswa.2025.128836_b0035) 2025; 71
Kang (10.1016/j.eswa.2025.128836_b0090) 2019; 19
Liu (10.1016/j.eswa.2025.128836_b0140) 2024; 15
Zhang (10.1016/j.eswa.2025.128836_b0240) 2022; 14
Hochreiter (10.1016/j.eswa.2025.128836_b0065) 1997; 9
Li (10.1016/j.eswa.2025.128836_b0110) 2022; 13
Wu (10.1016/j.eswa.2025.128836_b0225) 2024; 55
Liu (10.1016/j.eswa.2025.128836_b0115) 2023; 56
Yu (10.1016/j.eswa.2025.128836_b0235) 2020; 56
Zhang (10.1016/j.eswa.2025.128836_b0250) 2022; 53
Casolaro (10.1016/j.eswa.2025.128836_b0020) 2023; 14
Deng (10.1016/j.eswa.2025.128836_b0045) 2025; 71
Yang (10.1016/j.eswa.2025.128836_b0230) 2022; 14
Cao (10.1016/j.eswa.2025.128836_b0015) 2023; 14
Ding (10.1016/j.eswa.2025.128836_b0050) 2023; 325
10.1016/j.eswa.2025.128836_b0055
Ghaderpour (10.1016/j.eswa.2025.128836_b0060) 2024; 223
Song (10.1016/j.eswa.2025.128836_b0195) 2023; 34
Lu (10.1016/j.eswa.2025.128836_b0145) 2025; 149
Liu (10.1016/j.eswa.2025.128836_b0120) 2024; 76
Salinas (10.1016/j.eswa.2025.128836_b0175) 2020; 36
Tian (10.1016/j.eswa.2025.128836_b0205) 2024; 138
Wen (10.1016/j.eswa.2025.128836_b0215) 2022; 201
Kang (10.1016/j.eswa.2025.128836_b0095) 2024; 168
Kang (10.1016/j.eswa.2025.128836_b0085) 2017; 24
Jeong (10.1016/j.eswa.2025.128836_b0070) 2019; 42
Ai (10.1016/j.eswa.2025.128836_b0010) 2024; 171
Tian (10.1016/j.eswa.2025.128836_b0210) 2024; 24
Ai (10.1016/j.eswa.2025.128836_b0005) 2023; 2023
Liu (10.1016/j.eswa.2025.128836_b0130) 2023; 157
Zhang (10.1016/j.eswa.2025.128836_b0245) 2022; 297
Li (10.1016/j.eswa.2025.128836_b0105) 2021; 21
Chen (10.1016/j.eswa.2025.128836_b0025) 2021; 233
Jin (10.1016/j.eswa.2025.128836_b0080) 2024; 46
Cheng (10.1016/j.eswa.2025.128836_b0040) 2023; 163
Rozendo (10.1016/j.eswa.2025.128836_b0165) 2022; 13
References_xml – volume: 53
  start-page: 949
  year: 2022
  end-page: 963
  ident: b0250
  article-title: A probabilistic forecasting framework of time series variables for wind-solar-hydropower hybrid systems
  publication-title: Journal of Hydraulic Engineering
– volume: 24
  year: 2017
  ident: b0085
  article-title: Concrete dam deformation prediction model for health monitoring based on extreme learning machine
  publication-title: Structural Control and Health Monitoring
– volume: 46
  start-page: 10466
  year: 2024
  end-page: 10485
  ident: b0080
  article-title: A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 2023
  start-page: 1
  year: 2023
  end-page: 18
  ident: b0005
  article-title: The use of shape accel array for deformation monitoring and parameter inversion of a 300 m ultrahigh rockfill dam
  publication-title: Structural Control and Health Monitoring
– volume: 223
  year: 2024
  ident: b0060
  article-title: On the stochastic significance of peaks in the least-squares wavelet spectrogram and an application in GNSS time series analysis
  publication-title: Signal Processing
– volume: 14
  year: 2022
  ident: b0230
  article-title: A combination model for displacement interval prediction of concrete dams based on residual estimation
  publication-title: Sustainability
– volume: 149
  year: 2025
  ident: b0145
  article-title: A multi-point dam deformation prediction model based on spatiotemporal graph convolutional network
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 238
  year: 2024
  ident: b0125
  article-title: Deformation prediction based on denoising techniques and ensemble learning algorithms for concrete dams
  publication-title: Expert Systems with Applications
– volume: 271
  year: 2025
  ident: b0200
  article-title: A novel deep learning multi-step prediction model for dam displacement using Chrono-initialized LSTM and sequence-to-sequence framework
  publication-title: Expert Systems with Applications
– volume: 24
  start-page: 925
  year: 2024
  end-page: 940
  ident: b0210
