Auxiliary model multiinnovation stochastic gradient parameter estimation methods for nonlinear sandwich systems

Summary This article studies the identification problem of the nonlinear sandwich systems. For the sandwich system, because there are inner variables which cannot be measured in the information vector of the identification models, it is difficult to identify the nonlinear sandwich systems. In order...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of robust and nonlinear control Ročník 31; číslo 1; s. 148 - 165
Hlavní autoři: Xu, Ling, Ding, Feng, Yang, Erfu
Médium: Journal Article
Jazyk:angličtina
Vydáno: 10.01.2021
Témata:
ISSN:1049-8923, 1099-1239
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Summary This article studies the identification problem of the nonlinear sandwich systems. For the sandwich system, because there are inner variables which cannot be measured in the information vector of the identification models, it is difficult to identify the nonlinear sandwich systems. In order to overcome the difficulty, an auxiliary model is built to predict the estimates of inner variables by means of the output of the auxiliary model. For the purpose of employing the real‐time observed data, a cost function with dynamical data is constructed to capture on‐line information of the nonlinear sandwich system. On this basis, an auxiliary model stochastic gradient identification approach is proposed based on the gradient optimization. Moreover, an auxiliary model multiinnovation stochastic gradient estimation method is developed, which tends to enhance estimation accuracy by introducing more observed data dynamically. The numerical simulation is provided and the simulation results show that the proposed auxiliary model identification method is effective for the nonlinear sandwich systems.
Bibliografie:Funding information
National Natural Science Foundation of China, 61873111
ISSN:1049-8923
1099-1239
DOI:10.1002/rnc.5266