Parameterized Gompertz-Guided Morphological AutoEncoder for Predicting Pulmonary Nodule Growth

The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLS...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:IEEE transactions on medical imaging Ročník 42; číslo 12; s. 3602 - 3613
Hlavní autori: Fang, Jiansheng, Wang, Jingwen, Li, Anwei, Yan, Yuguang, Liu, Hongbo, Li, Jiajian, Yang, Huifang, Hou, Yonghe, Yang, Xuening, Yang, Ming, Liu, Jiang
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: United States IEEE 01.12.2023
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Predmet:
ISSN:0278-0062, 1558-254X, 1558-254X
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset.
AbstractList The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset.The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset.
The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary nodule management. To facilitate the prosperity of research on nodule growth prediction, we organized and published a temporal dataset called NLSTt with consecutive computed tomography (CT) scans. Based on the self-built dataset, we develop a visual learner to predict the growth for the following CT scan qualitatively and further propose a model to predict the growth rate of pulmonary nodules quantitatively, so that better diagnosis can be achieved with the help of our predicted results. To this end, in this work, we propose a parameterized Gempertz-guided morphological autoencoder (GM-AE) to generate any future-time-span high-quality visual appearances of pulmonary nodules from the baseline CT scan. Specifically, we parameterize a popular mathematical model for tumor growth kinetics, Gompertz, to predict future masses and volumes of pulmonary nodules. Then, we exploit the expected growth rate on the mass and volume to guide decoders generating future shape and texture of pulmonary nodules. We introduce two branches in an autoencoder to encourage shape-aware and textural-aware representation learning and integrate the generated shape into the textural-aware branch to simulate the future morphology of pulmonary nodules. We conduct extensive experiments on the self-built NLSTt dataset to demonstrate the superiority of our GM-AE to its competitive counterparts. Experiment results also reveal the learnable Gompertz function enjoys promising descriptive power in accounting for inter-subject variability of the growth rate for pulmonary nodules. Besides, we evaluate our GM-AE model on an in-house dataset to validate its generalizability and practicality. We make its code publicly available along with the published NLSTt dataset.
Author Li, Jiajian
Yang, Xuening
Fang, Jiansheng
Yan, Yuguang
Hou, Yonghe
Liu, Jiang
Wang, Jingwen
Liu, Hongbo
Li, Anwei
Yang, Ming
Yang, Huifang
Author_xml – sequence: 1
  givenname: Jiansheng
  orcidid: 0000-0003-0616-7074
  surname: Fang
  fullname: Fang, Jiansheng
  email: 11949039@mail.sustech.edu.cn
  organization: CVTE Research, Guangzhou, China
– sequence: 2
  givenname: Jingwen
  surname: Wang
  fullname: Wang, Jingwen
  email: wangjingwen7003@cvte.com
  organization: CVTE Research, Guangzhou, China
– sequence: 3
  givenname: Anwei
  surname: Li
  fullname: Li, Anwei
  email: lianwei@cvte.com
  organization: CVTE Research, Guangzhou, China
– sequence: 4
  givenname: Yuguang
  orcidid: 0000-0001-9879-4758
  surname: Yan
  fullname: Yan, Yuguang
  email: ygyan@outlook.com
  organization: School of Computer, Guangdong University of Technology, Guangzhou, China
– sequence: 5
  givenname: Hongbo
  surname: Liu
  fullname: Liu, Hongbo
  email: liuhongbo@cvte.com
  organization: CVTE Research, Guangzhou, China
– sequence: 6
  givenname: Jiajian
  surname: Li
  fullname: Li, Jiajian
  email: lijiajian@cvte.com
  organization: CVTE Research, Guangzhou, China
– sequence: 7
  givenname: Huifang
  surname: Yang
  fullname: Yang, Huifang
  email: yanghuifang@cvte.com
  organization: Yibicom Health Management Center, CVTE, Guangzhou, China
– sequence: 8
  givenname: Yonghe
  surname: Hou
  fullname: Hou, Yonghe
  email: houyonghe@cvte.com
  organization: Yibicom Health Management Center, CVTE, Guangzhou, China
– sequence: 9
  givenname: Xuening
  surname: Yang
  fullname: Yang, Xuening
  email: yangxuening@gdph.org.cn
  organization: Guangdong Lung Cancer Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
– sequence: 10
  givenname: Ming
  surname: Yang
  fullname: Yang, Ming
  email: yangming@cvte.com
  organization: CVTE Research, Guangzhou, China
– sequence: 11
  givenname: Jiang
  orcidid: 0000-0001-6281-6505
  surname: Liu
  fullname: Liu, Jiang
  email: liuj@sustech.edu.cn
  organization: Research Institute of Trustworthy Autonomous Systems and the Department of Computer Science and Engineering, Southern University of Science and Technology, Shenzhen, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37471191$$D View this record in MEDLINE/PubMed
BookMark eNpd0c9L5DAUB_Agio6z3j2IFLx46ex7-dE2RxncUVB3DrOwpy1p86qVthnTFln_ejPMKOLpEfJ5Ie99j9l-5zpi7BRhhgj65-r-dsaBi5ngOuWg99gElcpiruTffTYBnmYxQMKP2HHfPwOgVKAP2ZFIZYqoccL-LY03LQ3k6zey0cK1a_LDW7wYaxvO986vn1zjHuvSNNHVOLjrrnSWfFQ5Hy092boc6u4xWo5N6zrj_0cPzo4NRQvvXoenH-ygMk1PJ7s6ZX9-Xa_mN_Hd78Xt_OouLgXgECcmTWyhqsRAZUALkVRSVgjC2HBjQgFNttSF0KAUL7BASypTspCgrEUxZZfbd9fevYzUD3lb9yU1jenIjX3OM4kQFoQbevGNPrvRd-F3QWmVpVJDFtT5To1FSzZf-7oN0-UfmwsAtqD0ru89VZ8EId-Ek4dw8k04-S6c0HK2bamJ6AvHTAuZiXeB5Ypo
CODEN ITMID4
Cites_doi 10.1056/NEJMoa1102873
10.1109/TMI.2019.2943841
10.1136/thoraxjnl-2015-208107
10.1007/978-3-030-59725-2_55
10.5555/3045118.3045167
10.1111/j.2517-6161.1996.tb02080.x
10.1002/cam4.2233
10.1109/ICCV.2015.169
10.1007/978-3-319-24574-4_28
10.1088/1742-6596/1366/1/012018
10.1109/TCSVT.2021.3080920
10.1016/j.compmedimag.2021.101885
10.21037/tlcr-22-59
10.1109/CVPR.2016.90
10.3389/fonc.2022.1002953
10.1038/s41598-018-27569-w
10.48550/ARXIV.1706.03762
10.1109/TPAMI.2017.2709749
10.1002/mp.12766
10.48550/arXiv.1603.08155
10.1007/978-3-030-32226-7_73
10.1016/j.media.2017.06.015
10.1016/j.compmedimag.2018.10.006
10.1016/j.eururo.2019.02.033
10.6004/jnccn.2018.0020
10.1371/journal.pone.0159880
10.48550/arXiv.1606.04797
10.1109/IJCNN52387.2021.9534163
10.1016/S0006-3495(03)74715-8
10.1109/IJCNN.2018.8489345
10.1109/ISBI48211.2021.9433893
10.1109/ISBI45749.2020.9098486
10.1111/1759-7714.13580
10.3389/fonc.2021.658138
10.1046/j.1365-2184.2003.00259.x
10.1148/RADIOL.2017161659/ASSET/IMAGES/LARGE/RADIOL.2017161659.FIG14B.JPEG
10.1038/s41591-019-0447-x
10.1007/978-3-030-59725-2_49
10.1007/978-3-031-16431-6_46
10.3322/caac.21551
10.1016/j.media.2021.101981
10.21037/qims.2019.01.04
10.1371/journal.pcbi.1007178
10.1109/TMI.2017.2774044
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2023
DBID 97E
RIA
RIE
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
DOI 10.1109/TMI.2023.3297209
DatabaseName IEEE Xplore (IEEE)
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Nursing & Allied Health Premium
