A massively parallel architecture for distributed genetic algorithms

Genetic algorithms are a group of stochastic search algorithms with a broad field of application. Although highly successful in many fields, genetic algorithms in general suffer from long execution times. In this article we describe parallel models for genetic algorithms in general and the massively...

Full description

Saved in:
Bibliographic Details
Published in:Parallel computing Vol. 30; no. 5; pp. 647 - 676
Main Author: Eklund, Sven E.
Format: Journal Article
Language:English
Published: Elsevier B.V 01.05.2004
Subjects:
ISSN:0167-8191, 1872-7336
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Genetic algorithms are a group of stochastic search algorithms with a broad field of application. Although highly successful in many fields, genetic algorithms in general suffer from long execution times. In this article we describe parallel models for genetic algorithms in general and the massively parallel Diffusion Model in particular, in order to speedup the execution. Implemented in hardware, the Diffusion Model constitutes an efficient, flexible, scalable and mobile machine learning system. This fine-grained system consists of a large number of processing nodes that evolve a large number of small, overlapping subpopulations. Every processing node has an embedded CPU that executes a linear machine code representation at a rate of up to 20,000 generations per second. Besides being efficient, implemented in hardware this model is highly portable and applicable to mobile, on-line applications. The architecture is also scalable so that larger problems can be addressed with a system with more processing nodes. Finally, the use of linear machine code as genetic programming representation and VHDL as hardware description language, makes the system highly flexible and easy to adapt to different applications. Through a series of experiments we determine the settings of the most important parameters of the Diffusion Model. We also demonstrate the effectiveness and flexibility of the architecture on a set of regression problems, a classification application and a time series forecasting application.
AbstractList Genetic algorithms are a group of stochastic search algorithms with a broad field of application. Although highly successful in many fields, genetic algorithms in general suffer from long execution times. In this article we describe parallel models for genetic algorithms in general and the massively parallel Diffusion Model in particular, in order to speedup the execution. Implemented in hardware, the Diffusion Model constitutes an efficient, flexible, scalable and mobile machine learning system. This fine-grained system consists of a large number of processing nodes that evolve a large number of small, overlapping subpopulations. Every processing node has an embedded CPU that executes a linear machine code representation at a rate of up to 20,000 generations per second. Besides being efficient, implemented in hardware this model is highly portable and applicable to mobile, on-line applications. The architecture is also scalable so that larger problems can be addressed with a system with more processing nodes. Finally, the use of linear machine code as genetic programming representation and VHDL as hardware description language, makes the system highly flexible and easy to adapt to different applications. Through a series of experiments we determine the settings of the most important parameters of the Diffusion Model. We also demonstrate the effectiveness and flexibility of the architecture on a set of regression problems, a classification application and a time series forecasting application.
Author Eklund, Sven E.
Author_xml – sequence: 1
  givenname: Sven E.
  surname: Eklund
  fullname: Eklund, Sven E.
  email: sek@du.se
  organization: Dalarna University, S-781 88 Borlange, Sweden
BookMark eNqFkLluAjEURa0okQIkX5DGPzATL7N4ihSIrBJSGnrLyxswGsbINkj8fUxIlSKpXvPOke6ZouvRj4DQAyUlJbR53JZ7FYwvGSG8pKwkpLtCEypaVrScN9dokr_aQtCO3qJpjFtCSFMJMkHPc7xTMbojDCecJWoYYMBZtnEJTDoEwL0P2LqYgtOHBBavYYTkDFbD2geXNrt4h256NUS4_7kztHp9WS3ei-Xn28diviwMJzQVqm-ZbhvbaAqq1rWoBOO15g0oa1XVQVUx4C10tVWC67rS2lbGsJoTobjgM8QvWhN8jAF6uQ9up8JJUiLPHeRWfneQ5w6SMpk7ZKr7RRmXVHJ-TEG54R_26cJCXnV0EGQ0DkYD1oVcR1rv_uS_ADP-fiY
CitedBy_id crossref_primary_10_1007_s10898_012_9946_8
crossref_primary_10_1108_03684920910973180
crossref_primary_10_1016_j_parco_2014_04_008
crossref_primary_10_1016_j_ejor_2024_01_017
crossref_primary_10_1016_j_jpdc_2006_04_017
crossref_primary_10_1057_jors_2009_161
crossref_primary_10_1108_03684920810907823
crossref_primary_10_3390_s22062389
crossref_primary_10_1007_s00500_013_1140_5
crossref_primary_10_1016_j_engappai_2006_06_015
crossref_primary_10_1007_s00339_024_07657_7
crossref_primary_10_1016_j_cageo_2005_10_015
crossref_primary_10_1007_s00477_012_0649_y
crossref_primary_10_1002_fld_1288
crossref_primary_10_1016_j_jpdc_2012_09_011
Cites_doi 10.1109/CEC.1999.782540
10.1109/EH.1999.785431
10.1007/3-540-45443-8_19
10.1109/CEC.2002.1007025
10.1142/S0129065790000102
10.1109/TC.1972.5009071
ContentType Journal Article
Copyright 2004 Elsevier B.V.
