CUSMART: effective parallelization of string matching algorithms using GPGPU accelerators

This study presents a parallel version of the string matching algorithms research tool (SMART) library, implemented on NVIDIA’s compute unified device architecture (CUDA) platform, and uses general-purpose computing on graphics processing unit (GPGPU) programming concepts to enhance performance and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Frontiers of information technology & electronic engineering Jg. 26; H. 6; S. 877 - 895
Hauptverfasser: Ozsoy, Adnan, Nazli, Mengu, Cankur, Onur, Sahin, Cagri
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Hangzhou Zhejiang University Press 01.06.2025
Springer Nature B.V
Schlagworte:
ISSN:2095-9184, 2095-9230
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:This study presents a parallel version of the string matching algorithms research tool (SMART) library, implemented on NVIDIA’s compute unified device architecture (CUDA) platform, and uses general-purpose computing on graphics processing unit (GPGPU) programming concepts to enhance performance and gain insight into the parallel versions of these algorithms. We have developed the CUDA-enhanced SMART (CUSMART) library, which incorporates parallelized iterations of 64 string matching algorithms, leveraging the CUDA application programming interface. The performance of these algorithms has been assessed across various scenarios to ensure a comprehensive and impartial comparison, allowing for the identification of their strengths and weaknesses in specific application contexts. We have explored and established optimization techniques to gauge their influence on the performance of these algorithms. The results of this study highlight the potential of GPGPU computing in string matching applications through the scalability of algorithms, suggesting significant performance improvements. Furthermore, we have identified the best and worst performing algorithms in various scenarios.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:2095-9184
2095-9230
DOI:10.1631/FITEE.2400091