A CNN-BILSTM monthly rainfall prediction model based on SCSSA optimization

Meteorological conditions play an important role in China's national production, and the accurate prediction of precipitation is of great significance for social production, flood prevention, and the protection of people's lives and property. A coupled model for monthly rainfall prediction...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Journal of water and climate change Ročník 15; číslo 9; s. 4862 - 4876
Hlavní autori: Zhang, Xianqi, Yang, Yang, Liu, Jiawen, Zhang, Yuehan, Zheng, Yupeng
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: London IWA Publishing 01.09.2024
Predmet:
ISSN:2040-2244, 2408-9354
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Meteorological conditions play an important role in China's national production, and the accurate prediction of precipitation is of great significance for social production, flood prevention, and the protection of people's lives and property. A coupled model for monthly rainfall prediction is constructed based on the convolutional neural network (CNN) and the bi-directional long- and short-term memory network (BILSTM) combined with a sparrow optimization algorithm incorporating positive cosine and Cauchy variants (SCSSA). The model combines the SCSSA optimization algorithm with the CNN-BILSTM model, capturing data features in data space as well as temporal dependencies through CNN-BILSTM to predict the relationship. Additionally, the model combines SCSSA's excellent global search capability and convergence speed to further improve the accuracy of model prediction. Based on the measured monthly rainfall data of Xi'an City from 1996 to 2020, the SCSSA-CNN-BILSTM model was compared with the SSA-CNN-BILSTM, SCSSA-BILSTM, and CNN-BILSTM models. The results show that all the evaluation indicators of the SCSSA-CNN-BILSTM model are optimal and the prediction accuracy is the highest. This shows that the proposed SCSSA-CNN-BILSTM model has high accuracy in monthly rainfall prediction and provides a new method for hydrological rainfall model predictions.
AbstractList Meteorological conditions play an important role in China's national production, and the accurate prediction of precipitation is of great significance for social production, flood prevention, and the protection of people's lives and property. A coupled model for monthly rainfall prediction is constructed based on the convolutional neural network (CNN) and the bi-directional long- and short-term memory network (BILSTM) combined with a sparrow optimization algorithm incorporating positive cosine and Cauchy variants (SCSSA). The model combines the SCSSA optimization algorithm with the CNN-BILSTM model, capturing data features in data space as well as temporal dependencies through CNN-BILSTM to predict the relationship. Additionally, the model combines SCSSA's excellent global search capability and convergence speed to further improve the accuracy of model prediction. Based on the measured monthly rainfall data of Xi'an City from 1996 to 2020, the SCSSA-CNN-BILSTM model was compared with the SSA-CNN-BILSTM, SCSSA-BILSTM, and CNN-BILSTM models. The results show that all the evaluation indicators of the SCSSA-CNN-BILSTM model are optimal and the prediction accuracy is the highest. This shows that the proposed SCSSA-CNN-BILSTM model has high accuracy in monthly rainfall prediction and provides a new method for hydrological rainfall model predictions.
