The Computational Complexity of ReLU Network Training Parameterized by Data Dimensionality
Understanding the computational complexity of training simple neural networks with rectified linear units (ReLUs) has recently been a subject of intensive research. Closing gaps and complementing results from the literature, we present several results on the parameterized complexity of training two-...
Gespeichert in:
| Veröffentlicht in: | The Journal of artificial intelligence research Jg. 74; S. 1775 - 1790 |
|---|---|
| Hauptverfasser: | , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
San Francisco
AI Access Foundation
01.01.2022
|
| Schlagworte: | |
| ISSN: | 1076-9757, 1076-9757, 1943-5037 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Understanding the computational complexity of training simple neural networks with rectified linear units (ReLUs) has recently been a subject of intensive research. Closing gaps and complementing results from the literature, we present several results on the parameterized complexity of training two-layer ReLU networks with respect to various loss functions. After a brief discussion of other parameters, we focus on analyzing the influence of the dimension d of the training data on the computational complexity. We provide running time lower bounds in terms of W[1]-hardness for parameter d and prove that known brute-force strategies are essentially optimal (assuming the Exponential Time Hypothesis). In comparison with previous work, our results hold for a broad(er) range of loss functions, including lp-loss for all p ∈ [0, ∞]. In particular, we improve a known polynomial-time algorithm for constant d and convex loss functions to a more general class of loss functions, matching our running time lower bounds also in these cases. |
|---|---|
| AbstractList | Understanding the computational complexity of training simple neural networks with rectified linear units (ReLUs) has recently been a subject of intensive research. Closing gaps and complementing results from the literature, we present several results on the parameterized complexity of training two-layer ReLU networks with respect to various loss functions. After a brief discussion of other parameters, we focus on analyzing the influence of the dimension d of the training data on the computational complexity. We provide running time lower bounds in terms of W[1]-hardness for parameter d and prove that known brute-force strategies are essentially optimal (assuming the Exponential Time Hypothesis). In comparison with previous work, our results hold for a broad(er) range of loss functions, including lp-loss for all p ∈ [0, ∞]. In particular, we improve a known polynomial-time algorithm for constant d and convex loss functions to a more general class of loss functions, matching our running time lower bounds also in these cases. |
| Author | Niedermeier, Rolf Hertrich, Christoph Froese, Vincent |
| Author_xml | – sequence: 1 givenname: Vincent surname: Froese fullname: Froese, Vincent – sequence: 2 givenname: Christoph surname: Hertrich fullname: Hertrich, Christoph – sequence: 3 givenname: Rolf surname: Niedermeier fullname: Niedermeier, Rolf |
| BookMark | eNptkM1OwzAQhC1UJNrCjQewxJUWr5PYyRG1_EkVINReuFhOsgGXJC62KyhPT9pyQIjT7krfjHZmQHqtbZGQU2BjEBBdLLVxYxhDlMTygPSBSTHKZCJ7v_YjMvB-yRhkMU_75Hn-inRim9U66GBsq-vdVeOnCRtqK_qEswW9x_Bh3RudO21a077QR-10gwGd-cKS5hs61UHTqWmw9TuXTn1MDitdezz5mUOyuL6aT25Hs4ebu8nlbFREDMKo0BxkUqSYaYzzuMSiBIY8rbQuI85klos8jpKClVUiRCmzKqlKECzL85xzjKIhOdv7rpx9X6MPamnXrvvBKy5ZKgRAnHQU31OFs947rFRh9pFDF6pWwNS2Q7XtUIHaddiJzv-IVs402m3-x78BLvN3RA |
| CitedBy_id | crossref_primary_10_1080_21681015_2023_2212006 crossref_primary_10_1016_j_cam_2025_116933 crossref_primary_10_1007_s10107_023_02016_5 crossref_primary_10_1016_j_disopt_2023_100795 crossref_primary_10_1137_22M1489332 crossref_primary_10_1007_s10107_024_02096_x crossref_primary_10_1371_journal_pone_0322202 crossref_primary_10_1287_ijoc_2021_0225 |
| ContentType | Journal Article |
| Copyright | 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about |
| Copyright_xml | – notice: 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1613/jair.1.13547 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1076-9757 1943-5037 |
| EndPage | 1790 |
