The Saalschütz chain reactions and bilateral basic hypergeometric series

By iterating recursively the q-Saalschütz summation formula, we introduce the Saalschütz chain reactions. A general series transform, which expresses a nonterminating bilateral series in terms of a finite multiple unilateral sum, will be established. As applications we derive, by means of Bailey’s 6...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Constructive approximation Jg. 18; H. 4; S. 579 - 597
1. Verfasser: Chu, Wenchang
Format: Journal Article
Sprache:Englisch
Veröffentlicht: New York, NY Springer 01.01.2002
Springer Nature B.V
Schlagworte:
ISSN:0176-4276, 1432-0940
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:By iterating recursively the q-Saalschütz summation formula, we introduce the Saalschütz chain reactions. A general series transform, which expresses a nonterminating bilateral series in terms of a finite multiple unilateral sum, will be established. As applications we derive, by means of Bailey’s 6ψ6 -series identity, several bilateral transformations including one due to Milne [12]. These transformations further yield a number of closed formulas of very well-poised bilateral basic hypergeometric series; which are closely related to the identities obtained by Minton [13], Karlsson [11], Gasper [8], and Chu [5], [6], [7] through the partial fraction method and divided differences.
Bibliographie:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ISSN:0176-4276
1432-0940
DOI:10.1007/s00365-001-0026-4