Author Liu, Jiawen
Zhang, Yuehan
Zheng, Yupeng
Zhang, Xianqi
Yang, Yang
Author_xml – sequence: 1
  givenname: Xianqi
  surname: Zhang
  fullname: Zhang, Xianqi
– sequence: 2
  givenname: Yang
  surname: Yang
  fullname: Yang, Yang
– sequence: 3
  givenname: Jiawen
  surname: Liu
  fullname: Liu, Jiawen
– sequence: 4
  givenname: Yuehan
  surname: Zhang
  fullname: Zhang, Yuehan
– sequence: 5
  givenname: Yupeng
  surname: Zheng
  fullname: Zheng, Yupeng
BookMark eNptkDtPwzAQgC0EEqV04wdYYiXFrzTxWCIeRaUMKbPl2I5wlcbBdoXKr8elTIhb7k73na37LsBp73oDwBVGU4Jns9tPpaYEETalJT8BI8JQmXGas9NUI4YyQhg7B5MQNihFnnOKyhF4nsNqtcruFst6_QK3ro_v3R56aftWdh0cvNFWRev6NNOmg40MRsPU1lVdz6Ebot3aL3kgLsFZ2glm8pvH4O3hfl09ZcvXx0U1X2aKIhyzAjHMCi2VYQwXjPJGtlxp0mLGKddGEakN0YpjSQtdGInahNCG8FLNWKPoGFwf3x28-9iZEMXG7XyfvhQU4zzHOStJom6OlPIuBG9aMXi7lX4vMBIHYSIJEwdhIglLOPmDKxt_zopJRvf_0jdIBW_G
CitedBy_id crossref_primary_10_3390_atmos15121407
crossref_primary_10_1063_5_0273984
crossref_primary_10_1177_09544062251359064
crossref_primary_10_1007_s00704_025_05645_2
crossref_primary_10_1016_j_measurement_2025_118179
crossref_primary_10_1007_s13349_025_00964_4
crossref_primary_10_1007_s10967_025_10303_y
Cites_doi 10.1016/j.ijepes.2019.02.022
10.1038/s41598-023-39606-4
10.1016/j.jhydrol.2020.124657
10.3390/w15213717
10.2166/wcc.2023.257
10.1038/s41598-024-61855-0
10.1016/j.enconman.2022.115639
10.1109/TIA.2022.3167658
10.1109/ACCESS.2021.3077703
10.1007/s11069-022-05363-2
10.1016/j.patcog.2017.10.013
10.3390/w15091659
10.1007/s11269-022-03414-8
10.1007/s11269-017-1781-8
10.3390/rs16081467
10.1080/21642583.2019.1708830
10.2166/wcc.2018.196
10.1080/02626667.2021.1937631
10.3389/fenrg.2023.1193662
10.1007/s11356-022-20450-4
ContentType Journal Article
Copyright Copyright IWA Publishing 2024
Copyright_xml – notice: Copyright IWA Publishing 2024
DBID AAYXX
CITATION
7QH
7TG
7UA
AEUYN
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F1W
GNUQQ
H97
HCIFZ
KL.
L.G
PATMY
PCBAR
PHGZM
PHGZT
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
PYCSY
DOI 10.2166/wcc.2024.389
DatabaseName CrossRef
Aqualine
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
ProQuest One Sustainability
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials - QC
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest Central Student
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
SciTech Collection (ProQuest)
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Environmental Science Database
Earth, Atmospheric & Aquatic Science Database
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
Environmental Science Collection
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest Central Student
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality
Water Resources Abstracts
Environmental Sciences and Pollution Management
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
ProQuest One Sustainability
Meteorological & Geoastrophysical Abstracts
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Aqualine
Environmental Science Collection
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
Environmental Science Database
ProQuest One Academic
Meteorological & Geoastrophysical Abstracts - Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
Engineering
EISSN 2408-9354
EndPage 4876
ExternalDocumentID 10_2166_wcc_2024_389
GroupedDBID 0R~
4.4
7XC
8CJ
8FE
8FH
AAFWJ
AAJVE
AAYXX
ABFYC
ABLGR
AECGI
AENEX
AEUYN
AFFHD
AFKRA
AFPKN
AFRAH
AJXRC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1J
EBS
GEUZO
GROUPED_DOAJ
H13
HCIFZ
HFPTO
HZ~
O9-
OK1
P2P
PATMY
PCBAR
PHGZM
PHGZT
PYCSY
R0Z
RHI
7QH
7TG
7UA
AZQEC
C1K
DWQXO
F1W
GNUQQ
H97
KL.
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c301t-704147dace4417439baf9cd2f14939dec2ade2dc91a37d7ea0f9ba3b298c64bc3
IEDL.DBID BENPR
ISICitedReferencesCount 10
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305610600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 2040-2244
IngestDate Tue Sep 02 03:19:01 EDT 2025
Tue Nov 18 21:44:31 EST 2025
Sat Nov 29 04:08:54 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-704147dace4417439baf9cd2f14939dec2ade2dc91a37d7ea0f9ba3b298c64bc3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://doi.org/10.2166/wcc.2024.389
PQID 3115515482
PQPubID 2044528
PageCount 15
ParticipantIDs proquest_journals_3115515482
crossref_primary_10_2166_wcc_2024_389
crossref_citationtrail_10_2166_wcc_2024_389
PublicationCentury 2000
PublicationDate 2024-09-01
20240901
PublicationDateYYYYMMDD 2024-09-01
PublicationDate_xml – month: 09
  year: 2024
  text: 2024-09-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
PublicationTitle Journal of water and climate change
PublicationYear 2024
Publisher IWA Publishing
Publisher_xml – name: IWA Publishing
References Sha (key-10.2166/wcc.2024.389-17) 2022; 150
Burgan (key-10.2166/wcc.2024.389-2) 2022; 31
key-10.2166/wcc.2024.389-26
key-10.2166/wcc.2024.389-25
key-10.2166/wcc.2024.389-22
Li (key-10.2166/wcc.2024.389-11) 2022a; 58
key-10.2166/wcc.2024.389-21
Akbari Asanjan (key-10.2166/wcc.2024.389-1) 2018; 123
key-10.2166/wcc.2024.389-24
key-10.2166/wcc.2024.389-23
key-10.2166/wcc.2024.389-20
Jang (key-10.2166/wcc.2024.389-7) 2022
key-10.2166/wcc.2024.389-9
key-10.2166/wcc.2024.389-19
key-10.2166/wcc.2024.389-18
key-10.2166/wcc.2024.389-5
key-10.2166/wcc.2024.389-15
key-10.2166/wcc.2024.389-6
key-10.2166/wcc.2024.389-14
key-10.2166/wcc.2024.389-8
key-10.2166/wcc.2024.389-16
key-10.2166/wcc.2024.389-10
key-10.2166/wcc.2024.389-3
key-10.2166/wcc.2024.389-13
key-10.2166/wcc.2024.389-4
key-10.2166/wcc.2024.389-12
References_xml – ident: key-10.2166/wcc.2024.389-19
  doi: 10.1016/j.ijepes.2019.02.022
– ident: key-10.2166/wcc.2024.389-25
  doi: 10.1038/s41598-023-39606-4
– ident: key-10.2166/wcc.2024.389-10
  doi: 10.1016/j.jhydrol.2020.124657
– ident: key-10.2166/wcc.2024.389-21
  doi: 10.3390/w15213717
– ident: key-10.2166/wcc.2024.389-5
  doi: 10.2166/wcc.2023.257
– ident: key-10.2166/wcc.2024.389-8
  doi: 10.1038/s41598-024-61855-0
– ident: key-10.2166/wcc.2024.389-14
– volume: 58
  start-page: 91
  issue: 3
  year: 2022a
  ident: key-10.2166/wcc.2024.389-11
  article-title: Sparrow search algorithm combining sine-cosine and Cauchy mutation
  publication-title: Computer Engineering and Application
– ident: key-10.2166/wcc.2024.389-12
  doi: 10.1016/j.enconman.2022.115639
– ident: key-10.2166/wcc.2024.389-15
  doi: 10.1109/TIA.2022.3167658
– ident: key-10.2166/wcc.2024.389-9
  doi: 10.1109/ACCESS.2021.3077703
– year: 2022
  ident: key-10.2166/wcc.2024.389-7
– ident: key-10.2166/wcc.2024.389-3
  doi: 10.1007/s11069-022-05363-2
– ident: key-10.2166/wcc.2024.389-4
  doi: 10.1016/j.patcog.2017.10.013
– ident: key-10.2166/wcc.2024.389-6
  doi: 10.3390/w15091659
– ident: key-10.2166/wcc.2024.389-22
  doi: 10.1007/s11269-022-03414-8
– ident: key-10.2166/wcc.2024.389-18
  doi: 10.1007/s11269-017-1781-8
– ident: key-10.2166/wcc.2024.389-13
  doi: 10.3390/rs16081467
– ident: key-10.2166/wcc.2024.389-23
  doi: 10.1080/21642583.2019.1708830
– volume: 150
  start-page: 1495
  issue: 6
  year: 2022
  ident: key-10.2166/wcc.2024.389-17
  article-title: A hybrid analog-ensemble–convolutional-neural-network method for postprocessing precipitation forecasts
  publication-title: Monthly Weather Review
– ident: key-10.2166/wcc.2024.389-16
  doi: 10.2166/wcc.2018.196
– ident: key-10.2166/wcc.2024.389-20
  doi: 10.1080/02626667.2021.1937631
– volume: 31
  start-page: 4699
  issue: 5
  year: 2022
  ident: key-10.2166/wcc.2024.389-2
  article-title: Comparison of different ANN (FFBP, GRNN, RBF) algorithms and multiple linear regression for daily streamflow prediction in Kocasu River, Turkey
  publication-title: Fresenius Environmental Bull
– ident: key-10.2166/wcc.2024.389-24
  doi: 10.3389/fenrg.2023.1193662
– ident: key-10.2166/wcc.2024.389-26
  doi: 10.1007/s11356-022-20450-4
– volume: 123
  start-page: 12543
  issue: 22
  year: 2018
  ident: key-10.2166/wcc.2024.389-1
  article-title: Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks
  publication-title: Journal of Geophysical Research: Atmospheres
SSID ssj0000559308
Score 2.3716109
Snippet Meteorological conditions play an important role in China's national production, and the accurate prediction of precipitation is of great significance for...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 4862
SubjectTerms Accuracy
Agricultural production
Algorithms
Artificial neural networks
Flood control
Flood management
Flood predictions
Flood prevention
Hydrologic data
Hydrologic models
Hydrology
Meteorological conditions
Monthly rainfall
Monthly rainfall data
Neural networks
Optimization
Optimization algorithms
Precipitation
Prediction models
Rainfall
Rainfall forecasting
Runoff
Simulation
Wavelet transforms
Title A CNN-BILSTM monthly rainfall prediction model based on SCSSA optimization
URI https://www.proquest.com/docview/3115515482
Volume 15
WOSCitedRecordID wos001305610600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2408-9354
  dateEnd: 20241231
  omitProxy: false
  ssIdentifier: ssj0000559308
  issn: 2040-2244
  databaseCode: DOA
  dateStart: 20210101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Earth, Atmospheric & Aquatic Science Database
  customDbUrl:
  eissn: 2408-9354
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000559308
  issn: 2040-2244
  databaseCode: PCBAR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/eaasdb
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: Environmental Science Database
  customDbUrl:
  eissn: 2408-9354
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000559308
