Parameterized Gompertz-Guided Morphological AutoEncoder for Predicting Pulmonary Nodule Growth
The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLS...
Uložené v:
| Vydané v: | IEEE transactions on medical imaging Ročník 42; číslo 12; s. 3602 - 3613 |
|---|---|
| Hlavní autori: | , , , , , , , , , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
United States
IEEE
01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Predmet: | |
| ISSN: | 0278-0062, 1558-254X, 1558-254X |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset. |
|---|---|
| AbstractList | The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset.The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset. The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset. |
| Author | Li, Jiajian Yang, Xuening Fang, Jiansheng Yan, Yuguang Hou, Yonghe Liu, Jiang Wang, Jingwen Liu, Hongbo Li, Anwei Yang, Ming Yang, Huifang |
| Author_xml | – sequence: 1 givenname: Jiansheng orcidid: 0000-0003-0616-7074 surname: Fang fullname: Fang, Jiansheng email: 11949039@mail.sustech.edu.cn organization: CVTE Research, Guangzhou, China – sequence: 2 givenname: Jingwen surname: Wang fullname: Wang, Jingwen email: wangjingwen7003@cvte.com organization: CVTE Research, Guangzhou, China – sequence: 3 givenname: Anwei surname: Li fullname: Li, Anwei email: lianwei@cvte.com organization: CVTE Research, Guangzhou, China – sequence: 4 givenname: Yuguang orcidid: 0000-0001-9879-4758 surname: Yan fullname: Yan, Yuguang email: ygyan@outlook.com organization: School of Computer, Guangdong University of Technology, Guangzhou, China – sequence: 5 givenname: Hongbo surname: Liu fullname: Liu, Hongbo email: liuhongbo@cvte.com organization: CVTE Research, Guangzhou, China – sequence: 6 givenname: Jiajian surname: Li fullname: Li, Jiajian email: lijiajian@cvte.com organization: CVTE Research, Guangzhou, China – sequence: 7 givenname: Huifang surname: Yang fullname: Yang, Huifang email: yanghuifang@cvte.com organization: Yibicom Health Management Center, CVTE, Guangzhou, China – sequence: 8 givenname: Yonghe surname: Hou fullname: Hou, Yonghe email: houyonghe@cvte.com organization: Yibicom Health Management Center, CVTE, Guangzhou, China – sequence: 9 givenname: Xuening surname: Yang fullname: Yang, Xuening email: yangxuening@gdph.org.cn organization: Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China – sequence: 10 givenname: Ming surname: Yang fullname: Yang, Ming email: yangming@cvte.com organization: CVTE Research, Guangzhou, China – sequence: 11 givenname: Jiang orcidid: 0000-0001-6281-6505 surname: Liu fullname: Liu, Jiang email: liuj@sustech.edu.cn organization: Research Institute of Trustworthy Autonomous Systems and the Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37471191$$D View this record in MEDLINE/PubMed |
| BookMark | eNpd0c9L5DAUB_Agio6z3j2IFLx46ex7-dE2RxncUVB3DrOwpy1p86qVthnTFln_ejPMKOLpEfJ5Ie99j9l-5zpi7BRhhgj65-r-dsaBi5ngOuWg99gElcpiruTffTYBnmYxQMKP2HHfPwOgVKAP2ZFIZYqoccL-LY03LQ3k6zey0cK1a_LDW7wYaxvO986vn1zjHuvSNNHVOLjrrnSWfFQ5Hy092boc6u4xWo5N6zrj_0cPzo4NRQvvXoenH-ygMk1PJ7s6ZX9-Xa_mN_Hd78Xt_OouLgXgECcmTWyhqsRAZUALkVRSVgjC2HBjQgFNttSF0KAUL7BASypTspCgrEUxZZfbd9fevYzUD3lb9yU1jenIjX3OM4kQFoQbevGNPrvRd-F3QWmVpVJDFtT5To1FSzZf-7oN0-UfmwsAtqD0ru89VZ8EId-Ek4dw8k04-S6c0HK2bamJ6AvHTAuZiXeB5Ypo |
