Noise adaptive spatiotemporal neural networks for deformation prediction of high rockfill dams
Deformation prediction is a crucial approach in structural health monitoring of high rockfill dams, significantly contributing to their construction and operational safety. However, the monitoring data of high rockfill dams exhibits significant volatility due to the influence of construction process...
Saved in:
| Published in: | Expert systems with applications Vol. 294; p. 128836 |
|---|---|
| Main Authors: | , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Elsevier Ltd
15.12.2025
|
| Subjects: | |
| ISSN: | 0957-4174 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | Deformation prediction is a crucial approach in structural health monitoring of high rockfill dams, significantly contributing to their construction and operational safety. However, the monitoring data of high rockfill dams exhibits significant volatility due to the influence of construction process and water level fluctuations, posing challenges for data-driven deformation prediction. This study proposes a novel deformation prediction model based on spatiotemporal fusion neural network for enhancing prediction accuracy and robustness to noise. Specifically, the graph convolutional network and Long Short-term memory Network are combined to converge multi-point spatial features and excavate historical temporal information. Then, probabilistic prediction method obtains parameters through the linear layer for loss function, which improves model adaptation to data noise. The parameter shared Seq2Seq structure is designed to enhance the model’s ability to learn the correlation between loads and settlement, thereby enabling accurate prediction of deformation monitoring data with drift characteristics. Eventually, by incorporating the above model structure, loss function and training strategy, deformation prediction is accomplished. Application on a high rockfill dam shows that the proposed model realizes more accurate deformation prediction, with an error (MAE) less than 1.0c m, outperforming various conventional prediction methods. The reliability of the noise adaptation module and the application value for anomaly detection are further validated, which provides a valuable reference for data-driven deformation prediction methods in rockfill dams and other geotechnical engineering projects. The code is available at https://github.com/WHU-Wzj/Dam-deformation-prediction. |
|---|---|
| AbstractList | Deformation prediction is a crucial approach in structural health monitoring of high rockfill dams, significantly contributing to their construction and operational safety. However, the monitoring data of high rockfill dams exhibits significant volatility due to the influence of construction process and water level fluctuations, posing challenges for data-driven deformation prediction. This study proposes a novel deformation prediction model based on spatiotemporal fusion neural network for enhancing prediction accuracy and robustness to noise. Specifically, the graph convolutional network and Long Short-term memory Network are combined to converge multi-point spatial features and excavate historical temporal information. Then, probabilistic prediction method obtains parameters through the linear layer for loss function, which improves model adaptation to data noise. The parameter shared Seq2Seq structure is designed to enhance the model’s ability to learn the correlation between loads and settlement, thereby enabling accurate prediction of deformation monitoring data with drift characteristics. Eventually, by incorporating the above model structure, loss function and training strategy, deformation prediction is accomplished. Application on a high rockfill dam shows that the proposed model realizes more accurate deformation prediction, with an error (MAE) less than 1.0c m, outperforming various conventional prediction methods. The reliability of the noise adaptation module and the application value for anomaly detection are further validated, which provides a valuable reference for data-driven deformation prediction methods in rockfill dams and other geotechnical engineering projects. The code is available at https://github.com/WHU-Wzj/Dam-deformation-prediction. |
| ArticleNumber | 128836 |
| Author | Ai, Zhitao Ma, Gang Wang, Zijian Zhou, Wei Ding, Qianru |
| Author_xml | – sequence: 1 givenname: Zijian orcidid: 0009-0004-2439-6078 surname: Wang fullname: Wang, Zijian organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China – sequence: 2 givenname: Gang orcidid: 0000-0002-1865-5721 surname: Ma fullname: Ma, Gang email: magang630@whu.edu.cn organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China – sequence: 3 givenname: Zhitao surname: Ai fullname: Ai, Zhitao organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China – sequence: 4 givenname: Qianru surname: Ding fullname: Ding, Qianru organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China – sequence: 5 givenname: Wei surname: Zhou fullname: Zhou, Wei organization: State Key Laboratory of Water Engineering and Management, Wuhan University, Wuhan 430072, China |