  article-title: Multisource information fusion model for deformation safety monitoring of earth and rock dams based on deep graph feature fusion
  publication-title: Structural Health Monitoring
– volume: 233
  year: 2021
  ident: b0025
  article-title: Dynamic early-warning model of dam deformation based on deep learning and fusion of spatiotemporal features
  publication-title: Knowledge-Based Systems
– volume: 34
  start-page: 8135
  year: 2023
  end-page: 8153
  ident: b0195
  article-title: Learning from noisy labels with deep neural networks: A survey
  publication-title: IEEE Trans Neural Netw Learn Syst
– volume: 19
  start-page: 987
  year: 2019
  end-page: 1002
  ident: b0090
  article-title: Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines
  publication-title: Structural Health Monitoring
– volume: 15
  year: 2024
  ident: b0140
  article-title: Carbon emissions and vegetation dynamics: Assessing the spatiotemporal environmental impacts of hydropower dams in the Lancang River Basin
  publication-title: Forests
– volume: 251
  year: 2022
  ident: b0160
  article-title: Micro- and macroscopic aspects of the intermittent behaviors of granular materials related by graph neural network
  publication-title: International Journal of Solids and Structures
– volume: 271
  year: 2025
  ident: b0075
  article-title: Incremental energy-based recurrent transformer-KAN for time series deformation simulation of soft tissue
  publication-title: Expert Systems with Applications
– volume: 21
  start-page: 770
  year: 2021
  end-page: 787
  ident: b0105
  article-title: A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques
  publication-title: Structural Health Monitoring
– volume: 201
  year: 2022
  ident: b0215
  article-title: MR and stacked GRUs neural network combined model and its application for deformation prediction of concrete dam
  publication-title: Expert Systems with Applications
– volume: 9
  start-page: 1735
  year: 1997
  end-page: 1780
  ident: b0065
  article-title: Long short-term memory
  publication-title: Neural Computation
– volume: 36
  start-page: 1181
  year: 2020
  end-page: 1191
  ident: b0175
  article-title: DeepAR: Probabilistic forecasting with autoregressive recurrent networks
  publication-title: International Journal of Forecasting
– volume: 13
  start-page: 371
  year: 2022
  end-page: 386
  ident: b0110
  article-title: Prediction of long-term maximum settlement deformation of concrete face rockfill dams using hybrid support vector regression optimized with HHO algorithm
  publication-title: Journal of Civil Structural Health Monitoring
– volume: 157
  year: 2023
  ident: b0130
  article-title: Analysis of the behavior of a high earth-core rockfill dam considering particle breakage
  publication-title: Computers and Geotechnics
– volume: 58
  year: 2023
  ident: b0030
  article-title: A feature decomposition-based deep transfer learning framework for concrete dam deformation prediction with observational insufficiency
  publication-title: Advanced Engineering Informatics
– volume: 14
  start-page: 598
  year: 2023
  ident: b0020
  article-title: Deep learning for time series forecasting advance
  publication-title: Information
– volume: 55
  start-page: 564
  year: 2024
  end-page: 576
  ident: b0225
  article-title: Spatial - temporal fusion model for deformation prediction of rockfill dams and its application in safety monitoring
  publication-title: Journal of Hydraulic Engineering
– volume: 42
  year: 2019
  ident: b0070
  article-title: Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring
  publication-title: Advanced Engineering Informatics
– reference: Ghaderpour, E., Dadkhah, H., Dabiri, H., Bozzano, F., Mugnozza, G. S., & Mazzanti, P. (2023). Precipitation time series analysis and forecasting for Italian Regions.
