Using racial discourse communities to audit personalization algorithms

Abstract Personalization algorithms are the information undercurrent of the digital age. They learn users’ behaviors and tailor content to individual interests and predicted tastes. These algorithms, in turn, categorize and represent these users back to society—culturally, politically, and racially....

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Communication, culture & critique Ročník 16; číslo 3; s. 158 - 165
Hlavní autoři: Stoldt, Ryan, Maragh-Lloyd, Raven, Havens, Tim, Ekdale, Brian, High, Andrew C
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford University Press 25.08.2023
Témata:
ISSN:1753-9129, 1753-9137
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Popis
Shrnutí:Abstract Personalization algorithms are the information undercurrent of the digital age. They learn users’ behaviors and tailor content to individual interests and predicted tastes. These algorithms, in turn, categorize and represent these users back to society—culturally, politically, and racially. Researchers audit personalization algorithms to critique the ways bias is perpetuated within these systems. Yet, research examining the relationship between personalization algorithms and racial bias has not yet contended with the complexities of conceptualizing race. This article argues for the use of racialized discourse communities within algorithm audits, providing a way to audit algorithms that accounts for both the historical and cultural influences of race and its measurement online.
ISSN:1753-9129
1753-9137
DOI:10.1093/ccc/tcad015