| BookMark | eNp9kD1PwzAQhj0UibbwB5j8BxLOdlInEguq-JIqWGDFsuwLdZvEkR1a8e9JGiaGLvfecM9J77Mgs9a3SMgNg5QBW93uUoxHnXLgecp4UYjVjMyhzGWSMZldkkWMOwAmAeScfL56F5Fqq7veHZDGTvfO99h0Puiatvg9RX_0YR9p5QO1OMxmPGtpF9A6c1p9Rbfua0uDN_vK1TW1uolX5KLSdcTrv1ySj8eH9_Vzsnl7elnfbxIjgPdJVjBALBlHaYTmgBIzkKwyZiXRilxYqLiVXGDBMC-N4IZLnaHG0gKUmVgSPv01wccYsFJdcI0OP4qBGq2onRqtqNGKmqwMUPEPMq4_9eqDdvV59G5CcSh1cBhUNA5bM9gIaHplvTuH_wJkeYQ0 |
| CitedBy_id | crossref_primary_10_1016_j_engstruct_2025_121395 |
| Cites_doi | 10.1109/TPAMI.2024.3443141 10.1177/1475921719872939 10.1016/j.enggeo.2023.107281 10.1016/j.earscirev.2019.102895 10.1109/TIA.2020.2992945 10.3389/feart.2024.1399602 10.1016/j.compgeo.2023.105757 10.1016/j.aei.2019.100991 10.1016/j.aei.2023.102016 10.1155/2023/4101604 10.1109/TNNLS.2022.3152527 10.3390/su142316025 10.1016/j.istruc.2024.108056 10.1016/j.compgeo.2023.105320 10.1016/j.ijforecast.2019.07.001 10.1016/j.enggeo.2021.106488 10.1016/j.aei.2023.102175 10.1007/s11356-021-16749-3 10.1016/j.eswa.2025.126619 10.1016/j.autcon.2024.105794 10.1162/neco.1997.9.8.1735 10.3390/info14110598 10.1016/j.eswa.2022.117272 10.1002/stc.1997 10.1016/j.sigpro.2024.109581 10.1016/j.eswa.2025.126624 10.1016/j.engappai.2024.109310 10.1016/j.istruc.2024.108094 10.1109/TNN.2008.2005605 10.3390/engproc2023039023 10.1177/14759217211009780 10.1007/s11831-015-9157-9 10.1007/s13349-022-00641-w 10.1016/J.ENG.2016.04.001 10.1016/j.knosys.2021.107537 10.1177/14759217241244549 10.1016/j.compgeo.2024.106323 10.1007/s13349-023-00733-1 10.1016/j.eswa.2023.122022 10.1016/j.jmsy.2024.07.008 10.1016/j.engappai.2025.110483 10.1016/j.simpa.2022.100329 10.1016/j.ijsolstr.2022.111763 |
| ContentType | Journal Article |
| Copyright | 2025 Elsevier Ltd |
| Copyright_xml | – notice: 2025 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.eswa.2025.128836 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| ExternalDocumentID | 10_1016_j_eswa_2025_128836 S0957417425024534 |
| GroupedDBID | --K --M .DC .~1 0R~ 13V 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN 9JO AAAKF AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AARIN AATTM AAXKI AAXUO AAYFN AAYWO ABBOA ABFNM ABJNI ABMAC ABMVD ABUCO ABUFD ACDAQ ACGFS ACHRH ACLOT ACNTT ACRLP ACVFH ACZNC ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AFJKZ AFPUW AFTJW AGHFR AGUBO AGUMN AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIGII AIIUN AIKHN AITUG AKBMS AKRWK AKYEP ALEQD ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU AOUOD APLSM APXCP AXJTR BJAXD BKOJK BLXMC BNSAS CS3 DU5 EBS EFJIC EFKBS EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ HAMUX IHE J1W JJJVA KOM LG9 LY1 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SDS SES SEW SPC SPCBC SSB SSD SSL SST SSV SSZ T5K TN5 ~G- ~HD 29G 9DU AAAKG AAQXK AAYXX ABKBG ABWVN ABXDB ACNNM ACRPL ADJOM ADMUD ADNMO AGQPQ ASPBG AVWKF AZFZN CITATION EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET WUQ XPP ZMT |
| ID | FETCH-LOGICAL-c302t-4810ee912e7c3a20e7e4071fcc67ed353d0f2d723e81e59c32c27a4eae9d00943 |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001524419000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0957-4174 |
| IngestDate | Sat Nov 29 06:56:23 EST 2025 Tue Nov 18 21:45:04 EST 2025 Sun Oct 19 01:43:08 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Structural health monitoring Parameter shared encoder-decoder Rockfill dams Spatiotemporal fusion Probabilistic prediction |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c302t-4810ee912e7c3a20e7e4071fcc67ed353d0f2d723e81e59c32c27a4eae9d00943 |
| ORCID | 0000-0002-1865-5721 0009-0004-2439-6078 |
| ParticipantIDs | crossref_primary_10_1016_j_eswa_2025_128836 crossref_citationtrail_10_1016_j_eswa_2025_128836 elsevier_sciencedirect_doi_10_1016_j_eswa_2025_128836 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-12-15 |
| PublicationDateYYYYMMDD | 2025-12-15 |
| PublicationDate_xml | – month: 12 year: 2025 text: 2025-12-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Expert systems with applications |
| PublicationYear | 2025 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Li, Bao, Gao, Shu, Zhang, Xie, Zhang (b0105) 2021; 21 Ding, Guo, Fan, Liu, Gong, Zhou, Ma (b0050) 2023; 325 23. Chen, Lu, Guo, Fan, Guo, Gu, Li, Liu (b0035) 2025; 71 Kim, Kim, Tae, Park, Choi, Choo (b0100) 2022 Chen, Chen, Hu, Gu, Guo, Qin (b0030) 2023; 58 Mei, Ma, Wang, Wu, Zhou (b0160) 2022; 251 Tian, Chen, Lu, Li, Chen (b0205) 2024; 138 Kang, Li, Zhang, Ma, Wen (b0095) 2024; 168 Ma, Chi (b0155) 2016; 2 Salinas, Flunkert, Gasthaus, Januschowski (b0175) 2020; 36 Rozendo, do Nascimento, Roberto, de Faria, Silva, Tosta, Neves (b0165) 2022; 13 Su, Fu, Lin, Lai, Zheng, Lin, He (b0200) 2025; 271 Casolaro, Capone, Iannuzzo, Camastra (b0020) 2023; 14 Liu, Carling, Hu, Wang, Zhou, Zhou, Liu, Lai, Zhang (b0135) 2019; 197 Zhang, Fu, Ou, Liu, Hu (b0240) 2022; 14 Kang, Liu, Li (b0090) 2019; 19 Liu, Wang, Ma, Zhou, Cheng (b0140) 2024; 15 Lu, Gu, Gu, Shao, Yuan (b0145) 2025; 149 Yang, Xiang, Shen, Sun (b0230) 2022; 14 Liu, Li, Hua, Zhao, Gao (b0120) 2024; 76 Kang, Liu, Li, Li (b0085) 2017; 24 Shao, Liu (b0185) 2024 Ai, Ma, Zhang, Cheng, Zou, Zhou, Pozo (b0005) 2023; 2023 Salazar, Morán, Toledo, Oñate (b0170) 2015; 24 Chen, Wang, Tong, Cai, Zhu, Liu (b0025) 2021; 233 Jin, Koh, Wen, Zambon, Alippi, Webb, King, Pan (b0080) 2024; 46 Song, Kim, Park, Shin, Lee (b0195) 2023; 34 Li, Yin, Zhang, Qiu (b0110) 2022; 13 Liu, Wen, Su (b0125) 2024; 238 Jeong, Ferguson, Hou, Lynch, Sohn, Law (b0070) 2019; 42 Ghaderpour, E., Dadkhah, H., Dabiri, H., Bozzano, F., Mugnozza, G. S., & Mazzanti, P. (2023). Precipitation time series analysis and forecasting for Italian Regions. Jiang, Fu, Liu, Fan, Song, Ai, Xiao, Wang, Yang (b0075) 2025; 271 Ma, Ai, Guo, Li, Chen, Zhou (b0150) 2024; 55 %N 10 Hochreiter, Schmidhuber (b0065) 1997; 9 Willm, Beaujoint (b0220) 1967 Cheng, Ma, Zhang, Chang, Zhou (b0040) 2023; 163 Ghaderpour, Pagiatakis, Mugnozza, Mazzanti (b0060) 2024; 223 Liu, Li, Wang, Huang, Wu, Li (b0115) 2023; 56 Ai, Ma, Zhang, Liu, Deng, Chang, Zhou (b0010) 2024; 171 Scarselli, Gori, Tsoi, Hagenbuchner, Monfardini (b0180) 2009; 20 Liu, He, Sun, Shen, Wang (b0130) 2023; 157 Wen, Zhou, Su (b0215) 2022; 201 Zhang, Luo, Qin, Tang, Zhou, Feng (b0250) 2022; 53 Wu, Ma, Ai, Yang, Zhou (b0225) 2024; 55 Deng, Gao, Huang, Wan, Zhang, He (b0045) 2025; 71 Sivasuriyan, Vijayan, Munusami, Devarajan (b0190) 2022; 29 Yu, Han, Yang, Yang (b0235) 2020; 56 Cao, Bao, Liu, Li, Yuan, Hu (b0015) 2023; 14 Tian, Li, Luo, Zhang, Lu (b0210) 2024; 24 Zhang, Jing, Chen, Gao, Xu (b0245) 2022; 297 Liu (10.1016/j.eswa.2025.128836_b0125) 2024; 238 Sivasuriyan (10.1016/j.eswa.2025.128836_b0190) 2022; 29 Ma (10.1016/j.eswa.2025.128836_b0150) 2024; 55 %N 10 Salazar (10.1016/j.eswa.2025.128836_b0170) 2015; 24 Scarselli (10.1016/j.eswa.2025.128836_b0180) 2009; 20 Kim (10.1016/j.eswa.2025.128836_b0100) 2022 Jiang (10.1016/j.eswa.2025.128836_b0075) 2025; 271 Chen (10.1016/j.eswa.2025.128836_b0030) 2023; 58 Willm (10.1016/j.eswa.2025.128836_b0220) 1967 Ma (10.1016/j.eswa.2025.128836_b0155) 2016; 2 Shao (10.1016/j.eswa.2025.128836_b0185) 2024 Liu (10.1016/j.eswa.2025.128836_b0135) 2019; 197 Su (10.1016/j.eswa.2025.128836_b0200) 2025; 271 Mei (10.1016/j.eswa.2025.128836_b0160) 2022; 251 Chen (10.1016/j.eswa.2025.128836_b0035) 2025; 71 Kang (10.1016/j.eswa.2025.128836_b0090) 2019; 19 Liu (10.1016/j.eswa.2025.128836_b0140) 2024; 15 Zhang (10.1016/j.eswa.2025.128836_b0240) 2022; 14 Hochreiter (10.1016/j.eswa.2025.128836_b0065) 1997; 9 Li (10.1016/j.eswa.2025.128836_b0110) 2022; 13 Wu (10.1016/j.eswa.2025.128836_b0225) 2024; 55 Liu (10.1016/j.eswa.2025.128836_b0115) 2023; 56 Yu (10.1016/j.eswa.2025.128836_b0235) 2020; 56 Zhang (10.1016/j.eswa.2025.128836_b0250) 2022; 53 Casolaro (10.1016/j.eswa.2025.128836_b0020) 2023; 14 Deng (10.1016/j.eswa.2025.128836_b0045) 2025; 71 Yang (10.1016/j.eswa.2025.128836_b0230) 2022; 14 Cao (10.1016/j.eswa.2025.128836_b0015) 2023; 14 Ding (10.1016/j.eswa.2025.128836_b0050) 2023; 325 10.1016/j.eswa.2025.128836_b0055 Ghaderpour (10.1016/j.eswa.2025.128836_b0060) 2024; 223 Song (10.1016/j.eswa.2025.128836_b0195) 2023; 34 Lu (10.1016/j.eswa.2025.128836_b0145) 2025; 149 Liu (10.1016/j.eswa.2025.128836_b0120) 2024; 76 Salinas (10.1016/j.eswa.2025.128836_b0175) 2020; 36 Tian (10.1016/j.eswa.2025.128836_b0205) 2024; 138 Wen (10.1016/j.eswa.2025.128836_b0215) 2022; 201 Kang (10.1016/j.eswa.2025.128836_b0095) 2024; 168 Kang (10.1016/j.eswa.2025.128836_b0085) 2017; 24 Jeong (10.1016/j.eswa.2025.128836_b0070) 2019; 42 Ai (10.1016/j.eswa.2025.128836_b0010) 2024; 171 Tian (10.1016/j.eswa.2025.128836_b0210) 2024; 24 Ai (10.1016/j.eswa.2025.128836_b0005) 2023; 2023 Liu (10.1016/j.eswa.2025.128836_b0130) 2023; 157 Zhang (10.1016/j.eswa.2025.128836_b0245) 2022; 297 Li (10.1016/j.eswa.2025.128836_b0105) 2021; 21 Chen (10.1016/j.eswa.2025.128836_b0025) 2021; 233 Jin (10.1016/j.eswa.2025.128836_b0080) 2024; 46 Cheng (10.1016/j.eswa.2025.128836_b0040) 2023; 163 Rozendo (10.1016/j.eswa.2025.128836_b0165) 2022; 13 |
| References_xml | – volume: 53 start-page: 949 year: 2022 end-page: 963 ident: b0250 article-title: A probabilistic forecasting framework of time series variables for wind-solar-hydropower hybrid systems publication-title: Journal of Hydraulic Engineering – volume: 24 year: 2017 ident: b0085 article-title: Concrete dam deformation prediction model for health monitoring based on extreme learning machine publication-title: Structural Control and Health Monitoring – volume: 46 start-page: 10466 year: 2024 end-page: 10485 ident: b0080 article-title: A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence – volume: 2023 start-page: 1 year: 2023 end-page: 18 ident: b0005 article-title: The use of shape accel array for deformation monitoring and parameter inversion of a 300 m ultrahigh rockfill dam publication-title: Structural Control and Health Monitoring – volume: 223 year: 2024 ident: b0060 article-title: On the stochastic significance of peaks in the least-squares wavelet spectrogram and an application in GNSS time series analysis publication-title: Signal Processing – volume: 14 year: 2022 ident: b0230 article-title: A combination model for displacement interval prediction of concrete dams based on residual estimation publication-title: Sustainability – volume: 149 year: 2025 ident: b0145 article-title: A multi-point dam deformation prediction model based on spatiotemporal graph convolutional network publication-title: Engineering Applications of Artificial Intelligence – volume: 238 year: 2024 ident: b0125 article-title: Deformation prediction based on denoising techniques and ensemble learning algorithms for concrete dams publication-title: Expert Systems with Applications – volume: 271 year: 2025 ident: b0200 article-title: A novel deep learning multi-step prediction model for dam displacement using Chrono-initialized LSTM and sequence-to-sequence framework publication-title: Expert Systems with Applications – volume: 24 start-page: 925 year: 2024 end-page: 940 ident: b0210 article-title: Multisource information fusion model for deformation safety monitoring of earth and rock dams based on deep graph feature fusion publication-title: Structural Health Monitoring – volume: 233 year: 2021 ident: b0025 article-title: Dynamic early-warning model of dam deformation based on deep learning and fusion of spatiotemporal features publication-title: Knowledge-Based Systems – volume: 34 start-page: 8135 year: 2023 end-page: 8153 ident: b0195 article-title: Learning from noisy labels with deep neural networks: A survey publication-title: IEEE Trans Neural Netw Learn Syst – volume: 19 start-page: 987 year: 2019 end-page: 1002 ident: b0090 article-title: Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines publication-title: Structural Health Monitoring – volume: 15 year: 2024 ident: b0140 article-title: Carbon emissions and vegetation dynamics: Assessing the spatiotemporal environmental impacts of hydropower dams in the Lancang River Basin publication-title: Forests – volume: 251 year: 2022 ident: b0160 article-title: Micro- and macroscopic aspects of the intermittent behaviors of granular materials related by graph neural network publication-title: International Journal of Solids and Structures – volume: 271 year: 2025 ident: b0075 article-title: Incremental energy-based recurrent transformer-KAN for time series deformation simulation of soft tissue publication-title: Expert Systems with Applications – volume: 21 start-page: 770 year: 2021 end-page: 787 ident: b0105 article-title: A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques publication-title: Structural Health Monitoring – volume: 201 year: 2022 ident: b0215 article-title: MR and stacked GRUs neural network combined model and its application for deformation prediction of concrete dam publication-title: Expert Systems with Applications – volume: 9 start-page: 1735 year: 1997 end-page: 1780 ident: b0065 article-title: Long short-term memory publication-title: Neural Computation – volume: 36 start-page: 1181 year: 2020 end-page: 1191 ident: b0175 article-title: DeepAR: Probabilistic forecasting with autoregressive recurrent networks publication-title: International Journal of Forecasting – volume: 13 start-page: 371 year: 2022 end-page: 386 ident: b0110 article-title: Prediction of long-term maximum settlement deformation of concrete face rockfill dams using hybrid support vector regression optimized with HHO algorithm publication-title: Journal of Civil Structural Health Monitoring – volume: 157 year: 2023 ident: b0130 article-title: Analysis of the behavior of a high earth-core rockfill dam considering particle breakage publication-title: Computers and Geotechnics – volume: 58 year: 2023 ident: b0030 article-title: A feature decomposition-based deep transfer learning framework for concrete dam deformation prediction with observational insufficiency publication-title: Advanced Engineering Informatics – volume: 14 start-page: 598 year: 2023 ident: b0020 article-title: Deep learning for time series forecasting advance publication-title: Information – volume: 55 start-page: 564 year: 2024 end-page: 576 ident: b0225 article-title: Spatial - temporal fusion model for deformation prediction of rockfill dams and its application in safety monitoring publication-title: Journal of Hydraulic Engineering – volume: 42 year: 2019 ident: b0070 article-title: Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring publication-title: Advanced Engineering Informatics – reference: Ghaderpour, E., Dadkhah, H., Dabiri, H., Bozzano, F., Mugnozza, G. S., & Mazzanti, P. (2023). Precipitation time series analysis and forecasting for Italian Regions. – volume: 76 start-page: 92 year: 2024 end-page: 102 ident: b0120 article-title: A causal based method for denoising non-homologous noises in time series manufacturing monitoring data publication-title: Journal of Manufacturing Systems – volume: 56 year: 2023 ident: b0115 article-title: Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning publication-title: Advanced Engineering Informatics – volume: 24 start-page: 1 year: 2015 end-page: 21 ident: b0170 article-title: Data-based models for the prediction of dam behaviour: A review and some methodological considerations publication-title: Archives of Computational Methods in Engineering – volume: 71 year: 2025 ident: b0045 article-title: From data processing to behavior monitoring: A comprehensive overview of dam health monitoring technology publication-title: Structures – volume: 163 year: 2023 ident: b0040 article-title: A theoretical model for evaluating the deterioration of mechanical properties of rockfill materials publication-title: Computers and Geotechnics – year: 2022 ident: b0100 article-title: Reversible instance normalization for accurate time-series forecasting against distribution shift publication-title: International Conference on Learning Representations – volume: 56 start-page: 6117 year: 2020 end-page: 6127 ident: b0235 article-title: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression publication-title: IEEE Transactions on Industry Applications – volume: 14 start-page: 431 year: 2023 end-page: 447 ident: b0015 article-title: A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation publication-title: Journal of Civil Structural Health Monitoring – volume: 71 year: 2025 ident: b0035 article-title: Prediction of arch dam deformation considering the coupling impact of external environmental changes and structural characteristics publication-title: Structures – volume: 171 year: 2024 ident: b0010 article-title: Multi-source monitoring data filtering assisted deformation analysis model updating of ultra-high rockfill dam publication-title: Computers and Geotechnics – volume: 325 year: 2023 ident: b0050 article-title: Multi-source monitoring data helps revealing and quantifying the excavation-induced deterioration of rock mass publication-title: Engineering Geology – volume: 55 %N 10 start-page: 1174 year: 2024 end-page: 1186 ident: b0150 article-title: Review on deformation monitoring for high earth-rock dams publication-title: Journal of Hydraulic Engineering – volume: 2 start-page: 498 year: 2016 end-page: 509 ident: b0155 article-title: Major technologies for safe construction of high earth-rockfill dams publication-title: Engineering – volume: 14 year: 2022 ident: b0240 article-title: Prediction of dam deformation using SSA-LSTM model based on empirical mode decomposition method and wavelet threshold noise reduction publication-title: Water – volume: 20 start-page: 61 year: 2009 end-page: 80 ident: b0180 article-title: The graph neural network model publication-title: IEEE Transactions on Neural Networks – start-page: 529 year: 1967 end-page: 550 ident: b0220 article-title: Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles – volume: 197 year: 2019 ident: b0135 article-title: Outburst floods in China: A review publication-title: Earth-Science Reviews – volume: 168 year: 2024 ident: b0095 article-title: Anomaly detection in concrete dam using memory-augmented autoencoder and generative adversarial network (MemAE-GAN) publication-title: Automation in Construction – volume: 138 year: 2024 ident: b0205 article-title: Deep transfer learning-based time-varying model for deformation monitoring of high earth-rock dams publication-title: Engineering Applications of Artificial Intelligence – reference: , 23. – volume: 297 year: 2022 ident: b0245 article-title: Characteristics and causes of crest cracking on a high core-wall rockfill dam: A case study publication-title: Engineering Geology – volume: 13 year: 2022 ident: b0165 article-title: Sample entropy signatures: A new way to interpret SampEn values publication-title: Software Impacts – volume: 29 start-page: 86180 year: 2022 end-page: 86191 ident: b0190 article-title: Health assessment of dams under various environmental conditions using structural health monitoring techniques: A state-of-art review publication-title: Environmental Science and Pollution Research – year: 2024 ident: b0185 article-title: Slope deformation prediction based on noise reduction and deep learning: A point prediction and probability analysis method publication-title: Frontiers in Earth Science – volume: 46 start-page: 10466 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0080 article-title: A survey on graph neural networks for time series: Forecasting, classification, imputation, and anomaly detection publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence doi: 10.1109/TPAMI.2024.3443141 – volume: 19 start-page: 987 year: 2019 ident: 10.1016/j.eswa.2025.128836_b0090 article-title: Temperature effect modeling in structural health monitoring of concrete dams using kernel extreme learning machines publication-title: Structural Health Monitoring doi: 10.1177/1475921719872939 – volume: 325 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0050 article-title: Multi-source monitoring data helps revealing and quantifying the excavation-induced deterioration of rock mass publication-title: Engineering Geology doi: 10.1016/j.enggeo.2023.107281 – volume: 197 year: 2019 ident: 10.1016/j.eswa.2025.128836_b0135 article-title: Outburst floods in China: A review publication-title: Earth-Science Reviews doi: 10.1016/j.earscirev.2019.102895 – volume: 14 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0240 article-title: Prediction of dam deformation using SSA-LSTM model based on empirical mode decomposition method and wavelet threshold noise reduction publication-title: Water – volume: 56 start-page: 6117 year: 2020 ident: 10.1016/j.eswa.2025.128836_b0235 article-title: Probabilistic prediction of regional wind power based on spatiotemporal quantile regression publication-title: IEEE Transactions on Industry Applications doi: 10.1109/TIA.2020.2992945 – year: 2024 ident: 10.1016/j.eswa.2025.128836_b0185 article-title: Slope deformation prediction based on noise reduction and deep learning: A point prediction and probability analysis method publication-title: Frontiers in Earth Science doi: 10.3389/feart.2024.1399602 – volume: 163 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0040 article-title: A theoretical model for evaluating the deterioration of mechanical properties of rockfill materials publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2023.105757 – volume: 42 year: 2019 ident: 10.1016/j.eswa.2025.128836_b0070 article-title: Sensor data reconstruction using bidirectional recurrent neural network with application to bridge monitoring publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2019.100991 – volume: 56 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0115 article-title: Dynamic material parameter inversion of high arch dam under discharge excitation based on the modal parameters and Bayesian optimised deep learning publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2023.102016 – volume: 2023 start-page: 1 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0005 article-title: The use of shape accel array for deformation monitoring and parameter inversion of a 300 m ultrahigh rockfill dam publication-title: Structural Control and Health Monitoring doi: 10.1155/2023/4101604 – volume: 34 start-page: 8135 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0195 article-title: Learning from noisy labels with deep neural networks: A survey publication-title: IEEE Trans Neural Netw Learn Syst doi: 10.1109/TNNLS.2022.3152527 – volume: 53 start-page: 949 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0250 article-title: A probabilistic forecasting framework of time series variables for wind-solar-hydropower hybrid systems publication-title: Journal of Hydraulic Engineering – volume: 14 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0230 article-title: A combination model for displacement interval prediction of concrete dams based on residual estimation publication-title: Sustainability doi: 10.3390/su142316025 – volume: 71 year: 2025 ident: 10.1016/j.eswa.2025.128836_b0035 article-title: Prediction of arch dam deformation considering the coupling impact of external environmental changes and structural characteristics publication-title: Structures doi: 10.1016/j.istruc.2024.108056 – start-page: 529 year: 1967 ident: 10.1016/j.eswa.2025.128836_b0220 article-title: Les méthodes de surveillance des barrages au service de la production hydraulique d’Electricité de France, problèmes anciens et solutions nouvelles – volume: 157 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0130 article-title: Analysis of the behavior of a high earth-core rockfill dam considering particle breakage publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2023.105320 – volume: 36 start-page: 1181 year: 2020 ident: 10.1016/j.eswa.2025.128836_b0175 article-title: DeepAR: Probabilistic forecasting with autoregressive recurrent networks publication-title: International Journal of Forecasting doi: 10.1016/j.ijforecast.2019.07.001 – volume: 297 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0245 article-title: Characteristics and causes of crest cracking on a high core-wall rockfill dam: A case study publication-title: Engineering Geology doi: 10.1016/j.enggeo.2021.106488 – volume: 58 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0030 article-title: A feature decomposition-based deep transfer learning framework for concrete dam deformation prediction with observational insufficiency publication-title: Advanced Engineering Informatics doi: 10.1016/j.aei.2023.102175 – volume: 29 start-page: 86180 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0190 