Automated Dynamic Algorithm Configuration
The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as...
Saved in:
| Published in: | The Journal of artificial intelligence research Vol. 75; pp. 1633 - 1699 |
|---|---|
| Main Authors: | , , , , , , |
| Format: | Journal Article |
| Language: | English |
| Published: |
San Francisco
AI Access Foundation
01.01.2022
|
| Subjects: | |
| ISSN: | 1076-9757, 1076-9757, 1943-5037 |
| Online Access: | Get full text |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Abstract | The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior art to tackle this problem; and (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning. |
|---|---|
| AbstractList | The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been proposed to relieve users from the tedious and error-prone task of manually tuning parameters, there is still a lot of untapped potential as the learned configuration is static, i.e., parameter settings remain fixed throughout the run. However, it has been shown that some algorithm parameters are best adjusted dynamically during execution. Thus far, this is most commonly achieved through hand-crafted heuristics. A promising recent alternative is to automatically learn such dynamic parameter adaptation policies from data. In this article, we give the first comprehensive account of this new field of automated dynamic algorithm configuration (DAC), present a series of recent advances, and provide a solid foundation for future research in this field. Specifically, we (i) situate DAC in the broader historical context of AI research; (ii) formalize DAC as a computational problem; (iii) identify the methods used in prior art to tackle this problem; and (iv) conduct empirical case studies for using DAC in evolutionary optimization, AI planning, and machine learning. |
| Author | Eimer, Theresa Hutter, Frank Shala, Gresa Awad, Noor Biedenkapp, André Lindauer, Marius Adriaensen, Steven |
| Author_xml | – sequence: 1 givenname: Steven surname: Adriaensen fullname: Adriaensen, Steven – sequence: 2 givenname: André surname: Biedenkapp fullname: Biedenkapp, André – sequence: 3 givenname: Gresa surname: Shala fullname: Shala, Gresa – sequence: 4 givenname: Noor surname: Awad fullname: Awad, Noor – sequence: 5 givenname: Theresa surname: Eimer fullname: Eimer, Theresa – sequence: 6 givenname: Marius surname: Lindauer fullname: Lindauer, Marius – sequence: 7 givenname: Frank surname: Hutter fullname: Hutter, Frank |
| BookMark | eNptkD1PwzAQhi1UJNrCxg-IxIREis9fsceqfEqVWGC2XMcurpq4OM7Qf0_aMiDEdDc8753eZ4JGbWwdQteAZyCA3m9MSDOYAVWEnKEx4EqUquLV6Nd-gSZdt8EYFCNyjG7nfY6Nya4uHvataYIt5tt1TCF_NsUitj6s-2RyiO0lOvdm27mrnzlFH0-P74uXcvn2_LqYL0tLMeSSeSIdY7JeuRpWrHZQCyqoZwSo5N4I7KRUjHupBBdCOukZdcxaZbml4OkU3Zzu7lL86l2X9Sb2qR1ealLxoQJXHA_U3YmyKXZdcl7vUmhM2mvA-iBDH2Ro0EcZA07-4DbkY62cTNj-H_oGCZRkRA |
| CitedBy_id | crossref_primary_10_1016_j_cor_2025_107050 crossref_primary_10_1016_j_artint_2024_104277 crossref_primary_10_1016_j_ejor_2025_08_029 crossref_primary_10_3390_info14050299 crossref_primary_10_1080_08839514_2024_2383101 crossref_primary_10_1145_3697834 crossref_primary_10_1016_j_ejor_2025_04_033 |
| ContentType | Journal Article |
| Copyright | 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about |
| Copyright_xml | – notice: 2022. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the associated terms available at https://www.jair.org/index.php/jair/about |
| DBID | AAYXX CITATION 8FE 8FG ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS |
| DOI | 10.1613/jair.1.13922 |
| DatabaseName | CrossRef ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central ProQuest Technology Collection ProQuest One Community College ProQuest Central Korea ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic (retired) ProQuest One Academic UKI Edition ProQuest Central China |
| DatabaseTitle | CrossRef Publicly Available Content Database Advanced Technologies & Aerospace Collection Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) |
| DatabaseTitleList | CrossRef Publicly Available Content Database |
| Database_xml | – sequence: 1 dbid: PIMPY name: ProQuest Publicly Available Content Database url: http://search.proquest.com/publiccontent sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1076-9757 1943-5037 |
| EndPage | 1699 |
| ExternalDocumentID | 10_1613_jair_1_13922 |
| GroupedDBID | .DC 29J 2WC 5GY 5VS AAKMM AAKPC AALFJ AAYFX AAYXX ACGFO ACM ADBBV ADBSK ADMLS AEFXT AEJOY AENEX AFFHD AFKRA AFWXC AKRVB ALMA_UNASSIGNED_HOLDINGS AMVHM ARAPS BCNDV BENPR BGLVJ CCPQU CITATION E3Z EBS EJD F5P FRJ FRP GROUPED_DOAJ GUFHI HCIFZ K7- KQ8 LHSKQ LPJ OK1 OVT P2P PHGZM PHGZT PIMPY PQGLB RNS TR2 XSB 8FE 8FG ABUWG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS |
| ID | FETCH-LOGICAL-c301t-4f28e448dbed1b4de1d6363f421385fa60e88945f8965668e8f43e4cc9c5c31f3 |
| IEDL.DBID | K7- |
| ISICitedReferencesCount | 20 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000908064500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1076-9757 |
| IngestDate | Sun Nov 09 08:56:40 EST 2025 Tue Nov 18 22:18:04 EST 2025 Sat Nov 29 05:27:06 EST 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c301t-4f28e448dbed1b4de1d6363f421385fa60e88945f8965668e8f43e4cc9c5c31f3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| OpenAccessLink | https://www.proquest.com/docview/2759755950?pq-origsite=%requestingapplication% |
| PQID | 2759755950 |
| PQPubID | 5160723 |
| PageCount | 67 |
| ParticipantIDs | proquest_journals_2759755950 crossref_primary_10_1613_jair_1_13922 crossref_citationtrail_10_1613_jair_1_13922 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-01-01 |
| PublicationDateYYYYMMDD | 2022-01-01 |
| PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | San Francisco |
| PublicationPlace_xml | – name: San Francisco |
| PublicationTitle | The Journal of artificial intelligence research |
| PublicationYear | 2022 |
| Publisher | AI Access Foundation |
| Publisher_xml | – name: AI Access Foundation |
| SSID | ssj0019428 |
| Score | 2.543812 |
| Snippet | The performance of an algorithm often critically depends on its parameter configuration. While a variety of automated algorithm configuration methods have been... |
| SourceID | proquest crossref |
| SourceType | Aggregation Database Enrichment Source Index Database |
| StartPage | 1633 |
| SubjectTerms | Algorithms Artificial intelligence Automation Configuration management Machine learning Optimization Parameters |
| Title | Automated Dynamic Algorithm Configuration |
| URI | https://www.proquest.com/docview/2759755950 |
| Volume | 75 |
| WOSCitedRecordID | wos000908064500001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: DOA dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVPQU databaseName: Computer Science Database (ProQuest) customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: K7- dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/compscijour providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: BENPR dateStart: 19930101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Publicly Available Content Database customDbUrl: eissn: 1076-9757 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0019428 issn: 1076-9757 databaseCode: PIMPY dateStart: 19930101 isFulltext: true titleUrlDefault: http://search.proquest.com/publiccontent providerName: ProQuest |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4oePAiPiOKpAc9GLPAPtpuTwYVo1FJY9TgqWn3gRgEhOLvd7fdYjjoxWu72zRf5vHN7MwOAMeCMRUkbgx9nAhIXawgY7IFJeGIeDp6i7Mq35d7v9tlvV4Q2oTbzJZVFjYxM9RizE2OvIl9TX01_XVb55NPaKZGmdNVO0JjFZQRxsjI-Z0PF6cIAcV5K5zvQb3Zt4Xv2oM13-PBtIEamv9gvOySli1y5mauK__9wU2wYQmm084lYgusyNE2qBTDGxyryzvgtD1Px5quSuFc5VPpnfawrz-Yvn04pg9w0J_n0rELnq87T5c30M5NgFyrawqpwkzqsEskUqCEComERzyiqEaIuSr2WpKxgLqKBYbNMckUJZJyHnCXE6TIHiiNxiO5D5wWi3FATau5F1Mc04T4UpieJ8UNdXOr4KyALuL2UnEz22IYmeBCAx0ZoCMUZUBXwcli9SS_TOOXdbUC4siq1Cz6wffg79eHYB2bHoUsT1IDpXQ6l0dgjX-lg9m0DsoXnW74WM-C73omL_pZePsQvn4DmufHcA |
| linkProvider | ProQuest |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw1V3JTsMwEB1BQYILO2InBzgg5DaxncQ5IFSxiKqLegBUTiHxUoqghTYF8VN8I3YWEAe4ceAcK3Lynmbe2H4egD3BmApiN0I-jgWiLlaIMWkjSbhDPF29Rekp3-uG32qxTidoT8B74YUxxyqLmJgGajHgZo28gn0tfbX8de3jp2dkukaZ3dWihUZGi7p8e9Ul2-iodqrx3cf4_Ozy5ALlXQUQ12ROEFWYSV2UiFgKJ6ZCOsIjHlEUO4S5KvJsyVhAXcUCo3WYZIoSSTkPuMuJo4h-7yRMUU12VoKpdq3Zvvnctwgozsx3vof0dP38qL3OmZX7qDcsO2WtuDD-ngS_54A0sZ3P_7dfsgBzuYS2qhnnF2FC9pdgvmhPYeXRahkOquNkoAW5FNbpWz967HGr-tDVH5DcPVrG6djrjjP-r8DVn0x4FUr9QV-ugWWzCAfUmOm9iOKIxsSXwri6FDfi1F2HwwKqkOfXppvuHQ-hKZ80sKEBNnTCFNh12P8c_ZRdF_LDuK0C0jAPGqPwC8-N3x_vwszFZbMRNmqt-ibMYuPISFeFtqCUDMdyG6b5S9IbDXdyflpw-9f4fwCKfiF5 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Automated+Dynamic+Algorithm+Configuration&rft.jtitle=The+Journal+of+artificial+intelligence+research&rft.au=Adriaensen%2C+Steven&rft.au=Biedenkapp%2C+Andr%C3%A9&rft.au=Shala%2C+Gresa&rft.au=Awad%2C+Noor&rft.date=2022-01-01&rft.issn=1076-9757&rft.eissn=1076-9757&rft.volume=75&rft.spage=1633&rft.epage=1699&rft_id=info:doi/10.1613%2Fjair.1.13922&rft.externalDBID=n%2Fa&rft.externalDocID=10_1613_jair_1_13922 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1076-9757&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1076-9757&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1076-9757&client=summon |