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://ieeexplore.ieee.org/
  sourceTypes: Publisher
– sequence: 3
  dbid: 7X8
  name: MEDLINE - Academic
  url: https://search.proquest.com/medline
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1558-254X
EndPage 3613
ExternalDocumentID 37471191
10_1109_TMI_2023_3297209
10189348
Genre orig-research
Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: General Program of National Natural Science Foundation of China
  grantid: 82272086
  funderid: 10.13039/501100001809
– fundername: Guangzhou Municipal Science and Technology Bureau
  grantid: 202201011664
  funderid: 10.13039/501100020084
– fundername: Natural Science Foundation of China
  grantid: 62206061
  funderid: 10.13039/501100001809
– fundername: Guangzhou Basic and Applied Basic Research Foundation
  grantid: 2023A04J1700
GroupedDBID ---
-DZ
-~X
.GJ
0R~
29I
4.4
53G
5GY
5RE
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
AENEX
AETIX
AFRAH
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
EBS
EJD
F5P
HZ~
H~9
IBMZZ
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
PQQKQ
RIA
RIE
RNS
RXW
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
CGR
CUY
CVF
ECM
EIF
NPM
PKN
RIG
Z5M
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
JG9
JQ2
KR7
L7M
L~C
L~D
NAPCQ
P64
7X8
ID FETCH-LOGICAL-c301t-6a76db5f6a0fa09336f44f103ada76a3ad09edc9b390552b1b1de5854b405dd13
IEDL.DBID RIE
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001122030500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0278-0062
1558-254X
IngestDate Wed Oct 01 13:56:22 EDT 2025
Mon Jun 30 06:18:04 EDT 2025
Wed Feb 19 01:58:34 EST 2025
Sat Nov 29 05:14:11 EST 2025
Wed Aug 27 02:09:42 EDT 2025
IsPeerReviewed false
IsScholarly true
Issue 12
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
https://doi.org/10.15223/policy-029
https://doi.org/10.15223/policy-037
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-6a76db5f6a0fa09336f44f103ada76a3ad09edc9b390552b1b1de5854b405dd13
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0616-7074
0000-0001-9879-4758
0000-0001-6281-6505
PMID 37471191
PQID 2895874908
PQPubID 85460
PageCount 12
ParticipantIDs proquest_journals_2895874908
pubmed_primary_37471191
ieee_primary_10189348
crossref_primary_10_1109_TMI_2023_3297209
proquest_miscellaneous_2841020911
PublicationCentury 2000
PublicationDate 2023-12-01
PublicationDateYYYYMMDD 2023-12-01
PublicationDate_xml – month: 12
  year: 2023
  text: 2023-12-01
  day: 01
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on medical imaging
PublicationTitleAbbrev TMI
PublicationTitleAlternate IEEE Trans Med Imaging
PublicationYear 2023
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref14
Fred Agarap (ref41) 2018
ref11
ref55
ref10
ref17
ref16
ref19
ref18
Bank (ref51) 2020
ref50
Simonyan (ref44) 2014
Xinyue (ref12) 2017; 20
ref46
ref45
ref48
ref47
ref42
ref43
ref49
ref8
ref7
ref9
ref4
ref3
ref6
ref5
Taib (ref15) 2022; 2
Norton (ref13) 1988; 48
ref40
ref35
ref37
ref36
ref31
ref30
ref32
ref2
ref1
ref39
ref38
Zhou (ref34) 2019
ref24
ref23
ref26
ref25
ref20
Goyal (ref52) 2017
ref22
ref21
Pedrosa (ref33) 2019
ref28
ref27
van der Maaten (ref54) 2008; 9
ref29
Loshchilov (ref53) 2016
References_xml – ident: ref6
  doi: 10.1056/NEJMoa1102873
– ident: ref30
  doi: 10.1109/TMI.2019.2943841
– year: 2018
  ident: ref41
  article-title: Deep learning using rectified linear units (ReLU)
  publication-title: arXiv:1803.08375
– ident: ref4
  doi: 10.1136/thoraxjnl-2015-208107
– ident: ref28
  doi: 10.1007/978-3-030-59725-2_55
– ident: ref40
  doi: 10.5555/3045118.3045167
– ident: ref50
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– year: 2019
  ident: ref34
  article-title: Objects as points
  publication-title: arXiv:1904.07850
– ident: ref27
  doi: 10.1002/cam4.2233
– ident: ref38
  doi: 10.1109/ICCV.2015.169
– ident: ref36
  doi: 10.1007/978-3-319-24574-4_28
– ident: ref14
  doi: 10.1088/1742-6596/1366/1/012018
– ident: ref49
  doi: 10.1109/TCSVT.2021.3080920
– ident: ref35
  doi: 10.1016/j.compmedimag.2021.101885
– ident: ref11
  doi: 10.21037/tlcr-22-59
– ident: ref37
  doi: 10.1109/CVPR.2016.90
– ident: ref31
  doi: 10.3389/fonc.2022.1002953
– ident: ref18
  doi: 10.1038/s41598-018-27569-w
– ident: ref39
  doi: 10.48550/ARXIV.1706.03762
– ident: ref47
  doi: 10.1109/TPAMI.2017.2709749
– year: 2014
  ident: ref44
  article-title: Very deep convolutional networks for large-scale image recognition
  publication-title: arXiv:1409.1556
– ident: ref2
  doi: 10.1002/mp.12766
– ident: ref43
  doi: 10.48550/arXiv.1603.08155
– ident: ref25
  doi: 10.1007/978-3-030-32226-7_73
– ident: ref32
  doi: 10.1016/j.media.2017.06.015
– ident: ref19
  doi: 10.1016/j.compmedimag.2018.10.006
– year: 2019
  ident: ref33
  article-title: LNDb: A lung nodule database on computed tomography
  publication-title: arXiv:1911.08434
– ident: ref55
  doi: 10.1016/j.eururo.2019.02.033
– ident: ref3
  doi: 10.6004/jnccn.2018.0020
– ident: ref45
  doi: 10.1371/journal.pone.0159880
– ident: ref42
  doi: 10.48550/arXiv.1606.04797
– year: 2016
  ident: ref53
  article-title: SGDR: Stochastic gradient descent with warm restarts
  publication-title: arXiv:1608.03983
– ident: ref10
  doi: 10.1109/IJCNN52387.2021.9534163
– ident: ref20
  doi: 10.1016/S0006-3495(03)74715-8
– volume: 9
  start-page: 2579
  year: 2008
  ident: ref54
  article-title: Visualizing data using t-SNE
  publication-title: J. Mach. Learn. Res.
– volume: 48
  start-page: 7067
  issue: 24_Part_1
  year: 1988
  ident: ref13
  article-title: A Gompertzian model of human breast cancer growth
  publication-title: Cancer Res.
– ident: ref24
  doi: 10.1109/IJCNN.2018.8489345
– ident: ref9
  doi: 10.1109/ISBI48211.2021.9433893
– ident: ref46
  doi: 10.1109/ISBI45749.2020.9098486
– ident: ref22
  doi: 10.1111/1759-7714.13580
– ident: ref23
  doi: 10.3389/fonc.2021.658138
– volume: 2
  start-page: 481
  issue: 1
  year: 2022
  ident: ref15
  article-title: Mathematical modeling in tumor growth using Gompertz model
  publication-title: Enhanced Knowl. Sci. Technol.
– ident: ref17
  doi: 10.1046/j.1365-2184.2003.00259.x
– ident: ref5
  doi: 10.1148/RADIOL.2017161659/ASSET/IMAGES/LARGE/RADIOL.2017161659.FIG14B.JPEG
– volume: 20
  start-page: 334
  issue: 5
  year: 2017
  ident: ref12
  article-title: Analysis of growth curve type in pulmonary nodules with different characteristics
  publication-title: Chin. J. Lung Cancer
– ident: ref26
  doi: 10.1038/s41591-019-0447-x
– year: 2020
  ident: ref51
  article-title: Autoencoders
  publication-title: arXiv:2003.05991
– ident: ref8
  doi: 10.1007/978-3-030-59725-2_49
– year: 2017
  ident: ref52
  article-title: Accurate, large minibatch SGD: Training ImageNet in 1 hour
  publication-title: arXiv:1706.02677
– ident: ref7
  doi: 10.1007/978-3-031-16431-6_46
– ident: ref1
  doi: 10.3322/caac.21551
– ident: ref48
  doi: 10.1016/j.media.2021.101981
– ident: ref21
  doi: 10.21037/qims.2019.01.04
– ident: ref16