– volume: 76
  start-page: 92
  year: 2024
  end-page: 102
  ident: b0120
  article-title: A causal based method for denoising non-homologous noises in time series manufacturing monitoring data
  publication-title: Journal of Manufacturing Systems
– volume: 56
  year: 2023
  ident: b0115
  article-title: Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning
  publication-title: Advanced Engineering Informatics
– volume: 24
  start-page: 1
  year: 2015
  end-page: 21
  ident: b0170
  article-title: Data-based models for the prediction of dam behaviour: A review and some methodological considerations
  publication-title: Archives of Computational Methods in Engineering
– volume: 71
  year: 2025
  ident: b0045
  article-title: From data processing to behavior monitoring: A comprehensive overview of dam health monitoring technology
  publication-title: Structures
– volume: 163
  year: 2023
  ident: b0040
  article-title: A theoretical model for evaluating the deterioration of mechanical properties of rockfill materials
  publication-title: Computers and Geotechnics
– year: 2022
  ident: b0100
  article-title: Reversible instance normalization for accurate time-series forecasting against distribution shift
  publication-title: International Conference on Learning Representations
– volume: 56
  start-page: 6117
  year: 2020
  end-page: 6127
  ident: b0235
  article-title: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression
  publication-title: IEEE Transactions on Industry Applications
– volume: 14
  start-page: 431
  year: 2023
  end-page: 447
  ident: b0015
  article-title: A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation
  publication-title: Journal of Civil Structural Health Monitoring
– volume: 71
  year: 2025
  ident: b0035
  article-title: Prediction of arch dam deformation considering the coupling impact of external environmental changes and structural characteristics
  publication-title: Structures
– volume: 171
  year: 2024
  ident: b0010
  article-title: Multi-source monitoring data filtering assisted deformation analysis model updating of ultra-high rockfill dam
  publication-title: Computers and Geotechnics
– volume: 325
  year: 2023
  ident: b0050
  article-title: Multi-source monitoring data helps revealing and quantifying the excavation-induced deterioration of rock mass
  publication-title: Engineering Geology
– volume: 55 %N 10
  start-page: 1174
  year: 2024
  end-page: 1186
  ident: b0150
  article-title: Review on deformation monitoring for high earth-rock dams
  publication-title: Journal of Hydraulic Engineering
– volume: 2
  start-page: 498
  year: 2016
  end-page: 509
  ident: b0155
  article-title: Major technologies for safe construction of high earth-rockfill dams
  publication-title: Engineering
– volume: 14
  year: 2022
  ident: b0240
  article-title: Prediction of dam deformation using SSA-LSTM model based on empirical mode decomposition method and wavelet threshold noise reduction
  publication-title: Water
– volume: 20
  start-page: 61
  year: 2009
  end-page: 80
  ident: b0180
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
– start-page: 529
  year: 1967
  end-page: 550
  ident: b0220
  article-title: Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles
– volume: 197
  year: 2019
  ident: b0135
  article-title: Outburst floods in China: A review
  publication-title: Earth-Science Reviews
– volume: 168
  year: 2024
  ident: b0095
  article-title: Anomaly detection in concrete dam using memory-augmented autoencoder and generative adversarial network (MemAE-GAN)
  publication-title: Automation in Construction
– volume: 138
  year: 2024
  ident: b0205
  article-title: Deep transfer learning-based time-varying model for deformation monitoring of high earth-rock dams
  publication-title: Engineering Applications of Artificial Intelligence
– reference: , 23.
– volume: 297
  year: 2022
  ident: b0245
  article-title: Characteristics and causes of crest cracking on a high core-wall rockfill dam: A case study
  publication-title: Engineering Geology
– volume: 13
  year: 2022
  ident: b0165
  article-title: Sample entropy signatures: A new way to interpret SampEn values
  publication-title: Software Impacts
– volume: 29
  start-page: 86180
  year: 2022
  end-page: 86191
  ident: b0190
  article-title: Health assessment of dams under various environmental conditions using structural health monitoring techniques: A state-of-art review
  publication-title: Environmental Science and Pollution Research
– year: 2024
  ident: b0185
  article-title: Slope deformation prediction based on noise reduction and deep learning: A point prediction and probability analysis method
  publication-title: Frontiers in Earth Science
– volume: 46
  start-page: 10466
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0080
  article-title: A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  doi: 10.1109/TPAMI.2024.3443141
– volume: 19
  start-page: 987
  year: 2019
  ident: 10.1016/j.eswa.2025.128836_b0090
  article-title: Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines
  publication-title: Structural Health Monitoring
  doi: 10.1177/1475921719872939
– volume: 325
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0050
  article-title: Multi-source monitoring data helps revealing and quantifying the excavation-induced deterioration of rock mass
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2023.107281
– volume: 197
  year: 2019
  ident: 10.1016/j.eswa.2025.128836_b0135
  article-title: Outburst floods in China: A review
  publication-title: Earth-Science Reviews
  doi: 10.1016/j.earscirev.2019.102895
– volume: 14
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0240
  article-title: Prediction of dam deformation using SSA-LSTM model based on empirical mode decomposition method and wavelet threshold noise reduction
  publication-title: Water
– volume: 56
  start-page: 6117
  year: 2020
  ident: 10.1016/j.eswa.2025.128836_b0235
  article-title: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression
  publication-title: IEEE Transactions on Industry Applications
  doi: 10.1109/TIA.2020.2992945
– year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0185
  article-title: Slope deformation prediction based on noise reduction and deep learning: A point prediction and probability analysis method
  publication-title: Frontiers in Earth Science
  doi: 10.3389/feart.2024.1399602
– volume: 163
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0040
  article-title: A theoretical model for evaluating the deterioration of mechanical properties of rockfill materials
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2023.105757
– volume: 42
  year: 2019
  ident: 10.1016/j.eswa.2025.128836_b0070
  article-title: Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2019.100991
– volume: 56
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0115
  article-title: Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2023.102016
– volume: 2023
  start-page: 1
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0005
  article-title: The use of shape accel array for deformation monitoring and parameter inversion of a 300 m ultrahigh rockfill dam
  publication-title: Structural Control and Health Monitoring
  doi: 10.1155/2023/4101604
– volume: 34
  start-page: 8135
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0195
  article-title: Learning from noisy labels with deep neural networks: A survey
  publication-title: IEEE Trans Neural Netw Learn Syst
  doi: 10.1109/TNNLS.2022.3152527
– volume: 53
  start-page: 949
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0250
  article-title: A probabilistic forecasting framework of time series variables for wind-solar-hydropower hybrid systems
  publication-title: Journal of Hydraulic Engineering
– volume: 14
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0230
  article-title: A combination model for displacement interval prediction of concrete dams based on residual estimation
  publication-title: Sustainability
  doi: 10.3390/su142316025
– volume: 71
  year: 2025
  ident: 10.1016/j.eswa.2025.128836_b0035
  article-title: Prediction of arch dam deformation considering the coupling impact of external environmental changes and structural characteristics
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.108056
– start-page: 529
  year: 1967
  ident: 10.1016/j.eswa.2025.128836_b0220
  article-title: Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles
– volume: 157
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0130
  article-title: Analysis of the behavior of a high earth-core rockfill dam considering particle breakage
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2023.105320
– volume: 36
  start-page: 1181
  year: 2020
  ident: 10.1016/j.eswa.2025.128836_b0175
  article-title: DeepAR: Probabilistic forecasting with autoregressive recurrent networks
  publication-title: International Journal of Forecasting
  doi: 10.1016/j.ijforecast.2019.07.001
– volume: 297
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0245
  article-title: Characteristics and causes of crest cracking on a high core-wall rockfill dam: A case study
  publication-title: Engineering Geology
  doi: 10.1016/j.enggeo.2021.106488
– volume: 58
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0030
  article-title: A feature decomposition-based deep transfer learning framework for concrete dam deformation prediction with observational insufficiency
  publication-title: Advanced Engineering Informatics
  doi: 10.1016/j.aei.2023.102175
– volume: 29
  start-page: 86180
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0190
  article-title: Health assessment of dams under various environmental conditions using structural health monitoring techniques: A state-of-art review
  publication-title: Environmental Science and Pollution Research
  doi: 10.1007/s11356-021-16749-3
– volume: 271
  year: 2025
  ident: 10.1016/j.eswa.2025.128836_b0075
  article-title: Incremental energy-based recurrent transformer-KAN for time series deformation simulation of soft tissue
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2025.126619
– volume: 168
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0095
  article-title: Anomaly detection in concrete dam using memory-augmented autoencoder and generative adversarial network (MemAE-GAN)
  publication-title: Automation in Construction
  doi: 10.1016/j.autcon.2024.105794
– volume: 55 %N 10
  start-page: 1174
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0150
  article-title: Review on deformation monitoring for high earth-rock dams
  publication-title: Journal of Hydraulic Engineering
– volume: 9
  start-page: 1735
  year: 1997
  ident: 10.1016/j.eswa.2025.128836_b0065
  article-title: Long short-term memory
  publication-title: Neural Computation
  doi: 10.1162/neco.1997.9.8.1735
– volume: 14
  start-page: 598
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0020
  article-title: Deep learning for time series forecasting advance
  publication-title: Information
  doi: 10.3390/info14110598
– volume: 201
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0215
  article-title: MR and stacked GRUs neural network combined model and its application for deformation prediction of concrete dam
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2022.117272
– volume: 24
  year: 2017
  ident: 10.1016/j.eswa.2025.128836_b0085
  article-title: Concrete dam deformation prediction model for health monitoring based on extreme learning machine
  publication-title: Structural Control and Health Monitoring
  doi: 10.1002/stc.1997
– volume: 223
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0060
  article-title: On the stochastic significance of peaks in the least-squares wavelet spectrogram and an application in GNSS time series analysis
  publication-title: Signal Processing
  doi: 10.1016/j.sigpro.2024.109581
– volume: 271
  year: 2025
  ident: 10.1016/j.eswa.2025.128836_b0200
  article-title: A novel deep learning multi-step prediction model for dam displacement using Chrono-initialized LSTM and sequence-to-sequence framework
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2025.126624
– year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0100
  article-title: Reversible instance normalization for accurate time-series forecasting against distribution shift
– volume: 138
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0205
  article-title: Deep transfer learning-based time-varying model for deformation monitoring of high earth-rock dams
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2024.109310
– volume: 71
  year: 2025
  ident: 10.1016/j.eswa.2025.128836_b0045
  article-title: From data processing to behavior monitoring: A comprehensive overview of dam health monitoring technology
  publication-title: Structures
  doi: 10.1016/j.istruc.2024.108094
– volume: 15
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0140
  article-title: Carbon emissions and vegetation dynamics: Assessing the spatiotemporal environmental impacts of hydropower dams in the Lancang River Basin
  publication-title: Forests
– volume: 20
  start-page: 61
  year: 2009
  ident: 10.1016/j.eswa.2025.128836_b0180
  article-title: The graph neural network model
  publication-title: IEEE Transactions on Neural Networks
  doi: 10.1109/TNN.2008.2005605
– ident: 10.1016/j.eswa.2025.128836_b0055
  doi: 10.3390/engproc2023039023
– volume: 21
  start-page: 770
  year: 2021
  ident: 10.1016/j.eswa.2025.128836_b0105
  article-title: A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques
  publication-title: Structural Health Monitoring
  doi: 10.1177/14759217211009780
– volume: 24
  start-page: 1
  year: 2015
  ident: 10.1016/j.eswa.2025.128836_b0170
  article-title: Data-based models for the prediction of dam behaviour: A review and some methodological considerations
  publication-title: Archives of Computational Methods in Engineering
  doi: 10.1007/s11831-015-9157-9
– volume: 13
  start-page: 371
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0110
  article-title: Prediction of long-term maximum settlement deformation of concrete face rockfill dams using hybrid support vector regression optimized with HHO algorithm
