Colour‐patterned fabric defect detection based on an unsupervised multi‐scale U‐shaped denoising convolutional autoencoder model

This study proposes an unsupervised, learning‐based, reconstructed scheme and a residual analysis‐based defect detection model for colour‐patterned fabric defect detection problems in the clothing process industry. It solves the challenging problems of existing supervised fabric defect detection met...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Coloration technology Ročník 138; číslo 5; s. 522 - 537
Hlavní autoři: Zhang, Hongwei, Liu, Shuting, Tan, Quanlu, Lu, Shuai, Yao, Le, Ge, Zhiqiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Bradford Wiley Subscription Services, Inc 01.10.2022
Témata:
ISSN:1472-3581, 1478-4408
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This study proposes an unsupervised, learning‐based, reconstructed scheme and a residual analysis‐based defect detection model for colour‐patterned fabric defect detection problems in the clothing process industry. It solves the challenging problems of existing supervised fabric defect detection methods, such as high costs in manually labelling samples and designing features, unstable generalisation ability and scarcity of defective samples. First, for a specific texture, the training set was constructed by collecting easily accessible defect‐free colour‐patterned fabric images. Second, a multi‐scale U‐shaped denoising convolutional autoencoder was modelled using defect‐free samples, which can reconstruct the newly tested colour‐patterned fabric images automatically. Subsequently, a residual map between the original image and corresponding reconstructed image was calculated. Finally, the defective areas were detected and accurately localised by further opening operations. The experimental results indicated that the proposed method is valid and robust for detecting defects in various colour‐patterned fabrics. Moreover, with the YDFID‐1 dataset, compared with other models, the intersection over union index of the model proposed in the current paper was improved by at least 3.95%.
AbstractList This study proposes an unsupervised, learning‐based, reconstructed scheme and a residual analysis‐based defect detection model for colour‐patterned fabric defect detection problems in the clothing process industry. It solves the challenging problems of existing supervised fabric defect detection methods, such as high costs in manually labelling samples and designing features, unstable generalisation ability and scarcity of defective samples. First, for a specific texture, the training set was constructed by collecting easily accessible defect‐free colour‐patterned fabric images. Second, a multi‐scale U‐shaped denoising convolutional autoencoder was modelled using defect‐free samples, which can reconstruct the newly tested colour‐patterned fabric images automatically. Subsequently, a residual map between the original image and corresponding reconstructed image was calculated. Finally, the defective areas were detected and accurately localised by further opening operations. The experimental results indicated that the proposed method is valid and robust for detecting defects in various colour‐patterned fabrics. Moreover, with the YDFID‐1 dataset, compared with other models, the intersection over union index of the model proposed in the current paper was improved by at least 3.95%.
Author Lu, Shuai
Liu, Shuting
Yao, Le
Zhang, Hongwei
Ge, Zhiqiang
Tan, Quanlu
Author_xml – sequence: 1
  givenname: Hongwei
  surname: Zhang
  fullname: Zhang, Hongwei
  email: zhanghongwei@zju.edu.cn
  organization: Xi'an Polytechnic University
– sequence: 2
  givenname: Shuting
  surname: Liu
  fullname: Liu, Shuting
  organization: Xi'an Polytechnic University
– sequence: 3
  givenname: Quanlu
  orcidid: 0000-0002-9152-5237
  surname: Tan
  fullname: Tan, Quanlu
  organization: Xi'an Polytechnic University
– sequence: 4
  givenname: Shuai
  surname: Lu
  fullname: Lu, Shuai
  organization: Beijing Institute of Technology
– sequence: 5
  givenname: Le
  surname: Yao
  fullname: Yao, Le