  doi: 10.1371/journal.pcbi.1007178
– ident: ref29
  doi: 10.1109/TMI.2017.2774044
SSID ssj0014509
Score 2.449318
Snippet The growth rate of pulmonary nodules is a critical clue to the cancerous diagnosis. It is essential to monitor their dynamic progressions during pulmonary...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Publisher
StartPage 3602
SubjectTerms autoencoder
Computed tomography
Datasets
Decoders
Diagnosis
Gompertz curves
Gompertz function
Growth kinetics
growth prediction
Growth rate
Humans
Lung
Lung cancer
Lung Neoplasms - diagnostic imaging
Lung Neoplasms - pathology
Lung nodules
Mathematical models
Medical imaging
Morphology
Nodules
Parameterization
Predictive models
Progressions
Pulmonary nodule
Radiographic Image Interpretation, Computer-Assisted - methods
Solitary Pulmonary Nodule - diagnostic imaging
Task analysis
Tomography, X-Ray Computed - methods
Tumors
Visualization
Title Parameterized Gompertz-Guided Morphological AutoEncoder for Predicting Pulmonary Nodule Growth
URI https://ieeexplore.ieee.org/document/10189348
https://www.ncbi.nlm.nih.gov/pubmed/37471191
https://www.proquest.com/docview/2895874908
https://www.proquest.com/docview/2841020911
Volume 42
WOSCitedRecordID wos001122030500016&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1558-254X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014509
  issn: 0278-0062
  databaseCode: RIE
  dateStart: 19820101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7RCiE48CgtDZTKSFw4ZGvHsR0fK9QuHHa1hyLticjJOKJSlaA0QWp_PZ48VuXQA6cksuVYnnHyjb95AHxWRMWVaOJS6SpOjS7jrHAYe68x49KiddlQbMKs19l2azdTsPoQC-O9H5zP_IJuBy4fm7Kno7Izyi5lZZrtwZ4xZgzW2lEGqRr9ORJKGct1MnOS3J5drb4vqEz4QibWJJwyhUoyxoQV__yOhvoqj0PN4Zdz-eo_J_saXk7Ykp2PyvAGnvj6AF48yDh4AM9WE5f-Fn5uHDlmUa7me49sSQC67e7jZX-N4XnVBAnMX0Z23nfNRU3x7y0LMJdtWhqHXKbZpr8JquzaO7ZusL_xbBks--7XIfy4vLj6-i2eqi3EZdjkXayd0VioSjteOTrn0FWaVoJLh6HFhQu3HktbSMuVSgpRCPTB2EiLgPkQhTyC_bqp_TEwmXmBSprEaZu6SlmFkiP3xilRuVJF8GVe9Pz3mFQjH4wRbvMgq5xklU-yiuCQ1vZBv3FZIziZxZRP2-42D9ajygxxmRF82jWHDUMsiKt901OfNICqAJNEBO9G8e4Gn7Xi_SMv_QDPaW6jO8sJ7Hdt7z_C0_JPd33bngat3Gang1b-BRub3Ok
linkProvider IEEE
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB61tCpwgBYopEDrSr30kMWOH4mPqIIFlV3tYStxauTEjkBCSRWSSuXX48ljBQcOPSWRLcfyjJNv_M0D4JtEKi63cZhLVYQiVnmYZMaGzimbUK6tNklXbCKez5Pra70YgtW7WBjnXOd85iZ423H5tspbPCo7wexSmovkNbyRQkSsD9dakQZC9h4dESaNpSoaWUmqT5azywkWCp_wSMcRxVyhHM0xptmzH1JXYeVlsNn9dM63_3O672FrQJfktFeHD_DKlTuw-STn4A68mw1s-i78Xhh0zcJszQ_OkilC6Lp5CKftrfXPs8rLYPw2ktO2qc5KjICviQe6ZFHjOOg0TRbtnVdmU_8j88q2d45MvW3f3OzBr_Oz5Y-LcKi3EOZ-mzehMrGymSyUoYXBkw5VCFEwyo31LcZfqHY21xnXVMooYxmzzpsbIvOoz1rGP8JaWZXuAAhPHLOSx5FRWphCamk5tdTFRrLC5DKA7-Oip3_6tBppZ45QnXpZpSirdJBVAHu4tk_69csawNEopnTYePeptx9lEiObGcDXVbPfMsiDmNJVLfYRHlZ5oMQC2O_Fuxp81IpPL7z0C6xfLGdX6dXl_OchbOA8e-eWI1hr6tYdw9v8b3N7X3_udPMRi_DfSA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Parameterized+Gompertz-Guided+Morphological+AutoEncoder+for+Predicting+Pulmonary+Nodule+Growth&rft.jtitle=IEEE+transactions+on+medical+imaging&rft.au=Fang%2C+Jiansheng&rft.au=Wang%2C+Jingwen&rft.au=Li%2C+Anwei&rft.au=Yan%2C+Yuguang&rft.date=2023-12-01&rft.eissn=1558-254X&rft.volume=42&rft.issue=12&rft.spage=3602&rft_id=info:doi/10.1109%2FTMI.2023.3297209&rft_id=info%3Apmid%2F37471191&rft.externalDocID=37471191
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0278-0062&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0278-0062&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0278-0062&client=summon