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-022-00641-w
– volume: 2
  start-page: 498
  year: 2016
  ident: 10.1016/j.eswa.2025.128836_b0155
  article-title: Major technologies for safe construction of high earth-rockfill dams
  publication-title: Engineering
  doi: 10.1016/J.ENG.2016.04.001
– volume: 233
  year: 2021
  ident: 10.1016/j.eswa.2025.128836_b0025
  article-title: Dynamic early-warning model of dam deformation based on deep learning and fusion of spatiotemporal features
  publication-title: Knowledge-Based Systems
  doi: 10.1016/j.knosys.2021.107537
– volume: 24
  start-page: 925
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0210
  article-title: Multisource information fusion model for deformation safety monitoring of earth and rock dams based on deep graph feature fusion
  publication-title: Structural Health Monitoring
  doi: 10.1177/14759217241244549
– volume: 171
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0010
  article-title: Multi-source monitoring data filtering assisted deformation analysis model updating of ultra-high rockfill dam
  publication-title: Computers and Geotechnics
  doi: 10.1016/j.compgeo.2024.106323
– volume: 14
  start-page: 431
  year: 2023
  ident: 10.1016/j.eswa.2025.128836_b0015
  article-title: A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation
  publication-title: Journal of Civil Structural Health Monitoring
  doi: 10.1007/s13349-023-00733-1
– volume: 238
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0125
  article-title: Deformation prediction based on denoising techniques and ensemble learning algorithms for concrete dams
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2023.122022
– volume: 76
  start-page: 92
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0120
  article-title: A causal based method for denoising non-homologous noises in time series manufacturing monitoring data
  publication-title: Journal of Manufacturing Systems
  doi: 10.1016/j.jmsy.2024.07.008
– volume: 149
  year: 2025
  ident: 10.1016/j.eswa.2025.128836_b0145
  article-title: A multi-point dam deformation prediction model based on spatiotemporal graph convolutional network
  publication-title: Engineering Applications of Artificial Intelligence
  doi: 10.1016/j.engappai.2025.110483
– volume: 13
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0165
  article-title: Sample entropy signatures: A new way to interpret SampEn values
  publication-title: Software Impacts
  doi: 10.1016/j.simpa.2022.100329
– volume: 55
  start-page: 564
  year: 2024
  ident: 10.1016/j.eswa.2025.128836_b0225
  article-title: Spatial - temporal fusion model for deformation prediction of rockfill dams and its application in safety monitoring
  publication-title: Journal of Hydraulic Engineering
– volume: 251
  year: 2022
  ident: 10.1016/j.eswa.2025.128836_b0160
  article-title: Micro- and macroscopic aspects of the intermittent behaviors of granular materials related by graph neural network
  publication-title: International Journal of Solids and Structures
  doi: 10.1016/j.ijsolstr.2022.111763
SSID ssj0017007
Score 2.4854398
Snippet Deformation prediction is a crucial approach in structural health monitoring of high rockfill dams, significantly contributing to their construction and...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 128836
SubjectTerms Parameter shared encoder-decoder
Probabilistic prediction
Rockfill dams
Spatiotemporal fusion
Structural health monitoring
Title Noise adaptive spatiotemporal neural networks for deformation prediction of high rockfill dams
URI https://dx.doi.org/10.1016/j.eswa.2025.128836
Volume 294
WOSCitedRecordID wos001524419000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0957-4174
  databaseCode: AIEXJ
  dateStart: 19950101
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0017007
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6K85AO3KJXj2LVzrFB5CVYgClr1QGRsR2RZZVebFPrzGb-yoaAKkLgkkbV2Vp7P9tj55huEnlBiGNWK5ZWWJGeSy1zSsskb3XBFrFXWC2l_fC1mMzmfV28jT7f36QRE18mzs2r9X00NZWBsFzr7F-YeG4UCeAajwxXMDtc_Mvxs1fY2U0atPSuo95TpqEC1zJx-pb959rcXY8iMHUMYnWaAafXoRsLWPYMl7mvTLpeZUVHafDHy9-xmiGLQKUxu8kF8e1gfJpSTdjEB4xvvtj5Xcel0oPPMgpMv7aBWo4Mdc668c8JEp9MzCsod3yNEaYaDsxQ8s2UqhRNIkbMiJOlJkzENKY9_mdjDGcNi3_bfnVoU5fuFy5N8TkXbr8vvXcOuXfDuKOMlu4x2qeAVzHm7hy-P5q_Gr0yChHD69EdiUFXg_51_0-8dl4kzcnwDXYu7CHwYrH8TXbLdLXQ9ZejAccK-jT55MOAEBvwzGHAAA05gwAADPAED3oIBrxrswIATGLADwx304dnR8dMXecyokeuS0AHGYgHjryqoFbpUlFhh3Ya-0fpAWFPy0pCGGkFLKwvLK11STYViMGIr4zmod9FOt-rsPYQZI1pLKP4MPay5VQIcUSK0VAVXzQHdQ0XqrlpHuXmX9WRZJ17honZdXLsurkMX76FsrLMOYisX_ponK9TRXQxuYA2guaDe_X-s9wBd3WL7IdoZNqf2Ebqivw1tv3kcsfUDT3yTzQ
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+adaptive+spatiotemporal+neural+networks+for+deformation+prediction+of+high+rockfill+dams&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Zijian&rft.au=Ma%2C+Gang&rft.au=Ai%2C+Zhitao&rft.au=Ding%2C+Qianru&rft.date=2025-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=294&rft_id=info:doi/10.1016%2Fj.eswa.2025.128836&rft.externalDocID=S0957417425024534
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon