Concept and methodology for automated data preprocessing of object recognition algorithm training

Preparing required data for training object recognition algorithms represents a complex and time-consuming process, that must be avoided especially in industrial environments. The work presented in this paper aims to overcome this challenge through on-line machine learning algorithms, as foundation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Procedia CIRP Jg. 104; S. 1791 - 1794
Hauptverfasser: Giosan, Stefan, Matei, Raul, Albota, Vlad-Calin, Constantinescu, Carmen
Format: Journal Article
Sprache:Englisch
Veröffentlicht: Elsevier B.V 2021
Schlagworte:
ISSN:2212-8271, 2212-8271
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Preparing required data for training object recognition algorithms represents a complex and time-consuming process, that must be avoided especially in industrial environments. The work presented in this paper aims to overcome this challenge through on-line machine learning algorithms, as foundation for further developments and validation. The concept and the developed and validated methodology rely on point clouds resulted from the image processing using a depth camera. The geometry and coordinates of the objects are derived from the point clouds, fact that enables the automation of data preprocessing steps (e.g. manually take the pictures, labelling images), optimizing logistics and production activities.
ISSN:2212-8271
2212-8271
DOI:10.1016/j.procir.2021.11.302