Separating sublinear time computations by approximate diameter

We study the problem of separating sublinear time computations via approximating the diameter for a sequence S = p 1 p 2 ⋅⋅⋅ p n of points in a metric space, in which any two consecutive points have the same distance. The computation is considered respectively under deterministic, zero error randomi...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Journal of combinatorial optimization Ročník 18; číslo 4; s. 393 - 416
Hlavní autoři: Fu, Bin, Zhao, Zhiyu
Médium: Journal Article Konferenční příspěvek
Jazyk:angličtina
Vydáno: Boston Springer US 01.11.2009
Springer
Témata:
ISSN:1382-6905, 1573-2886
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:We study the problem of separating sublinear time computations via approximating the diameter for a sequence S = p 1 p 2 ⋅⋅⋅ p n of points in a metric space, in which any two consecutive points have the same distance. The computation is considered respectively under deterministic, zero error randomized, and bounded error randomized models. We obtain a class of separations using various versions of the approximate diameter problem based on restrictions on input data. We derive tight sublinear time separations for each of the three computation models via proving that computation with O ( n r ) time is strictly more powerful than that with O ( n r − ε ) time, where r and ε are arbitrary parameters in (0,1) and (0, r ) respectively. We show that, for any parameter r ∈(0,1), the bounded error randomized sublinear time computation in time O ( n r ) cannot be simulated by any zero error randomized sublinear time algorithm in o ( n ) time or queries; and the same is true for zero error randomized computation versus deterministic computation.
ISSN:1382-6905
1573-2886
DOI:10.1007/s10878-009-9248-3