article-title: Health assessment of dams under various environmental conditions using structural health monitoring techniques: A state-of-art review publication-title: Environmental Science and Pollution Research doi: 10.1007/s11356-021-16749-3 – volume: 271 year: 2025 ident: 10.1016/j.eswa.2025.128836_b0075 article-title: Incremental energy-based recurrent transformer-KAN for time series deformation simulation of soft tissue publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2025.126619 – volume: 168 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0095 article-title: Anomaly detection in concrete dam using memory-augmented autoencoder and generative adversarial network (MemAE-GAN) publication-title: Automation in Construction doi: 10.1016/j.autcon.2024.105794 – volume: 55 %N 10 start-page: 1174 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0150 article-title: Review on deformation monitoring for high earth-rock dams publication-title: Journal of Hydraulic Engineering – volume: 9 start-page: 1735 year: 1997 ident: 10.1016/j.eswa.2025.128836_b0065 article-title: Long short-term memory publication-title: Neural Computation doi: 10.1162/neco.1997.9.8.1735 – volume: 14 start-page: 598 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0020 article-title: Deep learning for time series forecasting advance publication-title: Information doi: 10.3390/info14110598 – volume: 201 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0215 article-title: MR and stacked GRUs neural network combined model and its application for deformation prediction of concrete dam publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2022.117272 – volume: 24 year: 2017 ident: 10.1016/j.eswa.2025.128836_b0085 article-title: Concrete dam deformation prediction model for health monitoring based on extreme learning machine publication-title: Structural Control and Health Monitoring doi: 10.1002/stc.1997 – volume: 223 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0060 article-title: On the stochastic significance of peaks in the least-squares wavelet spectrogram and an application in GNSS time series analysis publication-title: Signal Processing doi: 10.1016/j.sigpro.2024.109581 – volume: 271 year: 2025 ident: 10.1016/j.eswa.2025.128836_b0200 article-title: A novel deep learning multi-step prediction model for dam displacement using Chrono-initialized LSTM and sequence-to-sequence framework publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2025.126624 – year: 2022 ident: 10.1016/j.eswa.2025.128836_b0100 article-title: Reversible instance normalization for accurate time-series forecasting against distribution shift – volume: 138 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0205 article-title: Deep transfer learning-based time-varying model for deformation monitoring of high earth-rock dams publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2024.109310 – volume: 71 year: 2025 ident: 10.1016/j.eswa.2025.128836_b0045 article-title: From data processing to behavior monitoring: A comprehensive overview of dam health monitoring technology publication-title: Structures doi: 10.1016/j.istruc.2024.108094 – volume: 15 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0140 article-title: Carbon emissions and vegetation dynamics: Assessing the spatiotemporal environmental impacts of hydropower dams in the Lancang River Basin publication-title: Forests – volume: 20 start-page: 61 year: 2009 ident: 10.1016/j.eswa.2025.128836_b0180 article-title: The graph neural network model publication-title: IEEE Transactions on Neural Networks doi: 10.1109/TNN.2008.2005605 – ident: 10.1016/j.eswa.2025.128836_b0055 doi: 10.3390/engproc2023039023 – volume: 21 start-page: 770 year: 2021 ident: 10.1016/j.eswa.2025.128836_b0105 article-title: A new dam structural response estimation paradigm powered by deep learning and transfer learning techniques publication-title: Structural Health Monitoring doi: 10.1177/14759217211009780 – volume: 24 start-page: 1 year: 2015 ident: 10.1016/j.eswa.2025.128836_b0170 article-title: Data-based models for the prediction of dam behaviour: A review and some methodological considerations publication-title: Archives of Computational Methods in Engineering doi: 10.1007/s11831-015-9157-9 – volume: 13 start-page: 371 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0110 article-title: Prediction of long-term maximum settlement deformation of concrete face rockfill dams using hybrid support vector regression optimized with HHO algorithm publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-022-00641-w – volume: 2 start-page: 498 year: 2016 ident: 10.1016/j.eswa.2025.128836_b0155 article-title: Major technologies for safe construction of high earth-rockfill dams publication-title: Engineering doi: 10.1016/J.ENG.2016.04.001 – volume: 233 year: 2021 ident: 10.1016/j.eswa.2025.128836_b0025 article-title: Dynamic early-warning model of dam deformation based on deep learning and fusion