Visualizing Temporal Topic Embeddings with a Compass
Dynamic topic modeling is useful at discovering the development and change in latent topics over time. However, present methodology relies on algorithms that separate document and word representations. This prevents the creation of a meaningful embedding space where changes in word usage and documen...
Gespeichert in:
| Veröffentlicht in: | IEEE transactions on visualization and computer graphics Jg. 31; H. 1; S. 272 - 282 |
|---|---|
| Hauptverfasser: | , , , , , , |
| Format: | Journal Article |
| Sprache: | Englisch |
| Veröffentlicht: |
United States
IEEE
01.01.2025
|
| Schlagworte: | |
| ISSN: | 1077-2626, 1941-0506, 1941-0506 |
| Online-Zugang: | Volltext |
| Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
| Abstract | Dynamic topic modeling is useful at discovering the development and change in latent topics over time. However, present methodology relies on algorithms that separate document and word representations. This prevents the creation of a meaningful embedding space where changes in word usage and documents can be directly analyzed in a temporal context. This paper proposes an expansion of the compass-aligned temporal Word2Vec methodology into dynamic topic modeling. Such a method allows for the direct comparison of word and document embeddings across time in dynamic topics. This enables the creation of visualizations that incorporate temporal word embeddings within the context of documents into topic visualizations. In experiments against the current state-of-the-art, our proposed method demonstrates overall competitive performance in topic relevancy and diversity across temporal datasets of varying size. Simultaneously, it provides insightful visualizations focused on temporal word embeddings while maintaining the insights provided by global topic evolution, advancing our understanding of how topics evolve over time. |
|---|---|
| AbstractList | Dynamic topic modeling is useful at discovering the development and change in latent topics over time. However, present methodology relies on algorithms that separate document and word representations. This prevents the creation of a meaningful embedding space where changes in word usage and documents can be directly analyzed in a temporal context. This paper proposes an expansion of the compass-aligned temporal Word2Vec methodology into dynamic topic modeling. Such a method allows for the direct comparison of word and document embeddings across time in dynamic topics. This enables the creation of visualizations that incorporate temporal word embeddings within the context of documents into topic visualizations. In experiments against the current state-of-the-art, our proposed method demonstrates overall competitive performance in topic relevancy and diversity across temporal datasets of varying size. Simultaneously, it provides insightful visualizations focused on temporal word embeddings while maintaining the insights provided by global topic evolution, advancing our understanding of how topics evolve over time. Dynamic topic modeling is useful at discovering the development and change in latent topics over time. However, present methodology relies on algorithms that separate document and word representations. This prevents the creation of a meaningful embedding space where changes in word usage and documents can be directly analyzed in a temporal context. This paper proposes an expansion of the compass-aligned temporal Word2Vec methodology into dynamic topic modeling. Such a method allows for the direct comparison of word and document embeddings across time in dynamic topics. This enables the creation of visualizations that incorporate temporal word embeddings within the context of documents into topic visualizations. In experiments against the current state-of-the-art, our proposed method demonstrates overall competitive performance in topic relevancy and diversity across temporal datasets of varying size. Simultaneously, it provides insightful visualizations focused on temporal word embeddings while maintaining the insights provided by global topic evolution, advancing our understanding of how topics evolve over time.Dynamic topic modeling is useful at discovering the development and change in latent topics over time. However, present methodology relies on algorithms that separate document and word representations. This prevents the creation of a meaningful embedding space where changes in word usage and documents can be directly analyzed in a temporal context. This paper proposes an expansion of the compass-aligned temporal Word2Vec methodology into dynamic topic modeling. Such a method allows for the direct comparison of word and document embeddings across time in dynamic topics. This enables the creation of visualizations that incorporate temporal word embeddings within the context of documents into topic visualizations. In experiments against the current state-of-the-art, our proposed method demonstrates overall competitive performance in topic relevancy and diversity across temporal datasets of varying size. Simultaneously, it provides insightful visualizations focused on temporal word embeddings while maintaining the insights provided by global topic evolution, advancing our understanding of how topics evolve over time. |
| Author | Mayer, Brian North, Chris Faust, Rebecca Danielson, Thomas Deschaine, Larry Palamarchuk, Daniel Williams, Lemara |
| Author_xml | – sequence: 1 givenname: Daniel surname: Palamarchuk fullname: Palamarchuk, Daniel email: d4n1elp@vt.edu organization: Virginia Polytechnic Institute and State University, Blacksburg, VA, USA – sequence: 2 givenname: Lemara surname: Williams fullname: Williams, Lemara email: lemaraw@vt.edu organization: Virginia Polytechnic Institute and State University, Blacksburg, VA, USA – sequence: 3 givenname: Brian surname: Mayer fullname: Mayer, Brian email: bmayer@cs.vt.edu organization: Virginia Polytechnic Institute and State University, Blacksburg, VA, USA – sequence: 4 givenname: Thomas surname: Danielson fullname: Danielson, Thomas email: Thomas.Danielson@srnl.doe.gov organization: Savannah River National Laboratory, USA – sequence: 5 givenname: Rebecca surname: Faust fullname: Faust, Rebecca email: rfaust1@tulane.edu organization: Tulane University, USA – sequence: 6 givenname: Larry surname: Deschaine fullname: Deschaine, Larry email: larry.deschaine@srnl.doe.gov organization: Savannah River National Laboratory, USA – sequence: 7 givenname: Chris orcidid: 0000-0002-8786-7103 surname: North fullname: North, Chris email: north@cs.vt.edu organization: Virginia Polytechnic Institute and State University, Blacksburg, VA, USA |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39255128$$D View this record in MEDLINE/PubMed |
| BookMark | eNpNkE1Lw0AQhhdR7If-AEEkRy-pM_uZHKXUKhS8xF6XzWajK_ky2yD6601pFU8zwzzvwDwzctq0jSPkCmGBCOldtl2uFxQoXzAuJHJ2QqaYcoxBgDwde1AqppLKCZmF8A6AnCfpOZmwlAqBNJkSvvVhMJX_9s1rlLm6a3tTRVnbeRut6twVxbgI0affvUUmWrZ1Z0K4IGelqYK7PNY5eXlYZcvHePO8flreb2LLAHexASvyXHEURkqUNncqEawAWXBmISkpjGMJTFKVMmZKUTgobVqwnJaoOGdzcnu42_Xtx-DCTtc-WFdVpnHtEDRDoImSMmEjenNEh7x2he56X5v-S_9-OgJ4AGzfhtC78g9B0Hubem9T723qo80xc33IeOfcP14q4CjZD6tibfc |
| CODEN | ITVGEA |
| Cites_doi | 10.1145/3178876.3185999 10.1111/j.1467-8659.2012.03108.x 10.1162/tacl_a_00325 10.1609/aaai.v33i01.33016326 10.1177/2053168017712821 10.1109/TVCG.2016.2515592 10.1145/3159652.3159703 10.1109/TVCG.2014.2346433 10.18653/v1/P16-1141 10.18653/v1/P17-2071 10.1109/TVCG.2013.221 10.1145/2089094.2089101 10.1080/00437956.1954.11659520 10.1109/VAST.2016.7883511 10.1007/s13222-013-0134-x 10.18653/v1/D19-1410 10.1145/1143844.1143859 10.1109/TVCG.2013.162 10.1145/1081870.1081895 10.3115/v1/W14-3110 10.1109/tvcg.2011.239 10.1109/2945.981848 10.1109/TVCG.2015.2467618 10.1109/TVCG.2014.2388208 10.1145/2492517.2492639 10.1109/TVCG.2014.2346919 10.1145/2684822.2685324 10.1007/978-3-642-37456-2_14 10.1007/s12650-015-0323-9 |
| ContentType | Journal Article |
| DBID | 97E RIA RIE AAYXX CITATION NPM 7X8 |
| DOI | 10.1109/TVCG.2024.3456143 |
| DatabaseName | IEEE All-Society Periodicals Package (ASPP) 2005-present IEEE All-Society Periodicals Package (ASPP) 1998-Present IEEE Electronic Library (IEL) CrossRef PubMed MEDLINE - Academic |
| DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic PubMed |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Xplore Digital Library (LUT) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1941-0506 |
| EndPage | 282 |
| ExternalDocumentID | 39255128 10_1109_TVCG_2024_3456143 10670416 |
| Genre | orig-research Journal Article |
| GrantInformation_xml | – fundername: National Science Foundation grantid: 2127309 funderid: 10.13039/100000001 |
| GroupedDBID | --- -~X .DC 0R~ 29I 4.4 53G 5GY 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACIWK AENEX AETIX AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IEDLZ IFIPE IFJZH IPLJI JAVBF LAI M43 O9- OCL P2P PQQKQ RIA RIE RNI RNS RZB TN5 VH1 AAYXX CITATION AAYOK NPM RIG 7X8 |
| ID | FETCH-LOGICAL-c301t-a0c5bb7415a6616cbe7853d06d43c08f20853f03627933af5de0fc9d3b2f17443 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 0 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001367808800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1077-2626 1941-0506 |
| IngestDate | Sun Nov 09 13:18:16 EST 2025 Wed Mar 05 02:44:39 EST 2025 Sat Nov 29 03:31:50 EST 2025 Wed Aug 27 03:03:27 EDT 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c301t-a0c5bb7415a6616cbe7853d06d43c08f20853f03627933af5de0fc9d3b2f17443 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-8786-7103 |
| OpenAccessLink | https://www.osti.gov/servlets/purl/2580486 |
| PMID | 39255128 |
| PQID | 3102876683 |
| PQPubID | 23479 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1109_TVCG_2024_3456143 ieee_primary_10670416 proquest_miscellaneous_3102876683 pubmed_primary_39255128 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-01-01 |
| PublicationDateYYYYMMDD | 2025-01-01 |
| PublicationDate_xml | – month: 01 year: 2025 text: 2025-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States |
| PublicationTitle | IEEE transactions on visualization and computer graphics |
| PublicationTitleAbbrev | TVCG |
| PublicationTitleAlternate | IEEE Trans Vis Comput Graph |
| PublicationYear | 2025 |
| Publisher | IEEE |
| Publisher_xml | – name: IEEE |
| References | McInnes (ref27) 2020 ref35 ref12 ref34 ref15 ref37 ref14 ref36 ref31 Grootendorst (ref17) 2022 ref30 ref11 ref33 ref10 ref32 ref1 Dieng (ref13) 2019 ref39 ref16 ref38 ref19 Le (ref23) 2014 ref18 Blei (ref6) 2003; 3 Bianchi (ref4) 2020 ref24 ref26 ref25 ref20 ref22 ref21 Mikolov (ref29) 2013 Brown (ref8) Bouma (ref7) 2009 ref28 ref9 ref3 ref5 Angelov (ref2) 2020 |
| References_xml | – ident: ref32 doi: 10.1145/3178876.3185999 – ident: ref24 doi: 10.1111/j.1467-8659.2012.03108.x – year: 2013 ident: ref29 publication-title: Efficient estimation of word representations in vector space – ident: ref14 doi: 10.1162/tacl_a_00325 – ident: ref12 doi: 10.1609/aaai.v33i01.33016326 – ident: ref3 doi: 10.1177/2053168017712821 – ident: ref37 doi: 10.1109/TVCG.2016.2515592 – ident: ref39 doi: 10.1145/3159652.3159703 – ident: ref11 doi: 10.1109/TVCG.2014.2346433 – ident: ref19 doi: 10.18653/v1/P16-1141 – year: 2020 ident: ref4 article-title: Compass-aligned distributional embeddings for studying semantic differences across corpora publication-title: arXiv preprint – ident: ref35 doi: 10.18653/v1/P17-2071 – ident: ref38 doi: 10.1109/TVCG.2013.221 – ident: ref25 doi: 10.1145/2089094.2089101 – ident: ref20 doi: 10.1080/00437956.1954.11659520 – ident: ref36 doi: 10.1109/VAST.2016.7883511 – ident: ref18 doi: 10.1007/s13222-013-0134-x – ident: ref30 doi: 10.18653/v1/D19-1410 – volume-title: Top2vec: Distributed representations of topics year: 2020 ident: ref2 – ident: ref5 doi: 10.1145/1143844.1143859 – year: 2014 ident: ref23 publication-title: Distributed representations of sentences and documents – ident: ref15 doi: 10.1109/TVCG.2013.162 – ident: ref28 doi: 10.1145/1081870.1081895 – year: 2019 ident: ref13 publication-title: The dynamic embedded topic model – volume: 3 start-page: 993 year: 2003 ident: ref6 article-title: Latent dirichlet allocation publication-title: J. Mach. Learn. Res. – volume-title: Proceedings of the 34th International Conference on Neural Information Processing Systems, NIPS’20 ident: ref8 article-title: Language models are few-shot learners – ident: ref33 doi: 10.3115/v1/W14-3110 – ident: ref10 doi: 10.1109/tvcg.2011.239 – ident: ref21 doi: 10.1109/2945.981848 – ident: ref1 doi: 10.1109/TVCG.2015.2467618 – year: 2009 ident: ref7 publication-title: Normalized (pointwise) mutual information in collocation extraction – year: 2020 ident: ref27 publication-title: Umap: Uniform manifold approximation and projection for dimension reduction – ident: ref16 doi: 10.1109/TVCG.2014.2388208 – ident: ref26 doi: 10.1145/2492517.2492639 – ident: ref34 doi: 10.1109/TVCG.2014.2346919 – ident: ref31 doi: 10.1145/2684822.2685324 – ident: ref9 doi: 10.1007/978-3-642-37456-2_14 – ident: ref22 doi: 10.1007/s12650-015-0323-9 – year: 2022 ident: ref17 publication-title: Bertopic: Neural topic modeling with a class-based tf-idf procedure |
| SSID | ssj0014489 |
| Score | 2.438974 |
| Snippet | Dynamic topic modeling is useful at discovering the development and change in latent topics over time. However, present methodology relies on algorithms that... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 272 |
| SubjectTerms | Cluster analysis Clustering algorithms Compass Dynamic topic modeling Electronic mail High dimensional data Streams Training Vectors Visualization |
| Title | Visualizing Temporal Topic Embeddings with a Compass |
| URI | https://ieeexplore.ieee.org/document/10670416 https://www.ncbi.nlm.nih.gov/pubmed/39255128 https://www.proquest.com/docview/3102876683 |
| Volume | 31 |
| WOSCitedRecordID | wos001367808800011&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Xplore Digital Library (LUT) customDbUrl: eissn: 1941-0506 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014489 issn: 1077-2626 databaseCode: RIE dateStart: 19950101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwELWgYoCBzwLlowoSE1JaN3bieERVC1PFEKpuUezYUiVIqqZl4Ndz56RVlw5siZREyfM5987nu0fIs4GRNFYOYCKpwOdgNL7SlvmRlMJkImOhtU5sQkwm8WwmP5pidVcLY4xxm89MDw9dLj8v9RqXyvrY7owCgzgkh0KIulhrmzKAOEPWGwyFHwBNb1KYAyr7yXT4BqFgwHsM-QJH8RzgBUAWUIR9xx85gZX9XNP5nPHZP9_2nJw25NJ7ra3hghyY4pKc7LQcvCJ8Oq-wjvIXzryk7kv15SXlYq690bcyuctFebg862We-1tUVZt8jkfJ8N1vlBN8DRN25WdUh0ohWcjA_0ZaGQFuOadRzpmmsUVhTmbRecH0ZJkNc0OtljlTgYUQhbNr0irKwtwST4uQGxvCh2jw5iKXVCplhaWDnGcRVx3yssEvXdQNMlIXWFCZIu4p4p42uHdIG3HaubCGqEOeNpCnYN6Ys8gKU66rlCEBElEUw7039Vhs794M4d2ep96T4wDVet2CyQNprZZr80iO9M9qXi27YEOzuOts6A-MR77M |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV09T8MwED1BQQIGPguUzyAxIaV1YyeuR4SAIqBiCIgtih1bqgQtIi0Dv547J0VdGNgSKYmS53Punc93D-Dc4khap7o4kXQUCjSaUBvHw0QpaXOZ89g5LzYhB4Pe66t6qovVfS2MtdZvPrNtOvS5_GJsprRU1qF2ZwwZxCIsxUJE3apc6zdpgJGGqrYYyjBCol4nMbtMddKXq1sMBiPR5sQYBMnnIDNAukAy7HMeyUus_M02vde52fjn-27Cek0vg8vKHrZgwY62YW2u6eAOiJdhSZWU33gWpFVnqrcgHX8MTXD9rm3hs1EBLdAGeeD_F2XZhOeb6_SqH9baCaHBKTsJc2ZirYku5OiBE6OtRMdcsKQQ3LCeI2lO7sh94QTluYsLy5xRBdeRwyBF8F1ojMYjuw-BkbGwLsYPMejPZaGY0tpJx7qFyBOhW3Axwy_7qFpkZD60YCoj3DPCPatxb0GTcJq7sIKoBWczyDM0cMpa5CM7npYZJwokk6SH9-5VY_F792wID_546ims9NPHh-zhbnB_CKsRaff65ZMjaEw-p_YYls3XZFh-nnhL-gEpjMEr |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Visualizing+Temporal+Topic+Embeddings+with+a+Compass&rft.jtitle=IEEE+transactions+on+visualization+and+computer+graphics&rft.au=Palamarchuk%2C+Daniel&rft.au=Williams%2C+Lemara&rft.au=Mayer%2C+Brian&rft.au=Danielson%2C+Thomas&rft.date=2025-01-01&rft.pub=IEEE&rft.issn=1077-2626&rft.volume=31&rft.issue=1&rft.spage=272&rft.epage=282&rft_id=info:doi/10.1109%2FTVCG.2024.3456143&rft_id=info%3Apmid%2F39255128&rft.externalDocID=10670416 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1077-2626&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1077-2626&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1077-2626&client=summon |