  organization: Institute of Industrial Process Control, College of Control Science and Engineering, Zhejiang University
– sequence: 6
  givenname: Zhiqiang
  surname: Ge
  fullname: Ge, Zhiqiang
  organization: Institute of Industrial Process Control, College of Control Science and Engineering, Zhejiang University
BookMark eNp9UL1OwzAYtFCRKIWFJ4jEhpTin6RJRlSVH6lSl3aOvjgOuHLtYDtF3ZiYeUaeBKdhQggPvpPv7tPnO0cjbbRA6IrgKQnnlhsvpoTOcHGCxiTJ8jhJcD46chqzNCdn6Ny5LcYU5wkbo4-5UaazX--fLXgvrBZ11EBlJY9q0QjuA_gA0uioAhfUQEBHnXZdK-xe9k-7TnkZRjgOSkSbnr1AG4RaaCOd1M8RN3pvVNfPARVB543Q3NTCRrtwqwt02oBy4vIHJ2hzv1jPH-Pl6uFpfreMOcOkiIERmqaMVDmtIOV5g6samoyQXNS0yrKGpZTX9YxyzBPepElQAOOEF0WVMQA2QdfD3Naa1044X27D78NKrqQZSSjBM0aCCw8ubo1zVjQllx763b0FqUqCy77tsm-7PLYdIje_Iq2VO7CHv81kML9JJQ7_OMv5ar0YMt840Zil
CitedBy_id crossref_primary_10_1016_j_engappai_2025_111708
crossref_primary_10_3390_pr11092615
crossref_primary_10_3390_app14156774
Cites_doi 10.1109/TII.2020.3010562
10.1177/0040517509340599
10.1109/JBHI.2019.2891526
10.1515/aut-2015-0001
10.3390/app9173506
10.1007/s00371-020-01820-w
10.1109/TIE.2018.2856200
10.1177/1558925020908268
10.1177/0040517519840636
10.1007/978-3-319-24574-4_28
10.1109/ACCESS.2018.2868059
10.1109/TIE.1930.896476
10.1007/s11042-010-0472-8
10.1109/ACCESS.2020.3021189
10.1109/CVPR.2019.00982
10.1109/TASE.2016.2520955
10.1117/1.OE.56.9.093104
10.1155/2016/9794723
10.1002/mrm.28111
10.1016/j.patcog.2007.11.014
10.1007/s00521-016-2645-5
10.3390/rs11242970
10.2478/aut-2019-0035
10.1111/coin.12206
10.3390/s18041064
10.1016/j.ijleo.2016.09.110
10.5220/0007364500002108
10.1108/IJCST-10-2015-0117
10.1109/TII.2018.2809730
10.1016/j.asoc.2019.105489
ContentType Journal Article
Copyright 2022 Society of Dyers and Colourists.
2022 Society of Dyers and Colourists
Copyright_xml – notice: 2022 Society of Dyers and Colourists.
– notice: 2022 Society of Dyers and Colourists
DBID AAYXX
CITATION
7TB
8FD
F28
FR3
DOI 10.1111/cote.12609
DatabaseName CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList CrossRef

Engineering Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1478-4408
EndPage 537
ExternalDocumentID 10_1111_cote_12609
COTE12609
Genre article
GrantInformation_xml – fundername: the Natural Science Foundation of Shaanxi Province under Grant 2019JM‐263
– fundername: the Graduate Scientific Innovation Fund for Xi'an Polytechnic University under Grant chx2021015
– fundername: State Key Laboratory of Industrial Control Technology
– fundername: National Natural Science Foundation of China
– fundername: the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT2021B04)
– fundername: Zhejiang University
– fundername: the Key R&D Plan of Shaanxi Province under Grant 2019ZDLGY01‐08
– fundername: Xi'an Polytechnic University
– fundername: Innovation Fund
– fundername: Natural Science Foundation of Shaanxi Province
GroupedDBID .3N
.GA
.Y3
05W
0B8
0R~
10A
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AABCJ
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACIWK
ACPOU
ACRPL
ACSCC
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IX1
J0M
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RJQFR
ROL
RX1
SUPJJ
TTC
UB1
ULE
V8K
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XJN
XOL
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7TB
8FD
F28
FR3
ID FETCH-LOGICAL-c3019-a3125531b82ba5c8f0bdaf7118ed2b77f352cdd62c0c4cf54118a004c99b73aa3
IEDL.DBID DRFUL
ISICitedReferencesCount 3
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000789216800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1472-3581
IngestDate Sun Nov 30 04:26:32 EST 2025
Sat Nov 29 04:26:04 EST 2025
Tue Nov 18 21:07:08 EST 2025
Wed Jan 22 16:24:19 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3019-a3125531b82ba5c8f0bdaf7118ed2b77f352cdd62c0c4cf54118a004c99b73aa3
Notes Funding information
the Graduate Scientific Innovation Fund for Xi'an Polytechnic University under Grant chx2021015; the Key R&D Plan of Shaanxi Province under Grant 2019ZDLGY01‐08; the National Natural Science Foundation of China under Grant 61803292; the Natural Science Foundation of Shaanxi Province under Grant 2019JM‐263; the Open Research Project of the State Key Laboratory of Industrial Control Technology, Zhejiang University, China (No. ICT2021B04); Xi'an Polytechnic University; Innovation Fund; Natural Science Foundation of Shaanxi Province; Zhejiang University; State Key Laboratory of Industrial Control Technology; National Natural Science Foundation of China