| CODEN | ITMID4 |
| Cites_doi | 10.1056/NEJMoa1102873 10.1109/TMI.2019.2943841 10.1136/thoraxjnl-2015-208107 10.1007/978-3-030-59725-2_55 10.5555/3045118.3045167 10.1111/j.2517-6161.1996.tb02080.x 10.1002/cam4.2233 10.1109/ICCV.2015.169 10.1007/978-3-319-24574-4_28 10.1088/1742-6596/1366/1/012018 10.1109/TCSVT.2021.3080920 10.1016/j.compmedimag.2021.101885 10.21037/tlcr-22-59 10.1109/CVPR.2016.90 10.3389/fonc.2022.1002953 10.1038/s41598-018-27569-w 10.48550/ARXIV.1706.03762 10.1109/TPAMI.2017.2709749 10.1002/mp.12766 10.48550/arXiv.1603.08155 10.1007/978-3-030-32226-7_73 10.1016/j.media.2017.06.015 10.1016/j.compmedimag.2018.10.006 10.1016/j.eururo.2019.02.033 10.6004/jnccn.2018.0020 10.1371/journal.pone.0159880 10.48550/arXiv.1606.04797 10.1109/IJCNN52387.2021.9534163 10.1016/S0006-3495(03)74715-8 10.1109/IJCNN.2018.8489345 10.1109/ISBI48211.2021.9433893 10.1109/ISBI45749.2020.9098486 10.1111/1759-7714.13580 10.3389/fonc.2021.658138 10.1046/j.1365-2184.2003.00259.x 10.1148/RADIOL.2017161659/ASSET/IMAGES/LARGE/RADIOL.2017161659.FIG14B.JPEG 10.1038/s41591-019-0447-x 10.1007/978-3-030-59725-2_49 10.1007/978-3-031-16431-6_46 10.3322/caac.21551 10.1016/j.media.2021.101981 10.21037/qims.2019.01.04 10.1371/journal.pcbi.1007178 10.1109/TMI.2017.2774044 |
| ContentType | Journal Article |
| Copyright | Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| Copyright_xml | – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023 |
| DBID | 97E RIA RIE AAYXX CITATION CGR CUY CVF ECM EIF NPM 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| DOI | 10.1109/TMI.2023.3297209 |
| DatabaseName | IEEE Xplore (IEEE) IEEE All-Society Periodicals Package (ASPP) 1998–Present IEEE Electronic Library (IEL) CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts MEDLINE - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) Materials Research Database Civil Engineering Abstracts Aluminium Industry Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Ceramic Abstracts Materials Business File METADEX Biotechnology and BioEngineering Abstracts Computer and Information Systems Abstracts Professional Aerospace Database Nursing & Allied Health Premium Engineered Materials Abstracts Biotechnology Research Abstracts Solid State and Superconductivity Abstracts Engineering Research Database Corrosion Abstracts Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE Materials Research Database |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: RIE name: IEEE Electronic Library (IEL) url: https://ieeexplore.ieee.org/ sourceTypes: Publisher – sequence: 3 dbid: 7X8 name: MEDLINE - Academic url: https://search.proquest.com/medline sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Medicine Engineering |
| EISSN | 1558-254X |
| EndPage | 3613 |
| ExternalDocumentID | 37471191 10_1109_TMI_2023_3297209 10189348 |
| Genre | orig-research Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: General Program of National Natural Science Foundation of China grantid: 82272086 funderid: 10.13039/501100001809 – fundername: Guangzhou Municipal Science and Technology Bureau grantid: 202201011664 funderid: 10.13039/501100020084 – fundername: Natural Science Foundation of China grantid: 62206061 funderid: 10.13039/501100001809 – fundername: Guangzhou Basic and Applied Basic Research Foundation grantid: 2023A04J1700 |