Copyright_xml – notice: 2004 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.parco.2003.12.009
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7336
EndPage 676
ExternalDocumentID 10_1016_j_parco_2003_12_009
S0167819104000365
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
29O
4.4
457
4G.
5VS
6OB
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABEFU
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADJOM
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-Q
G8K
GBLVA
GBOLZ
HLZ
HVGLF
HZ~
H~9
IHE
J1W
JJJVA
KOM
LG9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SST
SSV
SSZ
T5K
WH7
WUQ
XPP
ZMT
~G-
9DU
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c301t-af72b76d6b1ea5b5848235b36eadda49e442e37e95da83b54bbd4cc25308a383
ISICitedReferencesCount 30
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000222103700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0167-8191
IngestDate Sat Nov 29 04:06:53 EST 2025
Tue Nov 18 21:15:45 EST 2025
Fri Feb 23 02:30:43 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords FPGA
Genetic programming
Classification
Time series forecasting
Regression
Parallel architecture
Diffusion model
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c301t-af72b76d6b1ea5b5848235b36eadda49e442e37e95da83b54bbd4cc25308a383
PageCount 30
ParticipantIDs crossref_primary_10_1016_j_parco_2003_12_009
crossref_citationtrail_10_1016_j_parco_2003_12_009
elsevier_sciencedirect_doi_10_1016_j_parco_2003_12_009
PublicationCentury 2000
PublicationDate 2004-05-01
PublicationDateYYYYMMDD 2004-05-01
PublicationDate_xml – month: 05
  year: 2004
  text: 2004-05-01
  day: 01
PublicationDecade 2000
PublicationTitle Parallel computing
PublicationYear 2004
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References R. Tanese, Distributed genetic algorithm, Proceedings of Third International Conference on Genetic algorithms, 1989, pp. 434–439
M. Hutter, Fitness uniform selection to preserve genetic diversity, Proceedings of the 2002 Congress on Evolutionary Computation (CEC-2002), 2002, pp. 783–788
W. Banzhaf, P. Nordin, R. Keller, F. Francone, Genetic Programming––An Introduction, Morgan Kaufmann Publishers Inc, San Francisco and dpunkt Verlag, Heidelberg, 1998, pp. 330–334 (ISBN 1-55860-510-X)
P. Nordin, F. Hoffmann, F. Francone, M. Brameier, W. Banzhaf, AIM-GP and parallelism, Proceedings of the Congress on Evolutionary Computation, 1999, pp. 1059–1066
Flynn (BIB10) 1972; C-21
D. Abramson, J. Abela, A parallel genetic algorithm for solving the school timetabling problem, in: Proceedings of the Fifteenth Australian Computer Science Conference (ACSC-15) 14, 1992, pp. 1–11
Tong (BIB22) 1995
S. Baluja, A Massively Distributed Parallel Genetic Algorithm (mdpGA), CMU-CS-92-196R, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1992
S. Eklund, A massively parallel GP architecture, in: K. Giannakoglou, D. Tsahalis, J. Périaux, K. Papailiou, T. Fogarty (Eds.), Evolutionary Methods for Design, Optimization and Control, 2002 (ISBN 84-89925-97-6)
Kung, Leiserson (BIB16) 1979
J. Sarma, K. DeJong, On decentralizing selection algorithms, Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, 1995, pp. 17–23
G. Tufte, P. Haddow, Prototyping a GA pipeline for complete hardware evolution, First NASA/DoD Workshop on Evolvable Hardware, IEEE, 1999
E. Cantú-Paz, A survey of parallel genetic algorithms, Department of Computer Science, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-Champaign, 1998
J. Kyngäs, J. Hakkarainen, Predicting sunspot numbers with evolutionary optimized neural networks, in: J. Alander (Ed. ), Proceedings of the Second Nordic Workshop on Genetic Algorithms and their Applications, 1996, pp. 173–180
E. Cantú-Paz, Designing efficient master–slave parallel genetic algorithms, IlliGAL Report No. 97004, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 1997
Holland (BIB12) 1975
Schwehm (BIB20) 1996
Koza (BIB14) 1992
J.J. Grefenstette, Parallel adaptive algorithms for function optimization, Tech. Rep. No. CS-81-19, Vanderbilt University, Computer Science Department, Nashville, TN, 1981
Weigend, Huberman, Rumelhart (BIB24) 1990; 1
D. Abramson, G. Mills, S. Perkins, Parallelization of a genetic algorithm for the computation of efficient train schedules, Proceedings of the 1993 Parallel Computing and Transputers Conference, 1993, pp. 139–149
A.D. Bethke, Comparison of genetic algorithms and gradient-based optimizers on parallel processors: efficiency of use of processing capacity, Tech. Rep. No. 197, University of Michigan, Logic of Computers Group, Ann Arbor, MI, 1976
J. Koza, F. Bennett III, J. Shipman, O. Stiffelman, Building a parallel computer system for $18,000 that performs a half peta-flop per day, Proceedings of the Genetic and Evolutionary Computation Conference, 1999, pp. 1484–1490
S. Eklund, Massively parallel architecture for linear machine code genetic programming, Proceedings of the 2001 International Conference on Evolutionary Systems, Tokyo, 2001
10.1016/j.parco.2003.12.009_BIB15
10.1016/j.parco.2003.12.009_BIB18
10.1016/j.parco.2003.12.009_BIB17
10.1016/j.parco.2003.12.009_BIB19
10.1016/j.parco.2003.12.009_BIB5
Holland (10.1016/j.parco.2003.12.009_BIB12) 1975
Tong (10.1016/j.parco.2003.12.009_BIB22) 1995
10.1016/j.parco.2003.12.009_BIB4
10.1016/j.parco.2003.12.009_BIB7
10.1016/j.parco.2003.12.009_BIB21
10.1016/j.parco.2003.12.009_BIB6
10.1016/j.parco.2003.12.009_BIB9
10.1016/j.parco.2003.12.009_BIB23
10.1016/j.parco.2003.12.009_BIB8
10.1016/j.parco.2003.12.009_BIB11
Koza (10.1016/j.parco.2003.12.009_BIB14) 1992
Flynn (10.1016/j.parco.2003.12.009_BIB10) 1972; C-21
10.1016/j.parco.2003.12.009_BIB13
Weigend (10.1016/j.parco.2003.12.009_BIB24) 1990; 1
10.1016/j.parco.2003.12.009_BIB1
10.1016/j.parco.2003.12.009_BIB3
10.1016/j.parco.2003.12.009_BIB2
Kung (10.1016/j.parco.2003.12.009_BIB16) 1979
Schwehm (10.1016/j.parco.2003.12.009_BIB20) 1996
References_xml – reference: R. Tanese, Distributed genetic algorithm, Proceedings of Third International Conference on Genetic algorithms, 1989, pp. 434–439
– reference: P. Nordin, F. Hoffmann, F. Francone, M. Brameier, W. Banzhaf, AIM-GP and parallelism, Proceedings of the Congress on Evolutionary Computation, 1999, pp. 1059–1066
– year: 1996
  ident: BIB20
  article-title: Parallel Population Models for Genetic Algorithms
– year: 1975
  ident: BIB12
  article-title: Adaptation in Natural and Artificial Systems
– year: 1995
  ident: BIB22
  publication-title: Non-linear Time Series: A Dynamical System Approach
– reference: W. Banzhaf, P. Nordin, R. Keller, F. Francone, Genetic Programming––An Introduction, Morgan Kaufmann Publishers Inc, San Francisco and dpunkt Verlag, Heidelberg, 1998, pp. 330–334 (ISBN 1-55860-510-X)
– reference: J. Kyngäs, J. Hakkarainen, Predicting sunspot numbers with evolutionary optimized neural networks, in: J. Alander (Ed. ), Proceedings of the Second Nordic Workshop on Genetic Algorithms and their Applications, 1996, pp. 173–180
– year: 1992
  ident: BIB14
  article-title: Genetic Programming: On the Programming of Computers by Means of Natural Selection
– reference: S. Eklund, A massively parallel GP architecture, in: K. Giannakoglou, D. Tsahalis, J. Périaux, K. Papailiou, T. Fogarty (Eds.), Evolutionary Methods for Design, Optimization and Control, 2002 (ISBN 84-89925-97-6)
– volume: 1
  start-page: 193
  year: 1990
  end-page: 209
  ident: BIB24
  article-title: Predicting the future: A connectionist approach
  publication-title: International Journal of Neural Systems
– year: 1979
  ident: BIB16
  article-title: Systolic arrays (for VLSI)
  publication-title: Sparse Matrix Proceedings
– reference: D. Abramson, J. Abela, A parallel genetic algorithm for solving the school timetabling problem, in: Proceedings of the Fifteenth Australian Computer Science Conference (ACSC-15) 14, 1992, pp. 1–11
– reference: M. Hutter, Fitness uniform selection to preserve genetic diversity, Proceedings of the 2002 Congress on Evolutionary Computation (CEC-2002), 2002, pp. 783–788
– reference: J. Koza, F. Bennett III, J. Shipman, O. Stiffelman, Building a parallel computer system for $18,000 that performs a half peta-flop per day, Proceedings of the Genetic and Evolutionary Computation Conference, 1999, pp. 1484–1490
– reference: A.D. Bethke, Comparison of genetic algorithms and gradient-based optimizers on parallel processors: efficiency of use of processing capacity, Tech. Rep. No. 197, University of Michigan, Logic of Computers Group, Ann Arbor, MI, 1976
– reference: S. Baluja, A Massively Distributed Parallel Genetic Algorithm (mdpGA), CMU-CS-92-196R, Carnegie Mellon University, Pittsburgh, Pennsylvania, 1992
– reference: D. Abramson, G. Mills, S. Perkins, Parallelization of a genetic algorithm for the computation of efficient train schedules, Proceedings of the 1993 Parallel Computing and Transputers Conference, 1993, pp. 139–149
– reference: E. Cantú-Paz, A survey of parallel genetic algorithms, Department of Computer Science, Illinois Genetic Algorithms Laboratory, University of Illinois, Urbana-Champaign, 1998
– reference: J. Sarma, K. DeJong, On decentralizing selection algorithms, Proceedings of the Sixth International Conference on Genetic Algorithms, Morgan Kaufmann, 1995, pp. 17–23
– reference: J.J. Grefenstette, Parallel adaptive algorithms for function optimization, Tech. Rep. No. CS-81-19, Vanderbilt University, Computer Science Department, Nashville, TN, 1981
– volume: C-21
  start-page: 948
  year: 1972
  end-page: 960
  ident: BIB10
  article-title: Some computer organizations and their effectiveness
  publication-title: IEEE Transactions on Computers
– reference: G. Tufte, P. Haddow, Prototyping a GA pipeline for complete hardware evolution, First NASA/DoD Workshop on Evolvable Hardware, IEEE, 1999
– reference: E. Cantú-Paz, Designing efficient master–slave parallel genetic algorithms, IlliGAL Report No. 97004, University of Illinois at Urbana-Champaign, Illinois Genetic Algorithms Laboratory, Urbana, IL, 1997
– reference: S. Eklund, Massively parallel architecture for linear machine code genetic programming, Proceedings of the 2001 International Conference on Evolutionary Systems, Tokyo, 2001
– ident: 10.1016/j.parco.2003.12.009_BIB18
  doi: 10.1109/CEC.1999.782540
– ident: 10.1016/j.parco.2003.12.009_BIB1
– ident: 10.1016/j.parco.2003.12.009_BIB23
  doi: 10.1109/EH.1999.785431
– year: 1975
  ident: 10.1016/j.parco.2003.12.009_BIB12
– ident: 10.1016/j.parco.2003.12.009_BIB19
– ident: 10.1016/j.parco.2003.12.009_BIB17
– ident: 10.1016/j.parco.2003.12.009_BIB11
– ident: 10.1016/j.parco.2003.12.009_BIB9
  doi: 10.1007/3-540-45443-8_19
– year: 1995
  ident: 10.1016/j.parco.2003.12.009_BIB22
– ident: 10.1016/j.parco.2003.12.009_BIB8
– ident: 10.1016/j.parco.2003.12.009_BIB7
– ident: 10.1016/j.parco.2003.12.009_BIB13
  doi: 10.1109/CEC.2002.1007025
– ident: 10.1016/j.parco.2003.12.009_BIB15
– ident: 10.1016/j.parco.2003.12.009_BIB6
– year: 1979
  ident: 10.1016/j.parco.2003.12.009_BIB16
  article-title: Systolic arrays (for VLSI)
– ident: 10.1016/j.parco.2003.12.009_BIB3
– ident: 10.1016/j.parco.2003.12.009_BIB2
– year: 1996
  ident: 10.1016/j.parco.2003.12.009_BIB20
– ident: 10.1016/j.parco.2003.12.009_BIB21
– ident: 10.1016/j.parco.2003.12.009_BIB4
– volume: 1
  start-page: 193
  year: 1990
  ident: 10.1016/j.parco.2003.12.009_BIB24
  article-title: Predicting the future: A connectionist approach
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065790000102
– ident: 10.1016/j.parco.2003.12.009_BIB5
– volume: C-21
  start-page: 948
  year: 1972
  ident: 10.1016/j.parco.2003.12.009_BIB10
  article-title: Some computer organizations and their effectiveness
  publication-title: IEEE Transactions on Computers
  doi: 10.1109/TC.1972.5009071
– year: 1992
  ident: 10.1016/j.parco.2003.12.009_BIB14
SSID ssj0006480
Score 1.8275653
Snippet Genetic algorithms are a group of stochastic search algorithms with a broad field of application. Although highly successful in many fields, genetic algorithms...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 647
SubjectTerms Classification
Diffusion model
FPGA
Genetic programming
Parallel architecture
Regression
Time series forecasting
Title A massively parallel architecture for distributed genetic algorithms
URI https://dx.doi.org/10.1016/j.parco.2003.12.009
Volume 30
WOSCitedRecordID wos000222103700007&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals 2021
  customDbUrl:
  eissn: 1872-7336
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0006480
  issn: 0167-8191
  databaseCode: AIEXJ
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEF5By4ELb0R5aQ_cgqvY-z5GEAQcqkrNITdrX4aU1K3SFPXnM_tyUgVVgMTFiqzsxp7P-WY8OzsfQu8EV0xp1lWsq2lFnasrXTtVubGRHaHc1o5GsQlxdCTnc3WcNdwvo5yA6Ht5fa0u_ivUcA7ADltn_wLuYVI4AZ8BdDgC7HD8I-AnozMIiIHEQt5Cr4JWynJ0Y70gVBa60DA3aF1BwAlT-di3dfntfLVYf88NzHPIelzmsFEAori6EIX_WF6lvPQJUOZoengjhUA3BXspr7WztyWlGoFCw-tc8hSJHqWAeJykliWFP_O6ymJ7hTqSIU-9NLNf5UnnZYeyU_bg9BAsYuNuTBLzs2O18VBD3eBJuKhwTYF6wPeyu2i_EUwBne1PvkznXwcnzGkUzRtuojSciqV9Oz_1-6BkK9CYPUIP8hsCniRkH6M7vn-CHhb1DZzJ-Cn6OMED0LgAjbeBxgA03gIaZ6DxBuhnaPZpOvvwucqaGJUFKl5XuhONEdxxU3vNDISPsiHMEA6M4DRVntLGE-EVc1oSw6gxjlrbMDKWmkjyHO31571_gXCtrPWaik7JjipjtZAwATGm0Y6MdXOAmmKT1uZ-8UG2ZNmWwsDTNhoyKJmStm5aMOQBej8MukjtUm7_Oi_GbnPElyK5Fp6O2wa-_NeBr9D9zT_gNdpbr678G3TP_lwvLldv81P0CxVGfSI
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+massively+parallel+architecture+for+distributed+genetic+algorithms&rft.jtitle=Parallel+computing&rft.au=Eklund%2C+Sven+E.&rft.date=2004-05-01&rft.pub=Elsevier+B.V&rft.issn=0167-8191&rft.eissn=1872-7336&rft.volume=30&rft.issue=5&rft.spage=647&rft.epage=676&rft_id=info:doi/10.1016%2Fj.parco.2003.12.009&rft.externalDocID=S0167819104000365
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0167-8191&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0167-8191&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0167-8191&client=summon