  issn: 2040-2244
  databaseCode: PATMY
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/environmentalscience
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 2408-9354
  dateEnd: 20241209
  omitProxy: false
  ssIdentifier: ssj0000559308
  issn: 2040-2244
  databaseCode: BENPR
  dateStart: 20100301
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BQQIG3oi3PMCEDInjNM2ESgUCBFFFiwRT5NiOQCptaQuIf89d4vIYYGGLlZMV5bPvPtvn-wD2BHF0HXs8l5nHZRgpnhmVcV_5IqvFYRQoXYhNRElSu7uLm27DbejSKsc-sXDUpqdpj_yIqsKExK_Fcf-Zk2oUna46CY1JmKJKZbICUyenSfPmc5fFQ8IclLJ0lDqH8UqW2e_Cr1aP3jQVMRTyMCCV9-9x6adbLmLN2cJ_v3IR5h3LZPVyWCzBhO0uw9y32oPLMOPkzx_eV-CyzhpJwk8urlrta4Z9jB4674zEI3LV6bD-gE5zCEFWCOcwCn2GYbPVaLXqrIdu58nd51yF27PTduOcO5EFrnFuj3jkSV9GRmlLYmRITzKVx9qIHJdOQWysFspYYXTsqyAykVVejiZBJuKarspMB2tQ6fa6dh1YJMOasV6Yq1zgo83yAHuSBkkV8jytN-Bg_ItT7SqQkxBGJ8WVCAGSIiApAZIiIBuw_2ndLytv_GK3PYYidfNvmH7hsPn36y2YpY7KrLFtqIwGL3YHpvXr6HE42HXDabdYqWOrWW9f338AShnVew
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUIn20AJtVQote4Be0Db2ev069JAGEIHEQkoqwcmsd9cCKSRpkhblT_EbOxNveBzaGwduXnk0kj2f5rE7Ox_AjqAcXaceL2XhcRnGihdGFdxXviiSNIwDpedkE3GWJWdn6ekS3C7uwlBb5cInzh21GWraI6_TVJiQ8mvhOihP7OwG67PJ99Y-GnNXiMODXvOIOwoBrhG5Ux570pexUdoS1RYG30KVqTaixMIgSI3VQhkrjE59FcQmtsorUSQoRJroSBY6QL1fR784sVTRaa6j7HgBy0mURqIGy6eNXuf8blfHwwQ9qGjwqFUP46Osuu2FH0X1G01DE4X8FhCr_MM4-DgMzGPb4dvn9ldW4Y3Lolmjgv0aLNnBOrx-MFtxHVYcvfvl7B0cN1gzy_iPVrvb6zDUMb3szxiRY5Sq32ejMZ1WEULZnBiIUWg3DJfdZrfbYEN0q9fuvup7-Pkk3_oBaoPhwH4EFsswMdYLS1UKfLRFGaAmaTBpxDxW6w3YW5g0127COhF99HOstAgAOQIgJwDkCIAN2L2THlWTRf4ht7Uwfe78yyS_t_un_7_ehpWjXqedt1vZySa8IqVVh9wW1Kbj3_YzvNR_pleT8RcHZQYXTw2dv_EqMmU
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB71gdpy4FFALbSwh-ZULbHX6zg-IBTSRoQkVqSkUnsy632olUKSJilV_hq_jpnYLuVQbj1ws-XRyN79PI_d2fkAjgTF6Dr2uJOZx2UYKZ4ZlXFf-SKrx2EUKL0im4iSpH5-HvfX4Fd5FobKKkubuDLUZqJpjbxKXWFCiq9F1RVlEf2T1ufpNScGKdppLek0coh07PIW07f5p_YJznVFiNbpsPmVFwwDXCOwFzzypC8jo7QlJi70zZlysTbCYd4QxMZqoYwVRse-CiITWeU5FAkyEdd1TWY6QL3rsEk94tAobPYbw97F3QqPh8F6kFPiUdke-kqZV94Lv1ar3mpqoCjkx4AY5u_7xL9dwsrPtZ7_zyP0Ap4V0TVr5L_DS1iz4114eq_n4i5sF7Tvl8tX8K3BmknCv7S7g2GP4TsvLkdLRqQZTo1GbDqjXSxCLlsRBjFy-Ybh7aA5GDTYBM3tj-Ic62s4e5QPewMb48nY7gGLZFg31gudcgIvbeYC1CQNBpMY32q9D8fl9Ka66LxOBCCjFDMwAkOKYEgJDCmCYR8qd9LTvOPIA3IHJQzSwu7M0z8YePvvxx9gC8GRdttJ5x3skM68cO4ANhazG3sIT_TPxdV89r5ANYPvjw2T3yBFOxs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-BILSTM+monthly+rainfall+prediction+model+based+on+SCSSA+optimization&rft.jtitle=Journal+of+water+and+climate+change&rft.au=Zhang%2C+Xianqi&rft.au=Yang%2C+Yang&rft.au=Liu%2C+Jiawen&rft.au=Zhang%2C+Yuehan&rft.date=2024-09-01&rft.issn=2040-2244&rft.eissn=2408-9354&rft.volume=15&rft.issue=9&rft.spage=4862&rft.epage=4876&rft_id=info:doi/10.2166%2Fwcc.2024.389&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_wcc_2024_389
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2244&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2244&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2244&client=summon