| GroupedDBID | --- -DZ -~X .GJ 0R~ 29I 4.4 53G 5GY 5RE 5VS 6IK 97E AAJGR AARMG AASAJ AAWTH ABAZT ABQJQ ABVLG ACGFO ACGFS ACIWK ACNCT ACPRK AENEX AETIX AFRAH AGQYO AGSQL AHBIQ AI. AIBXA AKJIK AKQYR ALLEH ALMA_UNASSIGNED_HOLDINGS ASUFR ATWAV BEFXN BFFAM BGNUA BKEBE BPEOZ CS3 DU5 EBS EJD F5P HZ~ H~9 IBMZZ ICLAB IFIPE IFJZH IPLJI JAVBF LAI M43 MS~ O9- OCL P2P PQQKQ RIA RIE RNS RXW TAE TN5 VH1 AAYXX CITATION AAYOK CGR CUY CVF ECM EIF NPM PKN RIG Z5M 7QF 7QO 7QQ 7SC 7SE 7SP 7SR 7TA 7TB 7U5 8BQ 8FD F28 FR3 H8D JG9 JQ2 KR7 L7M L~C L~D NAPCQ P64 7X8 |
| ID | FETCH-LOGICAL-c301t-6a76db5f6a0fa09336f44f103ada76a3ad09edc9b390552b1b1de5854b405dd13 |
| IEDL.DBID | RIE |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122030500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0278-0062 1558-254X |
| IngestDate | Wed Oct 01 13:56:22 EDT 2025 Mon Jun 30 06:18:04 EDT 2025 Wed Feb 19 01:58:34 EST 2025 Sat Nov 29 05:14:11 EST 2025 Wed Aug 27 02:09:42 EDT 2025 |
| IsPeerReviewed | false |
| IsScholarly | true |
| Issue | 12 |
| Language | English |
| License | https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html https://doi.org/10.15223/policy-029 https://doi.org/10.15223/policy-037 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c301t-6a76db5f6a0fa09336f44f103ada76a3ad09edc9b390552b1b1de5854b405dd13 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
| ORCID | 0000-0003-0616-7074 0000-0001-9879-4758 0000-0001-6281-6505 |
| PMID | 37471191 |
| PQID | 2895874908 |
| PQPubID | 85460 |
| PageCount | 12 |
| ParticipantIDs | proquest_journals_2895874908 pubmed_primary_37471191 ieee_primary_10189348 crossref_primary_10_1109_TMI_2023_3297209 proquest_miscellaneous_2841020911 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-12-01 |
| PublicationDateYYYYMMDD | 2023-12-01 |
| PublicationDate_xml | – month: 12 year: 2023 text: 2023-12-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | United States |
| PublicationPlace_xml | – name: United States – name: New York |
| PublicationTitle | IEEE transactions on medical imaging |
| PublicationTitleAbbrev | TMI |
| PublicationTitleAlternate | IEEE Trans Med Imaging |
| PublicationYear | 2023 |
| Publisher | IEEE The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| Publisher_xml | – name: IEEE – name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE) |
| References | ref14 Fred Agarap (ref41) 2018 ref11 ref55 ref10 ref17 ref16 ref19 ref18 Bank (ref51) 2020 ref50 Simonyan (ref44) 2014 Xinyue (ref12) 2017; 20 ref46 ref45 ref48 ref47 ref42 ref43 ref49 ref8 ref7 ref9 ref4 ref3 ref6 ref5 Taib (ref15) 2022; 2 Norton (ref13) 1988; 48 ref40 ref35 ref37 ref36 ref31 ref30 ref32 ref2 ref1 ref39 ref38 Zhou (ref34) 2019 ref24 ref23 ref26 ref25 ref20 Goyal (ref52) 2017 ref22 ref21 Pedrosa (ref33) 2019 ref28 ref27 van der Maaten (ref54) 2008; 9 ref29 Loshchilov (ref53) 2016 |