of spatiotemporal features publication-title: Knowledge-Based Systems doi: 10.1016/j.knosys.2021.107537 – volume: 24 start-page: 925 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0210 article-title: Multisource information fusion model for deformation safety monitoring of earth and rock dams based on deep graph feature fusion publication-title: Structural Health Monitoring doi: 10.1177/14759217241244549 – volume: 171 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0010 article-title: Multi-source monitoring data filtering assisted deformation analysis model updating of ultra-high rockfill dam publication-title: Computers and Geotechnics doi: 10.1016/j.compgeo.2024.106323 – volume: 14 start-page: 431 year: 2023 ident: 10.1016/j.eswa.2025.128836_b0015 article-title: A data enhancement-based quadratic imputation framework for consecutive missing values considering spatiotemporal characteristics of dam deformation publication-title: Journal of Civil Structural Health Monitoring doi: 10.1007/s13349-023-00733-1 – volume: 238 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0125 article-title: Deformation prediction based on denoising techniques and ensemble learning algorithms for concrete dams publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2023.122022 – volume: 76 start-page: 92 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0120 article-title: A causal based method for denoising non-homologous noises in time series manufacturing monitoring data publication-title: Journal of Manufacturing Systems doi: 10.1016/j.jmsy.2024.07.008 – volume: 149 year: 2025 ident: 10.1016/j.eswa.2025.128836_b0145 article-title: A multi-point dam deformation prediction model based on spatiotemporal graph convolutional network publication-title: Engineering Applications of Artificial Intelligence doi: 10.1016/j.engappai.2025.110483 – volume: 13 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0165 article-title: Sample entropy signatures: A new way to interpret SampEn values publication-title: Software Impacts doi: 10.1016/j.simpa.2022.100329 – volume: 55 start-page: 564 year: 2024 ident: 10.1016/j.eswa.2025.128836_b0225 article-title: Spatial - temporal fusion model for deformation prediction of rockfill dams and its application in safety monitoring publication-title: Journal of Hydraulic Engineering – volume: 251 year: 2022 ident: 10.1016/j.eswa.2025.128836_b0160 article-title: Micro- and macroscopic aspects of the intermittent behaviors of granular materials related by graph neural network publication-title: International Journal of Solids and Structures doi: 10.1016/j.ijsolstr.2022.111763 |
| SSID | ssj0017007 |
| Score | 2.4854398 |
| Snippet | Deformation prediction is a crucial approach in structural health monitoring of high rockfill dams, significantly contributing to their construction and... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 128836 |
| SubjectTerms | Parameter shared encoder-decoder Probabilistic prediction Rockfill dams Spatiotemporal fusion Structural health monitoring |
| Title | Noise adaptive spatiotemporal neural networks for deformation prediction of high rockfill dams |
| URI | https://dx.doi.org/10.1016/j.eswa.2025.128836 |
| Volume | 294 |
| WOSCitedRecordID | wos001524419000004&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals 2021 issn: 0957-4174 databaseCode: AIEXJ dateStart: 19950101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: false ssIdentifier: ssj0017007 providerName: Elsevier |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwELag5cCFN6K85AO3KJXj2LVzrFB5CVYgClr1QGRsR2RZZVebFPrzGb-yoaAKkLgkkbV2Vp7P9tj55huEnlBiGNWK5ZWWJGeSy1zSsskb3XBFrFXWC2l_fC1mMzmfV28jT7f36QRE18mzs2r9X00NZWBsFzr7F-YeG4UCeAajwxXMDtc_Mvxs1fY2U0atPSuo95TpqEC1zJx-pb959rcXY8iMHUMYnWaAafXoRsLWPYMl7mvTLpeZUVHafDHy9-xmiGLQKUxu8kF8e1gfJpSTdjEB4xvvtj5Xcel0oPPMgpMv7aBWo4Mdc668c8JEp9MzCsod3yNEaYaDsxQ8s2UqhRNIkbMiJOlJkzENKY9_mdjDGcNi3_bfnVoU5fuFy5N8TkXbr8vvXcOuXfDuKOMlu4x2qeAVzHm7hy-P5q_Gr0yChHD69EdiUFXg_51_0-8dl4kzcnwDXYu7CHwYrH8TXbLdLXQ9ZejAccK-jT55MOAEBvwzGHAAA05gwAADPAED3oIBrxrswIATGLADwx304dnR8dMXecyokeuS0AHGYgHjryqoFbpUlFhh3Ya-0fpAWFPy0pCGGkFLKwvLK11STYViMGIr4zmod9FOt-rsPYQZI1pLKP4MPay5VQIcUSK0VAVXzQHdQ0XqrlpHuXmX9WRZJ17honZdXLsurkMX76FsrLMOYisX_ponK9TRXQxuYA2guaDe_X-s9wBd3WL7IdoZNqf2Ebqivw1tv3kcsfUDT3yTzQ |
| linkProvider | Elsevier |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Noise+adaptive+spatiotemporal+neural+networks+for+deformation+prediction+of+high+rockfill+dams&rft.jtitle=Expert+systems+with+applications&rft.au=Wang%2C+Zijian&rft.au=Ma%2C+Gang&rft.au=Ai%2C+Zhitao&rft.au=Ding%2C+Qianru&rft.date=2025-12-15&rft.pub=Elsevier+Ltd&rft.issn=0957-4174&rft.volume=294&rft_id=info:doi/10.1016%2Fj.eswa.2025.128836&rft.externalDocID=S0957417425024534 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0957-4174&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0957-4174&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0957-4174&client=summon |