Automated Dynamic Algorithm Configuration

The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of artificial intelligence research Vol. 75; pp. 1633 - 1699
Main Authors: Adriaensen, Steven, Biedenkapp, André, Shala, Gresa, Awad, Noor, Eimer, Theresa, Lindauer, Marius, Hutter, Frank
Format: Journal Article
Language:English
Published: San Francisco AI Access Foundation 01.01.2022
Subjects:
ISSN:1076-9757, 1076-9757, 1943-5037
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior art to tackle this problem; and (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
AbstractList The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior art to tackle this problem; and (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning.
Author Eimer, Theresa
Hutter, Frank
Shala, Gresa
Awad, Noor
Biedenkapp, André
Lindauer, Marius
Adriaensen, Steven
Author_xml – sequence: 1
  givenname: Steven
  surname: Adriaensen
  fullname: Adriaensen, Steven
– sequence: 2
  givenname: André
  surname: Biedenkapp
  fullname: Biedenkapp, André
– sequence: 3
  givenname: Gresa
  surname: Shala
  fullname: Shala, Gresa
– sequence: 4
  givenname: Noor
  surname: Awad
  fullname: Awad, Noor
– sequence: 5
  givenname: Theresa
  surname: Eimer
  fullname: Eimer, Theresa
– sequence: 6
  givenname: Marius
  surname: Lindauer
  fullname: Lindauer, Marius
– sequence: 7
  givenname: Frank
  surname: Hutter
  fullname: Hutter, Frank
BookMark eNptkD1PwzAQhi1UJNrCxg-IxIREis9fsceqfEqVWGC2XMcurpq4OM7Qf0_aMiDEdDc8753eZ4JGbWwdQteAZyCA3m9MSDOYAVWEnKEx4EqUquLV6Nd-gSZdt8EYFCNyjG7nfY6Nya4uHvataYIt5tt1TCF_NsUitj6s-2RyiO0lOvdm27mrnzlFH0-P74uXcvn2_LqYL0tLMeSSeSIdY7JeuRpWrHZQCyqoZwSo5N4I7KRUjHupBBdCOukZdcxaZbml4OkU3Zzu7lL86l2X9Sb2qR1ealLxoQJXHA_U3YmyKXZdcl7vUmhM2mvA-iBDH2Ro0EcZA07-4DbkY62cTNj-H_oGCZRkRA
CitedBy_id crossref_primary_10_1016_j_cor_2025_107050
crossref_primary_10_1016_j_artint_2024_104277
crossref_primary_10_1016_j_ejor_2025_08_029
crossref_primary_10_3390_info14050299
crossref_primary_10_1080_08839514_2024_2383101
crossref_primary_10_1145_3697834
crossref_primary_10_1016_j_ejor_2025_04_033
ContentType Journal Article
Copyright 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
Copyright_xml – notice: 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about
DBID AAYXX
CITATION
8FE
8FG
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
DOI 10.1613/jair.1.13922
DatabaseName CrossRef
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central Korea
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic (retired)
ProQuest One Academic UKI Edition
ProQuest Central China
DatabaseTitle CrossRef
Publicly Available Content Database
Advanced Technologies & Aerospace Collection
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList CrossRef
Publicly Available Content Database
Database_xml – sequence: 1
  dbid: PIMPY
  name: ProQuest Publicly Available Content Database
  url: http://search.proquest.com/publiccontent
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1076-9757
1943-5037
EndPage 1699
ExternalDocumentID 10_1613_jair_1_13922
GroupedDBID .DC
29J
2WC
5GY
5VS
AAKMM
AAKPC
AALFJ
AAYFX
AAYXX
ACGFO
ACM
ADBBV
ADBSK
ADMLS
AEFXT
AEJOY
AENEX
AFFHD
AFKRA
AFWXC
AKRVB
ALMA_UNASSIGNED_HOLDINGS
AMVHM
ARAPS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
E3Z
EBS
EJD
F5P
FRJ
FRP
GROUPED_DOAJ
GUFHI
HCIFZ
K7-
KQ8
LHSKQ
LPJ
OK1
OVT
P2P
PHGZM
PHGZT
PIMPY
PQGLB
RNS
TR2
XSB
8FE
8FG
ABUWG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c301t-4f28e448dbed1b4de1d6363f421385fa60e88945f8965668e8f43e4cc9c5c31f3
IEDL.DBID K7-
ISICitedReferencesCount 20
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000908064500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1076-9757
IngestDate Sun Nov 09 08:56:40 EST 2025
Tue Nov 18 22:18:04 EST 2025
Sat Nov 29 05:27:06 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c301t-4f28e448dbed1b4de1d6363f421385fa60e88945f8965668e8f43e4cc9c5c31f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.proquest.com/docview/2759755950?pq-origsite=%requestingapplication%
PQID 2759755950
PQPubID 5160723
PageCount 67
ParticipantIDs proquest_journals_2759755950
crossref_primary_10_1613_jair_1_13922
crossref_citationtrail_10_1613_jair_1_13922
PublicationCentury 2000
PublicationDate 2022-01-01
PublicationDateYYYYMMDD 2022-01-01
PublicationDate_xml – month: 01
  year: 2022
  text: 2022-01-01
  day: 01
PublicationDecade 2020
PublicationPlace San Francisco
PublicationPlace_xml – name: San Francisco
PublicationTitle The Journal of artificial intelligence research
PublicationYear 2022
Publisher AI Access Foundation
Publisher_xml – name: AI Access Foundation
SSID ssj0019428
Score 2.543812
Snippet The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been...