| References_xml | – ident: ref6 doi: 10.1056/NEJMoa1102873 – ident: ref30 doi: 10.1109/TMI.2019.2943841 – year: 2018 ident: ref41 article-title: Deep learning using rectified linear units (ReLU) publication-title: arXiv:1803.08375 – ident: ref4 doi: 10.1136/thoraxjnl-2015-208107 – ident: ref28 doi: 10.1007/978-3-030-59725-2_55 – ident: ref40 doi: 10.5555/3045118.3045167 – ident: ref50 doi: 10.1111/j.2517-6161.1996.tb02080.x – year: 2019 ident: ref34 article-title: Objects as points publication-title: arXiv:1904.07850 – ident: ref27 doi: 10.1002/cam4.2233 – ident: ref38 doi: 10.1109/ICCV.2015.169 – ident: ref36 doi: 10.1007/978-3-319-24574-4_28 – ident: ref14 doi: 10.1088/1742-6596/1366/1/012018 – ident: ref49 doi: 10.1109/TCSVT.2021.3080920 – ident: ref35 doi: 10.1016/j.compmedimag.2021.101885 – ident: ref11 doi: 10.21037/tlcr-22-59 – ident: ref37 doi: 10.1109/CVPR.2016.90 – ident: ref31 doi: 10.3389/fonc.2022.1002953 – ident: ref18 doi: 10.1038/s41598-018-27569-w – ident: ref39 doi: 10.48550/ARXIV.1706.03762 – ident: ref47 doi: 10.1109/TPAMI.2017.2709749 – year: 2014 ident: ref44 article-title: Very deep convolutional networks for large-scale image recognition publication-title: arXiv:1409.1556 – ident: ref2 doi: 10.1002/mp.12766 – ident: ref43 doi: 10.48550/arXiv.1603.08155 – ident: ref25 doi: 10.1007/978-3-030-32226-7_73 – ident: ref32 doi: 10.1016/j.media.2017.06.015 – ident: ref19 doi: 10.1016/j.compmedimag.2018.10.006 – year: 2019 ident: ref33 article-title: LNDb: A lung nodule database on computed tomography publication-title: arXiv:1911.08434 – ident: ref55 doi: 10.1016/j.eururo.2019.02.033 – ident: ref3 doi: 10.6004/jnccn.2018.0020 – ident: ref45 doi: 10.1371/journal.pone.0159880 – ident: ref42 doi: 10.48550/arXiv.1606.04797 – year: 2016 ident: ref53 article-title: SGDR: Stochastic gradient descent with warm restarts publication-title: arXiv:1608.03983 – ident: ref10 doi: 10.1109/IJCNN52387.2021.9534163 – ident: ref20 doi: 10.1016/S0006-3495(03)74715-8 – volume: 9 start-page: 2579 year: 2008 ident: ref54 article-title: Visualizing data using t-SNE publication-title: J. Mach. Learn. Res. – volume: 48 start-page: 7067 issue: 24_Part_1 year: 1988 ident: ref13 article-title: A Gompertzian model of human breast cancer growth publication-title: Cancer Res. – ident: ref24 doi: 10.1109/IJCNN.2018.8489345 – ident: ref9 doi: 10.1109/ISBI48211.2021.9433893 – ident: ref46 doi: 10.1109/ISBI45749.2020.9098486 – ident: ref22 doi: 10.1111/1759-7714.13580 – ident: ref23 doi: 10.3389/fonc.2021.658138 – volume: 2 start-page: 481 issue: 1 year: 2022 ident: ref15 article-title: Mathematical modeling in tumor growth using Gompertz model publication-title: Enhanced Knowl. Sci. Technol. – ident: ref17 doi: 10.1046/j.1365-2184.2003.00259.x – ident: ref5 doi: 10.1148/RADIOL.2017161659/ASSET/IMAGES/LARGE/RADIOL.2017161659.FIG14B.JPEG – volume: 20 start-page: 334 issue: 5 year: 2017 ident: ref12 article-title: Analysis of growth curve type in pulmonary nodules with different characteristics publication-title: Chin. J. Lung Cancer – ident: ref26 doi: 10.1038/s41591-019-0447-x – year: 2020 ident: ref51 article-title: Autoencoders publication-title: arXiv:2003.05991 – ident: ref8 doi: 10.1007/978-3-030-59725-2_49 – year: 2017 ident: ref52 article-title: Accurate, large minibatch SGD: Training ImageNet in 1 hour publication-title: arXiv:1706.02677 – ident: ref7 doi: 10.1007/978-3-031-16431-6_46 – ident: ref1 doi: 10.3322/caac.21551 – ident: ref48 doi: 10.1016/j.media.2021.101981 – ident: ref21 doi: 10.21037/qims.2019.01.04 – ident: ref16 doi: 10.1371/journal.pcbi.1007178 – ident: ref29 doi: 10.1109/TMI.2017.2774044 |
| SSID | ssj0014509 |
| Score | 2.449318 |
| Snippet | The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary... |
| SourceID | proquest pubmed crossref ieee |
| SourceType | Aggregation Database Index Database Publisher |
| StartPage | 3602 |
| SubjectTerms | autoencoder Computed tomography Datasets Decoders Diagnosis Gompertz curves Gompertz function Growth kinetics growth prediction Growth rate Humans Lung Lung cancer Lung Neoplasms - diagnostic imaging Lung Neoplasms - pathology Lung nodules Mathematical models Medical imaging Morphology Nodules Parameterization Predictive models Progressions Pulmonary nodule Radiographic Image Interpretation, Computer-Assisted - methods Solitary Pulmonary Nodule - diagnostic imaging Task analysis Tomography, X-Ray Computed - methods Tumors Visualization |
| Title | Parameterized Gompertz-Guided Morphological AutoEncoder for Predicting Pulmonary Nodule Growth |
| URI | https://ieeexplore.ieee.org/document/10189348 https://www.ncbi.nlm.nih.gov/pubmed/37471191 https://www.proquest.com/docview/2895874908 https://www.proquest.com/docview/2841020911 |
| Volume | 42 |
| WOSCitedRecordID | wos001122030500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIEE databaseName: IEEE Electronic Library (IEL) customDbUrl: eissn: 1558-254X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0014509 issn: 0278-0062 databaseCode: RIE dateStart: 19820101 isFulltext: true titleUrlDefault: https://ieeexplore.ieee.org/ providerName: IEEE |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RCiE48CgtDZTKSFw4ZGvHsR0fK9QuHHa1hyLticjJOKJSlaA0QWp_PZ48VuXQA6cksuVYnnHyjb95AHxWRMWVaOJS6SpOjS7jrHAYe68x49KiddlQbMKs19l2azdTsPoQC-O9H5zP_IJuBy4fm7Kno7Izyi5lZZrtwZ4xZgzW2lEGqRr9ORJKGct1MnOS3J5drb4vqEz4QibWJJwyhUoyxoQV__yOhvoqj0PN4Zdz-eo_J_saXk7Ykp2PyvAGnvj6AF48yDh4AM9WE5f-Fn5uHDlmUa7me49sSQC67e7jZX-N4XnVBAnMX0Z23nfNRU3x7y0LMJdtWhqHXKbZpr8JquzaO7ZusL_xbBks--7XIfy4vLj6-i2eqi3EZdjkXayd0VioSjteOTrn0FWaVoJLh6HFhQu3HktbSMuVSgpRCPTB2EiLgPkQhTyC_bqp_TEwmXmBSprEaZu6SlmFkiP3xilRuVJF8GVe9Pz3mFQjH4wRbvMgq5xklU-yiuCQ1vZBv3FZIziZxZRP2-42D9ajygxxmRF82jWHDUMsiKt901OfNICqAJNEBO9G8e4Gn7Xi_SMv_QDPaW6jO8sJ7Hdt7z_C0_JPd33bngat3Gang1b-BRub3Ok |
| linkProvider | IEEE |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61tCpwgBYopEDrSr30kMWOH4mPqIIFlV3tYStxauTEjkBCSRWSSuXX48ljBQcOPSWRLcfyjJNv_M0D4JtEKi63cZhLVYQiVnmYZMaGzimbUK6tNklXbCKez5Pra70YgtW7WBjnXOd85iZ423H5tspbPCo7wexSmovkNbyRQkSsD9dakQZC9h4dESaNpSoaWUmqT5azywkWCp_wSMcRxVyhHM0xptmzH1JXYeVlsNn9dM63_3O672FrQJfktFeHD_DKlTuw-STn4A68mw1s-i78Xhh0zcJszQ_OkilC6Lp5CKftrfXPs8rLYPw2ktO2qc5KjICviQe6ZFHjOOg0TRbtnVdmU_8j88q2d45MvW3f3OzBr_Oz5Y-LcKi3EOZ-mzehMrGymSyUoYXBkw5VCFEwyo31LcZfqHY21xnXVMooYxmzzpsbIvOoz1rGP8JaWZXuAAhPHLOSx5FRWphCamk5tdTFRrLC5DKA7-Oip3_6tBppZ45QnXpZpSirdJBVAHu4tk_69csawNEopnTYePeptx9lEiObGcDXVbPfMsiDmNJVLfYRHlZ5oMQC2O_Fuxp81IpPL7z0C6xfLGdX6dXl_OchbOA8e-eWI1hr6tYdw9v8b3N7X3_udPMRi_DfSA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+Gompertz-Guided+Morphological+AutoEncoder+for+Predicting+Pulmonary+Nodule+Growth&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Fang%2C+Jiansheng&rft.au=Wang%2C+Jingwen&rft.au=Li%2C+Anwei&rft.au=Yan%2C+Yuguang&rft.date=2023-12-01&rft.eissn=1558-254X&rft.volume=42&rft.issue=12&rft.spage=3602&rft_id=info:doi/10.1109%2FTMI.2023.3297209&rft_id=info%3Apmid%2F37471191&rft.externalDocID=37471191 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon |