Routing by matching on convex pieces of grid graphs

The routing number is a graph invariant introduced by Alon, Chung, and Graham in 1994, and it has been studied for trees and other classes of graphs such as hypercubes. It gives the minimum number of routing steps needed to sort a set of distinct tokens, placed one on each vertex, where each routing...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Computational geometry : theory and applications Jg. 104; S. 101862
Hauptverfasser: Alpert, H., Barnes, R., Bell, S., Mauro, A., Nevo, N., Tucker, N., Yang, H.
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 01.06.2022
Schlagworte:
ISSN:0925-7721
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Abstract The routing number is a graph invariant introduced by Alon, Chung, and Graham in 1994, and it has been studied for trees and other classes of graphs such as hypercubes. It gives the minimum number of routing steps needed to sort a set of distinct tokens, placed one on each vertex, where each routing step swaps a set of disjoint pairs of adjacent tokens. Our main theorem generalizes the known estimate that a rectangular grid graph R with width w(R) and height h(R) satisfies rt(R)∈O(w(R)+h(R)). We show that for the subgraph P of the infinite square lattice enclosed by any convex polygon, we have rt(P)∈O(w(P)+h(P)).
AbstractList The routing number is a graph invariant introduced by Alon, Chung, and Graham in 1994, and it has been studied for trees and other classes of graphs such as hypercubes. It gives the minimum number of routing steps needed to sort a set of distinct tokens, placed one on each vertex, where each routing step swaps a set of disjoint pairs of adjacent tokens. Our main theorem generalizes the known estimate that a rectangular grid graph R with width w(R) and height h(R) satisfies rt(R)∈O(w(R)+h(R)). We show that for the subgraph P of the infinite square lattice enclosed by any convex polygon, we have rt(P)∈O(w(P)+h(P)).
ArticleNumber 101862
Author Alpert, H.
Yang, H.
Bell, S.
Mauro, A.
Nevo, N.
Tucker, N.
Barnes, R.
Author_xml – sequence: 1
  givenname: H.
  orcidid: 0000-0001-5813-5029
  surname: Alpert
  fullname: Alpert, H.
  email: hcalpert@auburn.edu
  organization: Auburn University, 221 Parker Hall, Auburn, AL 36849, United States of America
– sequence: 2
  givenname: R.
  surname: Barnes
  fullname: Barnes, R.
  email: rjbarnes@hmc.edu
  organization: Harvey Mudd College, 320 East Foothill Boulevard, Claremont, CA 91711, United States of America
– sequence: 3
  givenname: S.
  surname: Bell
  fullname: Bell, S.
  email: scbell@willamette.edu
  organization: Willamette University, 900 State Street, Salem, OR 97301, United States of America
– sequence: 4
  givenname: A.
  orcidid: 0000-0002-0627-4200
  surname: Mauro
  fullname: Mauro, A.
  email: amauro@stanford.edu
  organization: Stanford University, Building 380, Stanford, CA 94305, United States of America
– sequence: 5
  givenname: N.
  surname: Nevo
  fullname: Nevo, N.
  email: n_nevo@coloradocollege.edu
  organization: Colorado College, 14 E. Cache La Poudre St., Colorado Springs, CO 80903, United States of America
– sequence: 6
  givenname: N.
  surname: Tucker
  fullname: Tucker, N.
  email: tuckent18@juniata.edu
  organization: Juniata College, 1700 Moore Street, Huntingdon, PA 16652, United States of America
– sequence: 7
  givenname: H.
  orcidid: 0000-0002-6641-5060
  surname: Yang
  fullname: Yang, H.
  email: hannay@mit.edu
  organization: MIT, 77 Massachusetts Avenue, Cambridge, MA 02139, United States of America
BookMark eNp9j8tqwzAQRbVIoUnaP-jCP-BUD8uSNoUS-ggECqVdC3s8dmRqy0huaP6-Nu66m5nhztzLnA1Z9b5HQu4Y3THK8vt2B75r0O845XyWdM5XZE0Nl6lSnF2TTYwtpdNWmjUR7_57dH2TlJekK0Y4zbPvE_D9GX-SwSFgTHydNMFVUymGU7whV3XxFfH2r2_J5_PTx_41Pb69HPaPxxQEZWNacy0zVEIbk9WyRqOlKhkDU0pelSBkJnXBtOQSVa5KoeR0SAXKrDBgKIgtyZZcCD7GgLUdguuKcLGM2hnWtnaBtTOsXWAn28Niw-m3s8NgIzjsASsXEEZbefd_wC8RgWFi
Cites_doi 10.4171/054
10.1090/S0273-0979-08-01238-X
10.1007/s41468-019-00043-w
10.1137/S0895480192236628
10.1093/imrn/rnt012
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright_xml – notice: 2022 The Author(s)
DBID 6I.
AAFTH
AAYXX
CITATION
DOI 10.1016/j.comgeo.2022.101862
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
ExternalDocumentID 10_1016_j_comgeo_2022_101862
S0925772122000050
GroupedDBID --K
--M
-DZ
.DC
.~1
0R~
1B1
1RT
1~.
1~5
29F
4.4
457
4G.
5GY
5VS
6I.
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAFTH
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABAOU
ABBOA
ABFNM
ABMAC
ABVKL
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AEXQZ
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGVJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HVGLF
HZ~
IHE
IXB
J1W
KOM
LG9
M26
M41
MHUIS
MO0
N9A
NCXOZ
O-L
O9-
OAUVE
OK1
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSV
SSW
SSZ
T5K
UHS
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ADNMO
ADVLN
AEIPS
AFJKZ
AGQPQ
AIIUN
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c301t-f2854e738994f5fe9857b11c9b52dbc35458a18525e767b37599403e54a9c90c3
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000793466800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0925-7721
IngestDate Sat Nov 29 07:09:42 EST 2025
Fri Feb 23 02:40:31 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Motion planning
Makespan
Token graph
Parallel sorting
Routing number
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c301t-f2854e738994f5fe9857b11c9b52dbc35458a18525e767b37599403e54a9c90c3
ORCID 0000-0002-6641-5060
0000-0002-0627-4200
0000-0001-5813-5029
OpenAccessLink https://dx.doi.org/10.1016/j.comgeo.2022.101862
ParticipantIDs crossref_primary_10_1016_j_comgeo_2022_101862
elsevier_sciencedirect_doi_10_1016_j_comgeo_2022_101862
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle Computational geometry : theory and applications
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Alpert (br0080) 2020; 4
Löwen (br0030) 2000; vol. 554
Farber (br0050) 2008
Chinta, Han, Yu (br0070) 2020
Diaconis (br0040) 2009; 46
Alon, Chung, Graham (br0010) 1994; 7
Demaine, Fekete, Keldenich, Scheffer, Meijer (br0060) 2018; vol. 99
Baryshnikov, Bubenik, Kahle (br0020) 2014; 9
Chinta (10.1016/j.comgeo.2022.101862_br0070) 2020
Farber (10.1016/j.comgeo.2022.101862_br0050) 2008
Baryshnikov (10.1016/j.comgeo.2022.101862_br0020) 2014; 9
Diaconis (10.1016/j.comgeo.2022.101862_br0040) 2009; 46
Demaine (10.1016/j.comgeo.2022.101862_br0060) 2018; vol. 99
Alon (10.1016/j.comgeo.2022.101862_br0010) 1994; 7
Löwen (10.1016/j.comgeo.2022.101862_br0030) 2000; vol. 554
Alpert (10.1016/j.comgeo.2022.101862_br0080) 2020; 4
References_xml – volume: 7
  start-page: 513
  year: 1994
  end-page: 530
  ident: br0010
  article-title: Routing permutations on graphs via matchings
  publication-title: SIAM J. Discrete Math.
– start-page: 817
  year: 2020
  end-page: 834
  ident: br0070
  article-title: Coordinating the motion of labeled discs with optimality guarantees under extreme density
  publication-title: Algorithmic Foundations of Robotics XIII
– year: 2008
  ident: br0050
  article-title: Invitation to Topological Robotics
  publication-title: Zurich Lectures in Advanced Mathematics
– volume: vol. 99
  year: 2018
  ident: br0060
  article-title: Coordinated motion planning: reconfiguring a swarm of labeled robots with bounded stretch
  publication-title: 34th International Symposium on Computational Geometry (SoCG 2018)
– volume: 4
  start-page: 263
  year: 2020
  end-page: 280
  ident: br0080
  article-title: Discrete configuration spaces of squares and hexagons
  publication-title: J. Appl. Comput. Topol.
– volume: vol. 554
  start-page: 295
  year: 2000
  end-page: 331
  ident: br0030
  article-title: Fun with hard spheres
  publication-title: Statistical Physics and Spatial Statistics
– volume: 9
  start-page: 2577
  year: 2014
  end-page: 2592
  ident: br0020
  article-title: Min-type Morse theory for configuration spaces of hard spheres
  publication-title: Int. Math. Res. Not.
– volume: 46
  start-page: 179
  year: 2009
  end-page: 205
  ident: br0040
  article-title: The Markov chain Monte Carlo revolution
  publication-title: Bull. Am. Math. Soc. (N.S.)
– year: 2008
  ident: 10.1016/j.comgeo.2022.101862_br0050
  article-title: Invitation to Topological Robotics
  doi: 10.4171/054
– start-page: 817
  year: 2020
  ident: 10.1016/j.comgeo.2022.101862_br0070
  article-title: Coordinating the motion of labeled discs with optimality guarantees under extreme density
– volume: vol. 554
  start-page: 295
  year: 2000
  ident: 10.1016/j.comgeo.2022.101862_br0030
  article-title: Fun with hard spheres
– volume: 46
  start-page: 179
  issue: 2
  year: 2009
  ident: 10.1016/j.comgeo.2022.101862_br0040
  article-title: The Markov chain Monte Carlo revolution
  publication-title: Bull. Am. Math. Soc. (N.S.)
  doi: 10.1090/S0273-0979-08-01238-X
– volume: vol. 99
  year: 2018
  ident: 10.1016/j.comgeo.2022.101862_br0060
  article-title: Coordinated motion planning: reconfiguring a swarm of labeled robots with bounded stretch
– volume: 4
  start-page: 263
  issue: 2
  year: 2020
  ident: 10.1016/j.comgeo.2022.101862_br0080
  article-title: Discrete configuration spaces of squares and hexagons
  publication-title: J. Appl. Comput. Topol.
  doi: 10.1007/s41468-019-00043-w
– volume: 7
  start-page: 513
  issue: 3
  year: 1994
  ident: 10.1016/j.comgeo.2022.101862_br0010
  article-title: Routing permutations on graphs via matchings
  publication-title: SIAM J. Discrete Math.
  doi: 10.1137/S0895480192236628
– volume: 9
  start-page: 2577
  year: 2014
  ident: 10.1016/j.comgeo.2022.101862_br0020
  article-title: Min-type Morse theory for configuration spaces of hard spheres
  publication-title: Int. Math. Res. Not.
  doi: 10.1093/imrn/rnt012
SSID ssj0002259
Score 2.2961657
Snippet The routing number is a graph invariant introduced by Alon, Chung, and Graham in 1994, and it has been studied for trees and other classes of graphs such as...
SourceID crossref
elsevier
SourceType Index Database
Publisher
StartPage 101862
SubjectTerms Makespan
Motion planning
Parallel sorting
Routing number
Token graph
Title Routing by matching on convex pieces of grid graphs
URI https://dx.doi.org/10.1016/j.comgeo.2022.101862
Volume 104
WOSCitedRecordID wos000793466800003&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  issn: 0925-7721
  databaseCode: AIEXJ
  dateStart: 20211211
  customDbUrl:
  isFulltext: true
  dateEnd: 99991231
  titleUrlDefault: https://www.sciencedirect.com
  omitProxy: false
  ssIdentifier: ssj0002259
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dS8MwEA9z-qAP4id-kwffRsfWrzSPQyYqKqIT9mRpsnRsaDu6Obb_3kuTdNWJ6IMvpRxt2uaO6-8u97sgdM58v9e04x6EJaJhuTyILBZHEKrYII9tRinLNX1L7u-Dbpc-VCovhgszfSVJEsxmdPSvqgYZKFtSZ_-g7mJQEMA5KB2OoHY4_krxssZHxv-AKwGNqlLJNFHl5bPaaCC46jPbzwa9Wt6velxGqGqbB5Mi7Iv0TUyyeU3Xf8gV-by9a2ndu7CZ15EmAF3VFwnSTO8F8LiQ6aWOp0JyFxm6Tb2chYAAtqiWMulEuS0uUWznwrM23JJvlL3BlOddctsqgzCUs97PKZm2XV9c_rlL9pe_V1FTaMrVhqEaJZSjhGqUFbRqE48GVbTaum53b4p_NXgz1Y1Rv70hV-YVgMtv8z14KQGSzhba1JEEbikL2EYVkeygjbuiDe94FznaFjCbY2MLOE2wsgWsbAGnMZa2gJUt7KHny3bn4srSu2RYHJzzxIolB1YQ2SfRjWXpYOAR1mxyyjy7x7gjV0YjSZH3BPEJc2AeqNtwhOdGlNMGd_ZRNUkTcYBwkxFA5MIHr29LznLEIf5iLoDYOOBR4B0iy3x-OFLNUMKfpv0QETNHoQZ0CqiFoPgf7zz645OO0frCKk9QdZK9i1O0xqeTwTg701r_AKynaYw
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Routing+by+matching+on+convex+pieces+of+grid+graphs&rft.jtitle=Computational+geometry+%3A+theory+and+applications&rft.au=Alpert%2C+H.&rft.au=Barnes%2C+R.&rft.au=Bell%2C+S.&rft.au=Mauro%2C+A.&rft.date=2022-06-01&rft.issn=0925-7721&rft.volume=104&rft.spage=101862&rft_id=info:doi/10.1016%2Fj.comgeo.2022.101862&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_comgeo_2022_101862
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0925-7721&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0925-7721&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0925-7721&client=summon