Review and comparative analysis of machine learning libraries for machine learning
The article is an overview. We carry out the comparison of actual machine learning libraries that can be used the neural networks development. The first part of the article gives a brief description of TensorFlow, PyTorch, Theano, Keras, SciKit Learn libraries, SciPy library stack. An overview of th...
Saved in:
| Published in: | Discrete and continuous models and applied computational science Vol. 27; no. 4; pp. 305 - 315 |
|---|---|
| Main Authors: | , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
Peoples’ Friendship University of Russia (RUDN University)
15.12.2019
|
| Subjects: | |
| ISSN: | 2658-4670, 2658-7149 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The article is an overview. We carry out the comparison of actual machine learning libraries that can be used the neural networks development. The first part of the article gives a brief description of TensorFlow, PyTorch, Theano, Keras, SciKit Learn libraries, SciPy library stack. An overview of the scope of these libraries and the main technical characteristics, such as performance, supported programming languages, the current state of development is given. In the second part of the article, a comparison of five libraries is carried out on the example of a multilayer perceptron, which is applied to the problem of handwritten digits recognizing. This problem is well known and well suited for testing different types of neural networks. The study time is compared depending on the number of epochs and the accuracy of the classifier. The results of the comparison are presented in the form of graphs of training time and accuracy depending on the number of epochs and in tabular form. |
|---|---|
| AbstractList | The article is an overview. We carry out the comparison of actual machine learning libraries that can be used the neural networks development. The first part of the article gives a brief description of TensorFlow, PyTorch, Theano, Keras, SciKit Learn libraries, SciPy library stack. An overview of the scope of these libraries and the main technical characteristics, such as performance, supported programming languages, the current state of development is given. In the second part of the article, a comparison of five libraries is carried out on the example of a multilayer perceptron, which is applied to the problem of handwritten digits recognizing. This problem is well known and well suited for testing different types of neural networks. The study time is compared depending on the number of epochs and the accuracy of the classifier. The results of the comparison are presented in the form of graphs of training time and accuracy depending on the number of epochs and in tabular form. |
| Author | Gevorkyan, Migran N. Demidova, Tatiana S. Demidova, Anastasia V. Sobolev, Anton A. |
| Author_xml | – sequence: 1 givenname: Migran N. surname: Gevorkyan fullname: Gevorkyan, Migran N. – sequence: 2 givenname: Anastasia V. surname: Demidova fullname: Demidova, Anastasia V. – sequence: 3 givenname: Tatiana S. surname: Demidova fullname: Demidova, Tatiana S. – sequence: 4 givenname: Anton A. surname: Sobolev fullname: Sobolev, Anton A. |
| BookMark | eNqNkMtKAzEUhoNUsNa-wyzcRnOfBNxo8VIoCEXX4SSTqSnTSckUpW_vTFtc6MbVufznfIvvEo3a1AaErim5YYwrfsuU1FiokmBGqMGsxAJzIjGn8gyND2lJhRmd-uHyAk27bk0IYbrkkqgxWi7DZwxfBbRV4dNmCxl28TP0MzT7LnZFqosN-I_YhqIJkNvYroomugw5hq6oU_4TX6HzGpouTE91gt6fHt9mL3jx-jyf3S-w54RJ7GVgwAUoQ1VFldOO6FIap7gSlBMwotLMSaDShJJr4kojSBWqunLCBen4BM2P3CrB2m5z3EDe2wTRHhYpryzkXfRNsCQIVWtTacG5IN5poLXUVHJWe0NN6Fl3R5bPqetyqH94lNiDbjtItINEO-i2rLTC9rptr7t_f_j17uOuF5naXYbY_A_yDSgWiTw |
| CitedBy_id | crossref_primary_10_1088_1742_6596_1801_1_012008 crossref_primary_10_1016_j_biortech_2022_128421 crossref_primary_10_3389_fonc_2022_1023110 crossref_primary_10_1145_3678168 crossref_primary_10_1007_s11182_024_03124_1 crossref_primary_10_1134_S1547477124701413 crossref_primary_10_1007_s12155_025_10864_6 crossref_primary_10_1016_j_jbusres_2025_115571 crossref_primary_10_22630_MIBE_2021_22_1_3 crossref_primary_10_35784_jcsi_2693 crossref_primary_10_3389_fpsyg_2022_843427 crossref_primary_10_1155_2024_5653690 crossref_primary_10_1145_3705309 crossref_primary_10_1109_TR_2024_3455390 |
| ContentType | Journal Article |
| DBID | AAYXX CITATION DOA |
| DOI | 10.22363/2658-4670-2019-27-4-305-315 |
| DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 2658-7149 |
| EndPage | 315 |
| ExternalDocumentID | oai_doaj_org_article_0e46f89d843340cb8a1f581532fc919e 10_22363_2658_4670_2019_27_4_305_315 |
| GroupedDBID | AAFWJ AAYXX AFPKN ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ VCL VIT |
| ID | FETCH-LOGICAL-c3025-c5e2a34a6916d16b8b08759b6364130a94d82b5a159e7380b7940dedfdb4be5b3 |
| IEDL.DBID | DOA |
| ISSN | 2658-4670 |
| IngestDate | Fri Oct 03 12:45:45 EDT 2025 Tue Nov 18 21:22:00 EST 2025 Sat Nov 29 02:22:26 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | http://creativecommons.org/licenses/by/4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3025-c5e2a34a6916d16b8b08759b6364130a94d82b5a159e7380b7940dedfdb4be5b3 |
| OpenAccessLink | https://doaj.org/article/0e46f89d843340cb8a1f581532fc919e |
| PageCount | 11 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_0e46f89d843340cb8a1f581532fc919e crossref_primary_10_22363_2658_4670_2019_27_4_305_315 crossref_citationtrail_10_22363_2658_4670_2019_27_4_305_315 |
| PublicationCentury | 2000 |
| PublicationDate | 2019-12-15 |
| PublicationDateYYYYMMDD | 2019-12-15 |
| PublicationDate_xml | – month: 12 year: 2019 text: 2019-12-15 day: 15 |
| PublicationDecade | 2010 |
| PublicationTitle | Discrete and continuous models and applied computational science |
| PublicationYear | 2019 |
| Publisher | Peoples’ Friendship University of Russia (RUDN University) |
| Publisher_xml | – name: Peoples’ Friendship University of Russia (RUDN University) |
| SSID | ssj0002873506 ssib050730783 |
| Score | 2.3226254 |
| SecondaryResourceType | review_article |
| Snippet | The article is an overview. We carry out the comparison of actual machine learning libraries that can be used the neural networks development. The first part... |
| SourceID | doaj crossref |
| SourceType | Open Website Enrichment Source Index Database |
| StartPage | 305 |
| SubjectTerms | machine learning mnist neural networks pytorch tensorflow |
| Title | Review and comparative analysis of machine learning libraries for machine learning |
| URI | https://doaj.org/article/0e46f89d843340cb8a1f581532fc919e |
| Volume | 27 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2658-7149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002873506 issn: 2658-4670 databaseCode: DOA dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources (ISSN International Center) customDbUrl: eissn: 2658-7149 dateEnd: 99991231 omitProxy: false ssIdentifier: ssib050730783 issn: 2658-4670 databaseCode: M~E dateStart: 20190101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3JSgQxEA0yiOhBXHHcyMFrsDtbJ3hSUTyIiKh4C1lF0RkZl--3ku4ZRzzowWOnSdO8vEpVpcIrhPY0E14GmYiVgRHuwRSts4mA64vSRaVjEXu-PW8uLtTdnb6cavWV74S18sAtcPtV5DIpHRRnjFfeKVsnocBOafK61jHvvlWjp5IpYJLIxB3Xpx7LEVLDRGm0ScHlEtgdqjm0l-9BUybZ_mQQSFNrQhuSywW5RCy--aspWf_if06X0GIXOOLD9oeX0UwcrKCFKTnBVXTVHvRjOwjYf6l6w3MrPIKHCT-Xy5MRd90i7vEkX8YQvv54vYZuTk-uj89I1zOBeJY703oRqWXcSgj7Qi2dclmyXjvJZHZXVvOgqBMWopjYMFU5sMcqxJCC4y4Kx9ZRbzAcxA2EXWhYVMyrUFneOMjNUg6QaIzJ0TqkPjoYI2N8Jyie-1o8GUgsCq4m42oyribjamhjuAFcDeDaR2Iy-6UV1vjjvKO8CJM5WR67DABpTEca8xtpNv_jI1tovrClpqQW26j3NnqPO2jWf7w9vI52Cx8_AeiT2wc |
| linkProvider | Directory of Open Access Journals |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Review+and+comparative+analysis+of+machine+learning+libraries+for+machine+learning&rft.jtitle=Discrete+and+continuous+models+and+applied+computational+science&rft.au=Migran+N.+Gevorkyan&rft.au=Anastasia+V.+Demidova&rft.au=Tatiana+S.+Demidova&rft.au=Anton+A.+Sobolev&rft.date=2019-12-15&rft.pub=Peoples%E2%80%99+Friendship+University+of+Russia+%28RUDN+University%29&rft.issn=2658-4670&rft.eissn=2658-7149&rft.volume=27&rft.issue=4&rft.spage=305&rft.epage=315&rft_id=info:doi/10.22363%2F2658-4670-2019-27-4-305-315&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_0e46f89d843340cb8a1f581532fc919e |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2658-4670&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2658-4670&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2658-4670&client=summon |