| ExternalDocumentID | 10_1613_jair_1_13547 |
| GroupedDBID | .DC 29J 2WC 5GY 5VS AAKMM AAKPC AALFJ AAYFX AAYXX ACGFO ACM ADBBV ADBSK ADMLS AEFXT AEJOY AENEX AFFHD AFKRA AFWXC AKRVB ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EBS EJD F5P FRJ FRP GROUPED_DOAJ GUFHI HCIFZ K7- KQ8 LHSKQ LPJ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB RNS TR2 XSB 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS PUEGO |
| ID | FETCH-LOGICAL-c301t-ca2175c8e9ae4b4decd10e28faad32079b6b435c0df566d79f5fd1609bbb22e33 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 12 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000844951300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-9757 |
| IngestDate | Sat Sep 06 14:47:57 EDT 2025 Sat Nov 29 05:27:06 EST 2025 Tue Nov 18 21:33:28 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c301t-ca2175c8e9ae4b4decd10e28faad32079b6b435c0df566d79f5fd1609bbb22e33 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2708661145?pq-origsite=%requestingapplication% |
| PQID | 2708661145 |
| PQPubID | 5160723 |
| PageCount | 16 |
| ParticipantIDs | proquest_journals_2708661145 crossref_citationtrail_10_1613_jair_1_13547 crossref_primary_10_1613_jair_1_13547 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco |
| PublicationTitle | The Journal of artificial intelligence research |
| PublicationYear | 2022 |
| Publisher | AI Access Foundation |
| Publisher_xml | – name: AI Access Foundation |
| SSID | ssj0019428 |
| Score | 2.4930341 |
| Snippet | Understanding the computational complexity of training simple neural networks with rectified linear units (ReLUs) has recently been a subject of intensive... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1775 |
| SubjectTerms | Algorithms Artificial intelligence Complexity Lower bounds Neural networks Parameterization Parameters Polynomials Training |
| Title | The Computational Complexity of ReLU Network Training Parameterized by Data Dimensionality |
| URI | https://www.proquest.com/docview/2708661145 |
| Volume | 74 |
| WOSCitedRecordID | wos000844951300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: BENPR dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Computer Science Database (NC LIVE) customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: K7- dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: Publicly Available Content Database customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: PIMPY dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEA5qPXixPrFaSw56kmiTzTbNSXxUFLUsRUG9LHktVKTVdhXqr3eym_o46MXjZhNYdiYz30wm8yG0YzIqtYSwhCsWEW4kJVLbjBgZSwoOwx91FmQTottt393JJCTcxqGscmoTC0Nth8bnyA-YAPDdAvQeHz6_EM8a5U9XA4XGLKpQxqjX80tBPk8RJGflVTjRIlLEIhS-gwc7eFT90T71rA-eWOW7S_ppkQs3c1b97wcuocUAMPFRqRHLaMYNVlB1St6Aw15eRQ-gILgcDvnA4sn3x8wneJjhnru6xd2yShzfBCYJnChfzeUbPL87i_UEn6pc4VPPEVD294DVa-j2rHNzck4C0QIxsL9zYhQEJrFpO6kc19w6Y2nTsXamlI1YU0jd0gCrTNNmgP6skFmcWdpqSq01Yy6K1tHcYDhwGwiD0fIIEYCMdVzwuG1AS7iJeBZrAeCshvam_zo1oQu5J8N4Sn00ApJJvWRSmhaSqaHdz9nPZfeNX-bVpzJJwx4cp18C2fz79RZaYP5SQ5FYqaO5fPTqttG8ecv741EDVY473aTXKKL1RqFgMJZcXCf3Hxqk2b4 |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1NT9tAEB2hUAkuQEsRX6V7KCfkEm_WWe-hQhUBERGiCAUJenH3yxJVlUBiQOFH9TcyY69pe6A3Dj3aXh_sfTvzdmZ2HsAnm8fKKNyWCM1bkbAqjpRxeWRVomJ0GJTqLMUmZL-fXl6qwRz8qs_CUFllbRNLQ-3GlmLk-1wi-W4je08Obm4jUo2i7GotoVHB4tTPHnDLNv3S7eD87nJ-fDQ8PImCqkBkEcxFZDWy8MSmXmkvjHDeurjpeZpr7Vq8KZVpG-QQtulypDpOqjzJXdxuKmMM554CoGjy5wWCPW3A_KB7Nrh6zlsowavDd7IdKZnIUGqPPnP_h76efI5JZ4KkXP50gn_7gNKxHS__b79kBZYChWZfK8y_hTk_egfLtTwFC9ZqFb7hEmDV7RDxLK-oA2gxY-OcnfveBetXdfBsGLQy2EBTvRq1sH70jpkZ6-hCsw6pIFQdTPDt93DxKl-4Bo3ReOTXgaFZJg6MVM15IUWSWlwHwrZEnhiJ9HMD9uq5zWzos05yHz8z2m8hEjJCQhZnJRI2YPd59E3VX-SFcds1BrJgZabZbwBs_vvxR1g4GZ71sl63f7oFi5yOcJRhpG1oFJM7_wHe2PviejrZCYBm8P21AfMEwLA2lA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+Computational+Complexity+of+ReLU+Network+Training+Parameterized+by+Data+Dimensionality&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Froese%2C+Vincent&rft.au=Hertrich%2C+Christoph&rft.au=Niedermeier%2C+Rolf&rft.date=2022-01-01&rft.issn=1076-9757&rft.eissn=1076-9757&rft.volume=74&rft.spage=1775&rft.epage=1790&rft_id=info:doi/10.1613%2Fjair.1.13547&rft.externalDBID=n%2Fa&rft.externalDocID=10_1613_jair_1_13547 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon |