Experimental Study of Dynamic Single-Source Shortest Path Algorithm

In this paper, software Inet 3.0 is applied to generate topology, which randomly generates dynamic topology nodes. Based on dynamic shortest path algorithms put forward by P.Narvaez, Xiaobin et al, we analyzed the time efficiency of dynamic and static shortest path algorithms, the different time eff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Applied Mechanics and Materials Jg. 58-60; S. 1493 - 1498
Hauptverfasser: Xiao, Qian Cai, Li, Ming Qi, Guo, Wen Qiang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Zurich Trans Tech Publications Ltd 01.06.2011
Schlagworte:
ISBN:303785149X, 9783037851494
ISSN:1660-9336, 1662-7482, 1662-7482
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:In this paper, software Inet 3.0 is applied to generate topology, which randomly generates dynamic topology nodes. Based on dynamic shortest path algorithms put forward by P.Narvaez, Xiaobin et al, we analyzed the time efficiency of dynamic and static shortest path algorithms, the different time efficiency inner dynamic shortest path algorithms, and the relationship of time efficiency between topology and dynamic shortest path algorithms. The result shows that Xiaobin algorithm is statistically better than Narvaez algorithm about 20-30 percent. Dynamic algorithms are not always better than static algorithms considering the amount of changed topology. Dynamic and static algorithms are roughly same when the amount of changed topology holds 10 percent. Dynamic algorithms perform better when less than 10 percent, otherwise static algorithms will be better. The time efficiency of dynamic algorithms is related to special topology.
Bibliographie:Selected, peer reviewed papers from the 2011 International Conference on Information Technology for Manufacturing Systems (ITMS 2011), Shanghai, China, May 7-8, 2011
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISBN:303785149X
9783037851494
ISSN:1660-9336
1662-7482
1662-7482
DOI:10.4028/www.scientific.net/AMM.58-60.1493