A CNN-BILSTM monthly rainfall prediction model based on SCSSA optimization
Meteorological conditions play an important role in China's national production, and the accurate prediction of precipitation is of great significance for social production, flood prevention, and the protection of people's lives and property. A coupled model for monthly rainfall prediction...
Uložené v:
| Vydané v: | Journal of water and climate change Ročník 15; číslo 9; s. 4862 - 4876 |
|---|---|
| Hlavní autori: | , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
London
IWA Publishing
01.09.2024
|
| Predmet: | |
| ISSN: | 2040-2244, 2408-9354 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Meteorological conditions play an important role in China's national production, and the accurate prediction of precipitation is of great significance for social production, flood prevention, and the protection of people's lives and property. A coupled model for monthly rainfall prediction is constructed based on the convolutional neural network (CNN) and the bi-directional long- and short-term memory network (BILSTM) combined with a sparrow optimization algorithm incorporating positive cosine and Cauchy variants (SCSSA). The model combines the SCSSA optimization algorithm with the CNN-BILSTM model, capturing data features in data space as well as temporal dependencies through CNN-BILSTM to predict the relationship. Additionally, the model combines SCSSA's excellent global search capability and convergence speed to further improve the accuracy of model prediction. Based on the measured monthly rainfall data of Xi'an City from 1996 to 2020, the SCSSA-CNN-BILSTM model was compared with the SSA-CNN-BILSTM, SCSSA-BILSTM, and CNN-BILSTM models. The results show that all the evaluation indicators of the SCSSA-CNN-BILSTM model are optimal and the prediction accuracy is the highest. This shows that the proposed SCSSA-CNN-BILSTM model has high accuracy in monthly rainfall prediction and provides a new method for hydrological rainfall model predictions. |
|---|---|
| AbstractList | Meteorological conditions play an important role in China's national production, and the accurate prediction of precipitation is of great significance for social production, flood prevention, and the protection of people's lives and property. A coupled model for monthly rainfall prediction is constructed based on the convolutional neural network (CNN) and the bi-directional long- and short-term memory network (BILSTM) combined with a sparrow optimization algorithm incorporating positive cosine and Cauchy variants (SCSSA). The model combines the SCSSA optimization algorithm with the CNN-BILSTM model, capturing data features in data space as well as temporal dependencies through CNN-BILSTM to predict the relationship. Additionally, the model combines SCSSA's excellent global search capability and convergence speed to further improve the accuracy of model prediction. Based on the measured monthly rainfall data of Xi'an City from 1996 to 2020, the SCSSA-CNN-BILSTM model was compared with the SSA-CNN-BILSTM, SCSSA-BILSTM, and CNN-BILSTM models. The results show that all the evaluation indicators of the SCSSA-CNN-BILSTM model are optimal and the prediction accuracy is the highest. This shows that the proposed SCSSA-CNN-BILSTM model has high accuracy in monthly rainfall prediction and provides a new method for hydrological rainfall model predictions. |
| Author | Liu, Jiawen Zhang, Yuehan Zheng, Yupeng Zhang, Xianqi Yang, Yang |
| Author_xml | – sequence: 1 givenname: Xianqi surname: Zhang fullname: Zhang, Xianqi – sequence: 2 givenname: Yang surname: Yang fullname: Yang, Yang – sequence: 3 givenname: Jiawen surname: Liu fullname: Liu, Jiawen – sequence: 4 givenname: Yuehan surname: Zhang fullname: Zhang, Yuehan – sequence: 5 givenname: Yupeng surname: Zheng fullname: Zheng, Yupeng |
| BookMark | eNptkDtPwzAQgC0EEqV04wdYYiXFrzTxWCIeRaUMKbPl2I5wlcbBdoXKr8elTIhb7k73na37LsBp73oDwBVGU4Jns9tPpaYEETalJT8BI8JQmXGas9NUI4YyQhg7B5MQNihFnnOKyhF4nsNqtcruFst6_QK3ro_v3R56aftWdh0cvNFWRev6NNOmg40MRsPU1lVdz6Ebot3aL3kgLsFZ2glm8pvH4O3hfl09ZcvXx0U1X2aKIhyzAjHMCi2VYQwXjPJGtlxp0mLGKddGEakN0YpjSQtdGInahNCG8FLNWKPoGFwf3x28-9iZEMXG7XyfvhQU4zzHOStJom6OlPIuBG9aMXi7lX4vMBIHYSIJEwdhIglLOPmDKxt_zopJRvf_0jdIBW_G |
| CitedBy_id | crossref_primary_10_3390_atmos15121407 crossref_primary_10_1063_5_0273984 crossref_primary_10_1177_09544062251359064 crossref_primary_10_1007_s00704_025_05645_2 crossref_primary_10_1016_j_measurement_2025_118179 crossref_primary_10_1007_s13349_025_00964_4 crossref_primary_10_1007_s10967_025_10303_y |
| Cites_doi | 10.1016/j.ijepes.2019.02.022 10.1038/s41598-023-39606-4 10.1016/j.jhydrol.2020.124657 10.3390/w15213717 10.2166/wcc.2023.257 10.1038/s41598-024-61855-0 10.1016/j.enconman.2022.115639 10.1109/TIA.2022.3167658 10.1109/ACCESS.2021.3077703 10.1007/s11069-022-05363-2 10.1016/j.patcog.2017.10.013 10.3390/w15091659 10.1007/s11269-022-03414-8 10.1007/s11269-017-1781-8 10.3390/rs16081467 10.1080/21642583.2019.1708830 10.2166/wcc.2018.196 10.1080/02626667.2021.1937631 10.3389/fenrg.2023.1193662 10.1007/s11356-022-20450-4 |
| ContentType | Journal Article |
| Copyright | Copyright IWA Publishing 2024 |
| Copyright_xml | – notice: Copyright IWA Publishing 2024 |
| DBID | AAYXX CITATION 7QH 7TG 7UA AEUYN AFKRA ATCPS AZQEC BENPR BHPHI BKSAR C1K CCPQU DWQXO F1W GNUQQ H97 HCIFZ KL. L.G PATMY PCBAR PHGZM PHGZT PKEHL PQEST PQQKQ PQUKI PRINS PYCSY |
| DOI | 10.2166/wcc.2024.389 |
| DatabaseName | CrossRef Aqualine Meteorological & Geoastrophysical Abstracts Water Resources Abstracts ProQuest One Sustainability ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials - QC ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest Central Student Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality SciTech Collection (ProQuest) Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Environmental Science Database Earth, Atmospheric & Aquatic Science Database ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China Environmental Science Collection |
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest Central Student ProQuest One Academic Middle East (New) ProQuest Central Essentials SciTech Premium Collection ProQuest One Community College ProQuest Central China Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality Water Resources Abstracts Environmental Sciences and Pollution Management Earth, Atmospheric & Aquatic Science Collection ProQuest Central ProQuest One Sustainability Meteorological & Geoastrophysical Abstracts Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Aqualine Environmental Science Collection ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts Environmental Science Database ProQuest One Academic Meteorological & Geoastrophysical Abstracts - Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional |
| Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Geography Engineering |
| EISSN | 2408-9354 |
| EndPage | 4876 |
| ExternalDocumentID | 10_2166_wcc_2024_389 |
| GroupedDBID | 0R~ 4.4 7XC 8CJ 8FE 8FH AAFWJ AAJVE AAYXX ABFYC ABLGR AECGI AENEX AEUYN AFFHD AFKRA AFPKN AFRAH AJXRC ALMA_UNASSIGNED_HOLDINGS ATCPS BENPR BHPHI BKSAR CCPQU CITATION D1J EBS GEUZO GROUPED_DOAJ H13 HCIFZ HFPTO HZ~ O9- OK1 P2P PATMY PCBAR PHGZM PHGZT PYCSY R0Z RHI 7QH 7TG 7UA AZQEC C1K DWQXO F1W GNUQQ H97 KL. L.G PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c301t-704147dace4417439baf9cd2f14939dec2ade2dc91a37d7ea0f9ba3b298c64bc3 |
| IEDL.DBID | BENPR |
| ISICitedReferencesCount | 10 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001305610600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 2040-2244 |
| IngestDate | Tue Sep 02 03:19:01 EDT 2025 Tue Nov 18 21:44:31 EST 2025 Sat Nov 29 04:08:54 EST 2025 |
| IsDoiOpenAccess | false |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 9 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c301t-704147dace4417439baf9cd2f14939dec2ade2dc91a37d7ea0f9ba3b298c64bc3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://doi.org/10.2166/wcc.2024.389 |
| PQID | 3115515482 |
| PQPubID | 2044528 |
| PageCount | 15 |
| ParticipantIDs | proquest_journals_3115515482 crossref_primary_10_2166_wcc_2024_389 crossref_citationtrail_10_2166_wcc_2024_389 |
| PublicationCentury | 2000 |
| PublicationDate | 2024-09-01 20240901 |
| PublicationDateYYYYMMDD | 2024-09-01 |
| PublicationDate_xml | – month: 09 year: 2024 text: 2024-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | London |
| PublicationPlace_xml | – name: London |
| PublicationTitle | Journal of water and climate change |
| PublicationYear | 2024 |
| Publisher | IWA Publishing |
| Publisher_xml | – name: IWA Publishing |
| References | Sha (key-10.2166/wcc.2024.389-17) 2022; 150 Burgan (key-10.2166/wcc.2024.389-2) 2022; 31 key-10.2166/wcc.2024.389-26 key-10.2166/wcc.2024.389-25 key-10.2166/wcc.2024.389-22 Li (key-10.2166/wcc.2024.389-11) 2022a; 58 key-10.2166/wcc.2024.389-21 Akbari Asanjan (key-10.2166/wcc.2024.389-1) 2018; 123 key-10.2166/wcc.2024.389-24 key-10.2166/wcc.2024.389-23 key-10.2166/wcc.2024.389-20 Jang (key-10.2166/wcc.2024.389-7) 2022 key-10.2166/wcc.2024.389-9 key-10.2166/wcc.2024.389-19 key-10.2166/wcc.2024.389-18 key-10.2166/wcc.2024.389-5 key-10.2166/wcc.2024.389-15 key-10.2166/wcc.2024.389-6 key-10.2166/wcc.2024.389-14 key-10.2166/wcc.2024.389-8 key-10.2166/wcc.2024.389-16 key-10.2166/wcc.2024.389-10 key-10.2166/wcc.2024.389-3 key-10.2166/wcc.2024.389-13 key-10.2166/wcc.2024.389-4 key-10.2166/wcc.2024.389-12 |
| References_xml | – ident: key-10.2166/wcc.2024.389-19 doi: 10.1016/j.ijepes.2019.02.022 – ident: key-10.2166/wcc.2024.389-25 doi: 10.1038/s41598-023-39606-4 – ident: key-10.2166/wcc.2024.389-10 doi: 10.1016/j.jhydrol.2020.124657 – ident: key-10.2166/wcc.2024.389-21 doi: 10.3390/w15213717 – ident: key-10.2166/wcc.2024.389-5 doi: 10.2166/wcc.2023.257 – ident: key-10.2166/wcc.2024.389-8 doi: 10.1038/s41598-024-61855-0 – ident: key-10.2166/wcc.2024.389-14 – volume: 58 start-page: 91 issue: 3 year: 2022a ident: key-10.2166/wcc.2024.389-11 article-title: Sparrow search algorithm combining sine-cosine and Cauchy mutation publication-title: Computer Engineering and Application – ident: key-10.2166/wcc.2024.389-12 doi: 10.1016/j.enconman.2022.115639 – ident: key-10.2166/wcc.2024.389-15 doi: 10.1109/TIA.2022.3167658 – ident: key-10.2166/wcc.2024.389-9 doi: 10.1109/ACCESS.2021.3077703 – year: 2022 ident: key-10.2166/wcc.2024.389-7 – ident: key-10.2166/wcc.2024.389-3 doi: 10.1007/s11069-022-05363-2 – ident: key-10.2166/wcc.2024.389-4 doi: 10.1016/j.patcog.2017.10.013 – ident: key-10.2166/wcc.2024.389-6 doi: 10.3390/w15091659 – ident: key-10.2166/wcc.2024.389-22 doi: 10.1007/s11269-022-03414-8 – ident: key-10.2166/wcc.2024.389-18 doi: 10.1007/s11269-017-1781-8 – ident: key-10.2166/wcc.2024.389-13 doi: 10.3390/rs16081467 – ident: key-10.2166/wcc.2024.389-23 doi: 10.1080/21642583.2019.1708830 – volume: 150 start-page: 1495 issue: 6 year: 2022 ident: key-10.2166/wcc.2024.389-17 article-title: A hybrid analog-ensemble–convolutional-neural-network method for postprocessing precipitation forecasts publication-title: Monthly Weather Review – ident: key-10.2166/wcc.2024.389-16 doi: 10.2166/wcc.2018.196 – ident: key-10.2166/wcc.2024.389-20 doi: 10.1080/02626667.2021.1937631 – volume: 31 start-page: 4699 issue: 5 year: 2022 ident: key-10.2166/wcc.2024.389-2 article-title: Comparison of different ANN (FFBP, GRNN, RBF) algorithms and multiple linear regression for daily streamflow prediction in Kocasu River, Turkey publication-title: Fresenius Environmental Bull – ident: key-10.2166/wcc.2024.389-24 doi: 10.3389/fenrg.2023.1193662 – ident: key-10.2166/wcc.2024.389-26 doi: 10.1007/s11356-022-20450-4 – volume: 123 start-page: 12543 issue: 22 year: 2018 ident: key-10.2166/wcc.2024.389-1 article-title: Short-term precipitation forecast based on the PERSIANN system and LSTM recurrent neural networks publication-title: Journal of Geophysical Research: Atmospheres |
| SSID | ssj0000559308 |
| Score | 2.3716109 |
| Snippet | Meteorological conditions play an important role in China's national production, and the accurate prediction of precipitation is of great significance for... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 4862 |
| SubjectTerms | Accuracy Agricultural production Algorithms Artificial neural networks Flood control Flood management Flood predictions Flood prevention Hydrologic data Hydrologic models Hydrology Meteorological conditions Monthly rainfall Monthly rainfall data Neural networks Optimization Optimization algorithms Precipitation Prediction models Rainfall Rainfall forecasting Runoff Simulation Wavelet transforms |
| Title | A CNN-BILSTM monthly rainfall prediction model based on SCSSA optimization |
| URI | https://www.proquest.com/docview/3115515482 |
| Volume | 15 |
| WOSCitedRecordID | wos001305610600001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2408-9354 dateEnd: 20241231 omitProxy: false ssIdentifier: ssj0000559308 issn: 2040-2244 databaseCode: DOA dateStart: 20210101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Earth, Atmospheric & Aquatic Science Database customDbUrl: eissn: 2408-9354 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000559308 issn: 2040-2244 databaseCode: PCBAR dateStart: 20100301 isFulltext: true titleUrlDefault: https://search.proquest.com/eaasdb providerName: ProQuest – providerCode: PRVPQU databaseName: Environmental Science Database customDbUrl: eissn: 2408-9354 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000559308 issn: 2040-2244 databaseCode: PATMY dateStart: 20100301 isFulltext: true titleUrlDefault: http://search.proquest.com/environmentalscience providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 2408-9354 dateEnd: 20241209 omitProxy: false ssIdentifier: ssj0000559308 issn: 2040-2244 databaseCode: BENPR dateStart: 20100301 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV07T8MwED5BQQIG3oi3PMCEDInjNM2ESgUCBFFFiwRT5NiOQCptaQuIf89d4vIYYGGLlZMV5bPvPtvn-wD2BHF0HXs8l5nHZRgpnhmVcV_5IqvFYRQoXYhNRElSu7uLm27DbejSKsc-sXDUpqdpj_yIqsKExK_Fcf-Zk2oUna46CY1JmKJKZbICUyenSfPmc5fFQ8IclLJ0lDqH8UqW2e_Cr1aP3jQVMRTyMCCV9-9x6adbLmLN2cJ_v3IR5h3LZPVyWCzBhO0uw9y32oPLMOPkzx_eV-CyzhpJwk8urlrta4Z9jB4674zEI3LV6bD-gE5zCEFWCOcwCn2GYbPVaLXqrIdu58nd51yF27PTduOcO5EFrnFuj3jkSV9GRmlLYmRITzKVx9qIHJdOQWysFspYYXTsqyAykVVejiZBJuKarspMB2tQ6fa6dh1YJMOasV6Yq1zgo83yAHuSBkkV8jytN-Bg_ItT7SqQkxBGJ8WVCAGSIiApAZIiIBuw_2ndLytv_GK3PYYidfNvmH7hsPn36y2YpY7KrLFtqIwGL3YHpvXr6HE42HXDabdYqWOrWW9f338AShnVew |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1LT9tAEB7RUIn20AJtVQote4Be0Db2ev069JAGEIHEQkoqwcmsd9cCKSRpkhblT_EbOxNveBzaGwduXnk0kj2f5rE7Ox_AjqAcXaceL2XhcRnGihdGFdxXviiSNIwDpedkE3GWJWdn6ekS3C7uwlBb5cInzh21GWraI6_TVJiQ8mvhOihP7OwG67PJ99Y-GnNXiMODXvOIOwoBrhG5Ux570pexUdoS1RYG30KVqTaixMIgSI3VQhkrjE59FcQmtsorUSQoRJroSBY6QL1fR784sVTRaa6j7HgBy0mURqIGy6eNXuf8blfHwwQ9qGjwqFUP46Osuu2FH0X1G01DE4X8FhCr_MM4-DgMzGPb4dvn9ldW4Y3Lolmjgv0aLNnBOrx-MFtxHVYcvfvl7B0cN1gzy_iPVrvb6zDUMb3szxiRY5Sq32ejMZ1WEULZnBiIUWg3DJfdZrfbYEN0q9fuvup7-Pkk3_oBaoPhwH4EFsswMdYLS1UKfLRFGaAmaTBpxDxW6w3YW5g0127COhF99HOstAgAOQIgJwDkCIAN2L2THlWTRf4ht7Uwfe78yyS_t_un_7_ehpWjXqedt1vZySa8IqVVh9wW1Kbj3_YzvNR_pleT8RcHZQYXTw2dv_EqMmU |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V1Lb9NAEB71gdpy4FFALbSwh-ZULbHX6zg-IBTSRoQkVqSkUnsy632olUKSJilV_hq_jpnYLuVQbj1ws-XRyN79PI_d2fkAjgTF6Dr2uJOZx2UYKZ4ZlXFf-SKrx2EUKL0im4iSpH5-HvfX4Fd5FobKKkubuDLUZqJpjbxKXWFCiq9F1RVlEf2T1ufpNScGKdppLek0coh07PIW07f5p_YJznVFiNbpsPmVFwwDXCOwFzzypC8jo7QlJi70zZlysTbCYd4QxMZqoYwVRse-CiITWeU5FAkyEdd1TWY6QL3rsEk94tAobPYbw97F3QqPh8F6kFPiUdke-kqZV94Lv1ar3mpqoCjkx4AY5u_7xL9dwsrPtZ7_zyP0Ap4V0TVr5L_DS1iz4114eq_n4i5sF7Tvl8tX8K3BmknCv7S7g2GP4TsvLkdLRqQZTo1GbDqjXSxCLlsRBjFy-Ybh7aA5GDTYBM3tj-Ic62s4e5QPewMb48nY7gGLZFg31gudcgIvbeYC1CQNBpMY32q9D8fl9Ka66LxOBCCjFDMwAkOKYEgJDCmCYR8qd9LTvOPIA3IHJQzSwu7M0z8YePvvxx9gC8GRdttJ5x3skM68cO4ANhazG3sIT_TPxdV89r5ANYPvjw2T3yBFOxs |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+CNN-BILSTM+monthly+rainfall+prediction+model+based+on+SCSSA+optimization&rft.jtitle=Journal+of+water+and+climate+change&rft.au=Zhang%2C+Xianqi&rft.au=Yang%2C+Yang&rft.au=Liu%2C+Jiawen&rft.au=Zhang%2C+Yuehan&rft.date=2024-09-01&rft.issn=2040-2244&rft.eissn=2408-9354&rft.volume=15&rft.issue=9&rft.spage=4862&rft.epage=4876&rft_id=info:doi/10.2166%2Fwcc.2024.389&rft.externalDBID=n%2Fa&rft.externalDocID=10_2166_wcc_2024_389 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-2244&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-2244&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-2244&client=summon |