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9152-5237
PQID 2714210631
PQPubID 2045174
PageCount 16
ParticipantIDs proquest_journals_2714210631
crossref_citationtrail_10_1111_cote_12609
crossref_primary_10_1111_cote_12609
wiley_primary_10_1111_cote_12609_COTE12609
PublicationCentury 2000
PublicationDate October 2022
2022-10-00
20221001
PublicationDateYYYYMMDD 2022-10-01
PublicationDate_xml – month: 10
  year: 2022
  text: October 2022
PublicationDecade 2020
PublicationPlace Bradford
PublicationPlace_xml – name: Bradford
PublicationTitle Coloration technology
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2017; 5
2015; 15
2018; 29
2019; 9
2021; 67
2019; 11
2020; 84
2019; 32
2019; 35
2020; 17
2011; 52
2020; 37
2020; 15
2019; 19
2016; 2016
2008; 55
2016; 127
2010; 80
2020; 8
2018; 6
2018; 18
2019; 81
2017; 14
2019; 66
2019; 89
2019; 23
2017; 56
2019
2017
2015
2008; 41
2016; 28
2018; 14
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_27_1
e_1_2_7_29_1
Schlegl T (e_1_2_7_35_1) 2017
Aslam MS (e_1_2_7_28_1) 2021; 67
Zhang HW (e_1_2_7_22_1) 2019; 32
e_1_2_7_30_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_34_1
e_1_2_7_21_1
e_1_2_7_20_1
Tong L (e_1_2_7_11_1) 2017; 5
References_xml – volume: 80
  start-page: 579
  issue: 7
  year: 2010
  end-page: 589
  article-title: Detection of fabric defects by auto‐regressive spectral analysis and support vector data daescription
  publication-title: Text. Res. J.
– start-page: 234
  year: 2015
  end-page: 241
– volume: 14
  start-page: 3235
  issue: 7
  year: 2018
  end-page: 3243
  article-title: Deep learning‐based feature representation and its application for soft sensor modeling with variable‐wise weighted sae
  publication-title: IEEE Trans Industr Inform
– volume: 6
  start-page: 49170
  year: 2018
  end-page: 49181
  article-title: Fabric defect detection using salience metric for color dissimilarity and positional aggregation
  publication-title: IEEE Access
– volume: 17
  start-page: 6399
  issue: 9
  year: 2020
  end-page: 6408
  article-title: Industrial big data modeling and monitoring framework for plant‐wide processes
  publication-title: IEEE Trans. Industr. Inform.
– volume: 18
  start-page: 1064
  year: 2018
  article-title: Automatic fabric defect detection with a multi‐scale convolutional denoising autoencoder network model
  publication-title: Sensors
– volume: 37
  start-page: 515
  issue: 3
  year: 2020
  end-page: 528
  article-title: Fabric defect detection based on information entropy and frequency domain saliency
  publication-title: Vis Comput
– volume: 52
  start-page: 147
  issue: 1
  year: 2011
  end-page: 157
  article-title: Fabric defect detection using local contrast deviations
  publication-title: Multimed Tools Appl
– volume: 81
  start-page: 105489
  year: 2019
  article-title: On improving the accuracy with auto‐encoder on conjunctivitis[J]
  publication-title: Appl Soft Comput
– volume: 23
  start-page: 1363
  issue: 4
  year: 2019
  end-page: 1373
  article-title: Knowledge‐aided convolutional neural network for small organ segmentation[J]
  publication-title: IEEE J Biomed Health Inform
– volume: 9
  start-page: 3506
  issue: 17
  year: 2019
  article-title: Fabric defect detection using l0 gradient minimization and fuzzy c‐means
  publication-title: Appl Sci‐Basel
– volume: 56
  issue: 9
  year: 2017
  article-title: Yarn‐dyed fabric defect classification based on convolutional neural network[J]
  publication-title: Opt Eng
– volume: 29
  start-page: 1285
  issue: 12
  year: 2018
  end-page: 1307
  article-title: Multi‐level image thresholding using otsu and chaotic bat algorithm
  publication-title: Neural Comput Appl
– volume: 15
  start-page: 226
  issue: 3
  year: 2015
  end-page: 232
  article-title: Yarn‐dyed fabric defect detection based on autocorrelation function and glcm
  publication-title: Autex Res. J.
– volume: 35
  start-page: 517
  issue: 3
  year: 2019
  end-page: 534
  article-title: Fabric defect detection based on saliency histogram features
  publication-title: Comput Intell
– volume: 5
  start-page: 5947
  year: 2017
  end-page: 5964
  article-title: Fabric defect detection for apparel industry: a nonlocal sparse representation approach
  publication-title: IEEE Access
– volume: 67
  start-page: 1899
  issue: 2
  year: 2021
  end-page: 1914
  article-title: Liver‐tumor detection using CNN ResUNet
  publication-title: Comp Mater Contin
– volume: 84
  start-page: 437
  issue: 1
  year: 2020
  end-page: 449
  article-title: Automated cartilage and meniscus segmentation of knee mri with conditional generative adversarial networks
  publication-title: Magn Reson Med
– volume: 19
  start-page: 363
  issue: 4
  year: 2019
  end-page: 374
  article-title: A public fabric database for defect detection methods and results
  publication-title: Autex Res J
– volume: 2016
  start-page: 9794723
  year: 2016
  end-page: 9794728
  article-title: Using the dual‐tree complex wavelet transform for improved fabric defect detection
  publication-title: J Sens
– volume: 8
  start-page: 161317
  year: 2020
  end-page: 161325
  article-title: Pixel‐wise fabric defect detection by cnns without labeled training data
  publication-title: IEEE Access
– volume: 127
  start-page: 11960
  issue: 24
  year: 2016
  end-page: 11973
  article-title: Fabric defect detection systems and methods‐a systematic literature review
  publication-title: Optik
– start-page: 9592
  year: 2019
  end-page: 9600
– volume: 14
  start-page: 1256
  issue: 2
  year: 2017
  end-page: 1264
  article-title: Deformable patterned fabric defect detection with fisher criterion‐based deep learning
  publication-title: IEEE Trans Autom Sci Eng
– volume: 55
  start-page: 348
  issue: 1
  year: 2008
  end-page: 363
  article-title: Computer‐vision‐based fabric defect detection: a survey
  publication-title: IEEE Trans. Ind. Electron.
– volume: 28
  start-page: 516
  issue: 4
  year: 2016
  end-page: 529
  article-title: Detection of varied defects in diverse fabric images via modified rpca with noise term and defect prior
  publication-title: Int J Clot Sci Technol
– volume: 32
  start-page: 119
  issue: 2
  year: 2019
  end-page: 125
  article-title: Defect detection and location fo yarn‐dyed shirt piece based on denoising convolutional autoencoder
  publication-title: Basic Sciences Journal of Textile Universities
– volume: 89
  start-page: 4766
  issue: 21
  year: 2019
  end-page: 4793
  article-title: A universal defect detection approach for various types of fabrics based on the elo‐rating algorithm of the integral image
  publication-title: Text Res J
– volume: 41
  start-page: 1878
  issue: 6
  year: 2008
  end-page: 1894
  article-title: Motif‐based defect detection for patterned fabric
  publication-title: Pattern Recognit
– volume: 15
  start-page: 1558925020908268
  year: 2020
  article-title: Fabric defect detection using the improved yolov3 model
  publication-title: J Eng Fibers Fabr
– volume: 11
  start-page: 2970
  issue: 24
  year: 2019
  article-title: Building extraction from very high resolution aerial imagery using joint attention deep neural network
  publication-title: Remote Sens (Basel)
– volume: 66
  start-page: 3681
  issue: 5
  year: 2019
  end-page: 3692
  article-title: Scalable semisupervised gmm for big data quality prediction in multimode processes
  publication-title: IEEE Trans Ind Electron
– start-page: 146
  year: 2017
  end-page: 157
– ident: e_1_2_7_31_1
  doi: 10.1109/TII.2020.3010562
– ident: e_1_2_7_12_1
  doi: 10.1177/0040517509340599
– ident: e_1_2_7_26_1
  doi: 10.1109/JBHI.2019.2891526
– ident: e_1_2_7_2_1
  doi: 10.1515/aut-2015-0001
– ident: e_1_2_7_7_1
  doi: 10.3390/app9173506
– ident: e_1_2_7_10_1
  doi: 10.1007/s00371-020-01820-w
– ident: e_1_2_7_19_1
  doi: 10.1109/TIE.2018.2856200
– ident: e_1_2_7_20_1
  doi: 10.1177/1558925020908268
– start-page: 146
  volume-title: Unsupervised Anomaly Detection with Generative. Adversarial Networks to Guide Marker Discovery[C]//International Conference on Information Processing in Medical Imaging
  year: 2017
  ident: e_1_2_7_35_1
– ident: e_1_2_7_6_1
  doi: 10.1177/0040517519840636
– ident: e_1_2_7_27_1
  doi: 10.1007/978-3-319-24574-4_28
– ident: e_1_2_7_4_1
  doi: 10.1109/ACCESS.2018.2868059
– ident: e_1_2_7_13_1
  doi: 10.1109/TIE.1930.896476
– ident: e_1_2_7_14_1
  doi: 10.1007/s11042-010-0472-8
– ident: e_1_2_7_24_1
  doi: 10.1109/ACCESS.2020.3021189
– ident: e_1_2_7_32_1
  doi: 10.1109/CVPR.2019.00982
– ident: e_1_2_7_5_1
  doi: 10.1109/TASE.2016.2520955
– volume: 67
  start-page: 1899
  issue: 2
  year: 2021
  ident: e_1_2_7_28_1
  article-title: Liver‐tumor detection using CNN ResUNet
  publication-title: Comp Mater Contin
– ident: e_1_2_7_18_1
  doi: 10.1117/1.OE.56.9.093104
– ident: e_1_2_7_9_1
  doi: 10.1155/2016/9794723
– ident: e_1_2_7_30_1
  doi: 10.1002/mrm.28111
– ident: e_1_2_7_3_1
  doi: 10.1016/j.patcog.2007.11.014
– ident: e_1_2_7_33_1
  doi: 10.1007/s00521-016-2645-5
– ident: e_1_2_7_29_1
  doi: 10.3390/rs11242970
– ident: e_1_2_7_34_1
  doi: 10.2478/aut-2019-0035
– ident: e_1_2_7_16_1
  doi: 10.1111/coin.12206
– ident: e_1_2_7_23_1
  doi: 10.3390/s18041064
– ident: e_1_2_7_15_1
  doi: 10.1016/j.ijleo.2016.09.110
– ident: e_1_2_7_21_1
  doi: 10.5220/0007364500002108
– volume: 5
  start-page: 5947
  year: 2017
  ident: e_1_2_7_11_1
  article-title: Fabric defect detection for apparel industry: a nonlocal sparse representation approach
  publication-title: IEEE Access
– ident: e_1_2_7_8_1
  doi: 10.1108/IJCST-10-2015-0117
– ident: e_1_2_7_17_1
  doi: 10.1109/TII.2018.2809730
– volume: 32
  start-page: 119
  issue: 2
  year: 2019
  ident: e_1_2_7_22_1
  article-title: Defect detection and location fo yarn‐dyed shirt piece based on denoising convolutional autoencoder
  publication-title: Basic Sciences Journal of Textile Universities
– ident: e_1_2_7_25_1
  doi: 10.1016/j.asoc.2019.105489
SSID ssj0020843
Score 2.2997642
Snippet This study proposes an unsupervised, learning‐based, reconstructed scheme and a residual analysis‐based defect detection model for colour‐patterned fabric...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 522
SubjectTerms Color
Defects
Image reconstruction
Noise reduction
Title Colour‐patterned fabric defect detection based on an unsupervised multi‐scale U‐shaped denoising convolutional autoencoder model
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcote.12609
https://www.proquest.com/docview/2714210631
Volume 138
WOSCitedRecordID wos000789216800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library - Journals
  customDbUrl:
  eissn: 1478-4408
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020843
  issn: 1472-3581
  databaseCode: DRFUL
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB58HfTgW6wvFvSiEEk3bTcBL1JbPEgVaaW3sK-gIGlpEs-ePPsb_SXObNNaQQTxlCW7CcvOzjczu9_OApwo2sqzDe4lvlYeWSgvsmHimVCi_UObod2O6cON6HTCfj-6m4OLyVmYcX6I6YIbaYbDa1JwqbIZJdeD3J5X0R2P5mGRTlVh6LV4dd_u3UwDLj8cE-xrghjrYbVMT0pMnq-vvxukLy9z1ld1xqa99r9ursNq6WSyy_Gs2IA5m27CykzqwS14ayLqFaOP1_ehy7CJaMsSqRAVmbFE8cBH7mhaKSNLZxgWZMqKNCuGhC_0yrER8RcZCtqyHpUe5RArEMwGT7QKwYjVXs5u7JEs8gFlzjR2xNwdPNvQa7e6zWuvvJPB0wgFkScD9IhQb1XIlazrMPGVkYnAMMUaroRI0KHTxjS49nVNJ_Ua1khURB1FSgRSBjuwkA5SuwvMl5zrhAsZKYTrulRoJtEhU4ERgTWSV-B0IphYlwnL6d6M53gSuNDYxm5sK3A8bTscp-n4sdXBRL5xqapZzEW1hnFvI6hW4MxJ8pc_xM3bbsuV9v7SeB-WOR2bcCTAA1jIR4U9hCX9kj9lo6Ny2n4CnhD25Q
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fa9swED66dLD2oe22jmZNV8H2soGLLTuW_VjShpa56RjJ6JvRL9PAcEJi73lPfe7f2L9kd4qTZjAKo08WlmyETvfdnfTpBPBJ0VaejblX-Fp5ZKG81CaFZxKJ9g9thnY7pj8yMRgkNzfpt4abQ2dhFvkhVgtupBkOr0nBaUF6Tcv1pLInAfrj6QvYjOJQJC3YPPveH2WriMtPFgz7SBBlPQma_KRE5Xn8-m-L9Ohmrjurztr0d5_Zzz3YadxMdrqYF69hw5ZvYHst-eBbuOsh7tWzh9_3U5djE_GWFVIhLjJjieSBj8oRtUpGts4wLMiS1eW8nhLC0CvHR8RfzFHUlo2odCunWIFwNhnTOgQjXnszv7FHsq4mlDvT2Blzt_Dsw6h_PuxdeM2tDJ5GMEg9GaJPhJqrEq5kVyeFr4wsBAYq1nAlRIEunTYm5trXkS66EdZIVEWdpkqEUobvoFVOSnsAzJec64ILmSoE7K5UaCjRJVOhEaE1krfh81IyuW5SltPNGT_zZehCY5u7sW3Dx1Xb6SJRxz9bdZYCzhtlnedcBBFGvnEYtOGLE-UTf8h718NzV3r_P42P4dXF8CrLs8vB10PY4nSIwlECO9CqZrU9gpf6VzWezz40c_gPUs761Q
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3da9swED_adJTtYe3ajqVfE3QvK7g4sh3ZjyVtaFlIS2lG34w-aWE4JrH3vKc972_cX9I7xUkzGIXSJwtLNkKn-92d9NMJ4IuirTzb5YELtQrIQgWZTV1gUon2D22G9jum3wdiOEzv7rLrhptDZ2Fm-SEWC26kGR6vScFtadySlutxZU866I9nq7AWJ1kSt2Dt7KY_GiwirjCdMexjQZT1tNPkJyUqz9PX_1qkJzdz2Vn11qa_8cp-bsL7xs1kp7N58QFWbLEF75aSD27D7x7iXj35--tP6XNsIt4yJxXiIjOWSB74qDxRq2Bk6wzDgixYXUzrkhCGXnk-Iv5iiqK2bESle1liBcLZ-IHWIRjx2pv5jT2SdTWm3JnGTpi_hWcHRv3z295F0NzKEGgEgyyQEfpEqLkq5UomOnWhMtIJDFSs4UoIhy6dNqbLdahj7ZIYaySqos4yJSIpo4_QKsaF_QQslJxrx4XMFAJ2IhUaSnTJVGREZI3kbfg6l0yum5TldHPGj3weutDY5n5s23C0aFvOEnX8t9X-XMB5o6zTnItOjJFvN-q04diL8pk_5L2r23Nf2n1J48-wfn3WzweXw2978JbTGQrPCNyHVjWp7QG80T-rh-nksJnCj-hL-lA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Colour%E2%80%90patterned+fabric+defect+detection+based+on+an+unsupervised+multi%E2%80%90scale+U%E2%80%90shaped+denoising+convolutional+autoencoder+model&rft.jtitle=Coloration+technology&rft.au=Zhang%2C+Hongwei&rft.au=Liu%2C+Shuting&rft.au=Tan%2C+Quanlu&rft.au=Lu%2C+Shuai&rft.date=2022-10-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1472-3581&rft.eissn=1478-4408&rft.volume=138&rft.issue=5&rft.spage=522&rft.epage=537&rft_id=info:doi/10.1111%2Fcote.12609&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1472-3581&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1472-3581&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1472-3581&client=summon