SourceID proquest
crossref
SourceType Aggregation Database
Enrichment Source
Index Database
StartPage 1633
SubjectTerms Algorithms
Artificial intelligence
Automation
Configuration management
Machine learning
Optimization
Parameters
Title Automated Dynamic Algorithm Configuration
URI https://www.proquest.com/docview/2759755950
Volume 75
WOSCitedRecordID wos000908064500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: DOA
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVPQU
  databaseName: Computer Science Database (ProQuest)
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: K7-
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/compscijour
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: BENPR
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Publicly Available Content Database
  customDbUrl:
  eissn: 1076-9757
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0019428
  issn: 1076-9757
  databaseCode: PIMPY
  dateStart: 19930101
  isFulltext: true
  titleUrlDefault: http://search.proquest.com/publiccontent
  providerName: ProQuest
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oePAiPiOKpAc9GLPAPtpuTwYVo1FJY9TgqWn3gRgEhOLvd7fdYjjoxWu72zRf5vHN7MwOAMeCMRUkbgx9nAhIXawgY7IFJeGIeDp6i7Mq35d7v9tlvV4Q2oTbzJZVFjYxM9RizE2OvIl9TX01_XVb55NPaKZGmdNVO0JjFZQRxsjI-Z0PF6cIAcV5K5zvQb3Zt4Xv2oM13-PBtIEamv9gvOySli1y5mauK__9wU2wYQmm084lYgusyNE2qBTDGxyryzvgtD1Px5quSuFc5VPpnfawrz-Yvn04pg9w0J_n0rELnq87T5c30M5NgFyrawqpwkzqsEskUqCEComERzyiqEaIuSr2WpKxgLqKBYbNMckUJZJyHnCXE6TIHiiNxiO5D5wWi3FATau5F1Mc04T4UpieJ8UNdXOr4KyALuL2UnEz22IYmeBCAx0ZoCMUZUBXwcli9SS_TOOXdbUC4siq1Cz6wffg79eHYB2bHoUsT1IDpXQ6l0dgjX-lg9m0DsoXnW74WM-C73omL_pZePsQvn4DmufHcA
linkProvider ProQuest
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILO2InBzgg5DaxncQ5IFSxiKqLegBUTiHxUoqghTYF8VN8I3YWEAe4ceAcK3Lynmbe2H4egD3BmApiN0I-jgWiLlaIMWkjSbhDPF29Rekp3-uG32qxTidoT8B74YUxxyqLmJgGajHgZo28gn0tfbX8de3jp2dkukaZ3dWihUZGi7p8e9Ul2-iodqrx3cf4_Ozy5ALlXQUQ12ROEFWYSV2UiFgKJ6ZCOsIjHlEUO4S5KvJsyVhAXcUCo3WYZIoSSTkPuMuJo4h-7yRMUU12VoKpdq3Zvvnctwgozsx3vof0dP38qL3OmZX7qDcsO2WtuDD-ngS_54A0sZ3P_7dfsgBzuYS2qhnnF2FC9pdgvmhPYeXRahkOquNkoAW5FNbpWz967HGr-tDVH5DcPVrG6djrjjP-r8DVn0x4FUr9QV-ugWWzCAfUmOm9iOKIxsSXwri6FDfi1F2HwwKqkOfXppvuHQ-hKZ80sKEBNnTCFNh12P8c_ZRdF_LDuK0C0jAPGqPwC8-N3x_vwszFZbMRNmqt-ibMYuPISFeFtqCUDMdyG6b5S9IbDXdyflpw-9f4fwCKfiF5
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Dynamic+Algorithm+Configuration&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Adriaensen%2C+Steven&rft.au=Biedenkapp%2C+Andr%C3%A9&rft.au=Shala%2C+Gresa&rft.au=Awad%2C+Noor&rft.date=2022-01-01&rft.issn=1076-9757&rft.eissn=1076-9757&rft.volume=75&rft.spage=1633&rft.epage=1699&rft_id=info:doi/10.1613%2Fjair.1.13922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1613_jair_1_13922
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon