Distributed and vectorized method of characteristics for fast transient simulations in water distribution systems
Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer ph...
Uložené v:
| Vydané v: | Computer-aided civil and infrastructure engineering Ročník 37; číslo 2; s. 163 - 184 |
|---|---|
| Hlavní autori: | , , |
| Médium: | Journal Article |
| Jazyk: | English |
| Vydavateľské údaje: |
Hoboken
Wiley Subscription Services, Inc
01.02.2022
|
| Predmet: | |
| ISSN: | 1093-9687, 1467-8667 |
| On-line prístup: | Získať plný text |
| Tagy: |
Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
|
| Abstract | Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer phenomenon in water distribution systems (WDSs), which is critical for design and operation. For applications that require fast modeling, existing methods for speeding up traditional MOC simulations either trade off accuracy for simulation time, or do not scale properly due to memory restrictions and prolonged computational times. This work proposes a novel parallel implementation of the MOC for networked systems, which relies on vectorization and distributed parallel computing to evaluate the transient dynamics of WDSs. The proposed method, referred to as distributed and vectorized MOC (DV‐MOC), relies on aligned memory allocation for vectorization and distributed‐memory parallelization to further accelerate vectorized operations and ensure scalability for arbitrary network topologies. The algorithm has been applied to a WDS from the battle of the sensor networks (BWSN‐II) composed by 14,824 pipes and nearly 6×1011 solution points. Through rigorous analyses, we show that the performance of DV‐MOC surpasses that of sequential MOC, with speeding up factors in the order of thousands for sufficiently dense numerical grids. |
|---|---|
| AbstractList | Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer phenomenon in water distribution systems (WDSs), which is critical for design and operation. For applications that require fast modeling, existing methods for speeding up traditional MOC simulations either trade off accuracy for simulation time, or do not scale properly due to memory restrictions and prolonged computational times. This work proposes a novel parallel implementation of the MOC for networked systems, which relies on vectorization and distributed parallel computing to evaluate the transient dynamics of WDSs. The proposed method, referred to as distributed and vectorized MOC (DV‐MOC), relies on aligned memory allocation for vectorization and distributed‐memory parallelization to further accelerate vectorized operations and ensure scalability for arbitrary network topologies. The algorithm has been applied to a WDS from the battle of the sensor networks (BWSN‐II) composed by 14,824 pipes and nearly
solution points. Through rigorous analyses, we show that the performance of DV‐MOC surpasses that of sequential MOC, with speeding up factors in the order of thousands for sufficiently dense numerical grids. Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer phenomenon in water distribution systems (WDSs), which is critical for design and operation. For applications that require fast modeling, existing methods for speeding up traditional MOC simulations either trade off accuracy for simulation time, or do not scale properly due to memory restrictions and prolonged computational times. This work proposes a novel parallel implementation of the MOC for networked systems, which relies on vectorization and distributed parallel computing to evaluate the transient dynamics of WDSs. The proposed method, referred to as distributed and vectorized MOC (DV‐MOC), relies on aligned memory allocation for vectorization and distributed‐memory parallelization to further accelerate vectorized operations and ensure scalability for arbitrary network topologies. The algorithm has been applied to a WDS from the battle of the sensor networks (BWSN‐II) composed by 14,824 pipes and nearly 6×1011 solution points. Through rigorous analyses, we show that the performance of DV‐MOC surpasses that of sequential MOC, with speeding up factors in the order of thousands for sufficiently dense numerical grids. Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer phenomenon in water distribution systems (WDSs), which is critical for design and operation. For applications that require fast modeling, existing methods for speeding up traditional MOC simulations either trade off accuracy for simulation time, or do not scale properly due to memory restrictions and prolonged computational times. This work proposes a novel parallel implementation of the MOC for networked systems, which relies on vectorization and distributed parallel computing to evaluate the transient dynamics of WDSs. The proposed method, referred to as distributed and vectorized MOC (DV‐MOC), relies on aligned memory allocation for vectorization and distributed‐memory parallelization to further accelerate vectorized operations and ensure scalability for arbitrary network topologies. The algorithm has been applied to a WDS from the battle of the sensor networks (BWSN‐II) composed by 14,824 pipes and nearly 6×1011 solution points. Through rigorous analyses, we show that the performance of DV‐MOC surpasses that of sequential MOC, with speeding up factors in the order of thousands for sufficiently dense numerical grids. |
| Author | Hodges, Ben R. Sela, Lina Riaño‐Briceño, Gerardo |
| Author_xml | – sequence: 1 givenname: Gerardo surname: Riaño‐Briceño fullname: Riaño‐Briceño, Gerardo organization: The University of Texas at Austin – sequence: 2 givenname: Lina surname: Sela fullname: Sela, Lina email: linasela@utexas.edu organization: The University of Texas at Austin – sequence: 3 givenname: Ben R. surname: Hodges fullname: Hodges, Ben R. organization: The University of Texas at Austin |
| BookMark | eNp9kM1OAyEUhYmpiW114xOQuDOZCgzzw9LUqk1q3OiaMAykNDNDC4xNfXppRzfGeFncy813DuFMwKiznQLgGqMZjnXXGqlmmBSInYExpnmRlHlejOKMWJqwvCwuwMT7DYpFaToGuwfjgzNVH1QNRVfDDyWDdeYzXlsV1raGVkO5Fk7IoFyEjfRQWwe18AEGJzpvVBegN23fiGBs56Hp4F5EGtY_5nEN_cEH1fpLcK5F49XVd5-C98fF2_w5Wb0-Lef3q0SmCLMkI7IiWZrJslBECqpphSpS1FVe0VRJUVIsKJGZLCjSpUJMMUHLGkmmUV1lJJ2Cm8F36-yuVz7wje1dF5_kJI-nLAjLI3U7UNJZ753SfOtMK9yBY8SPkfJjpPwUaYTRL1iacPpzzME0f0vwINmbRh3-Mecvy_li0HwB_VqOiw |
| CitedBy_id | crossref_primary_10_1111_mice_13088 crossref_primary_10_1016_j_envsoft_2022_105554 crossref_primary_10_1061__ASCE_CP_1943_5487_0001020 crossref_primary_10_1029_2024WR039742 crossref_primary_10_1016_j_watres_2022_119538 crossref_primary_10_1111_mice_13049 |
| Cites_doi | 10.1088/1755-1315/240/5/052025 10.1109/MCSE.2011.37 10.1016/j.cma.2014.10.036 10.2166/aqua.2020.048 10.2166/hydro.2017.052 10.1061/(ASCE)0733-9429(2004)130:4(341) 10.1061/(ASCE)HY.1943-7900.0000497 10.1007/s40999-020-00546-z 10.1007/BF01742517 10.1002/j.1551-8833.2005.tb10892.x 10.1016/j.anucene.2013.12.012 10.1061/(ASCE)HY.1943-7900.0001432 10.1016/j.jfluidstructs.2018.05.004 10.1016/j.advengsoft.2020.102884 10.1115/1.3242524 10.1016/j.anucene.2013.06.039 10.1016/j.cpc.2016.01.007 10.1016/j.cma.2019.112583 10.3390/app9010091 10.3390/w11040639 10.1016/j.renene.2018.07.119 10.1061/(ASCE)HY.1943-7900.0001438 10.1002/j.1551-8833.2007.tb08109.x 10.1061/JYCEAJ.0001447 10.1145/996893.996853 10.1016/j.cma.2005.07.007 10.1061/9780784479872.020 10.2166/hydro.2020.163 10.1061/(ASCE)0733-9445(1995)121:10(1448) 10.1109/TPDS.2017.2671868 10.1007/s11269-020-02625-1 10.1038/s41586-020-2649-2 10.1145/3093338.3093385 10.5194/dwes-7-83-2014 10.1147/rd.112.0215 10.1080/00221686.2018.1522377 10.1115/1.4031202 10.1061/(ASCE)0733-9496(2008)134:6(556) 10.1061/(ASCE)0733-9429(1998)124:4(384) 10.1016/0142-727X(94)90051-5 10.1016/j.jfluidstructs.2019.102845 10.29007/w1bk 10.7551/mitpress/7056.001.0001 10.1088/1755-1315/49/5/052001 |
| ContentType | Journal Article |
| Copyright | 2021 2022 Computer‐Aided Civil and Infrastructure Engineering |
| Copyright_xml | – notice: 2021 – notice: 2022 Computer‐Aided Civil and Infrastructure Engineering |
| DBID | AAYXX CITATION 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| DOI | 10.1111/mice.12709 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | CrossRef Civil Engineering Abstracts |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Engineering Computer Science |
| EISSN | 1467-8667 |
| EndPage | 184 |
| ExternalDocumentID | 10_1111_mice_12709 MICE12709 |
| Genre | article |
| GrantInformation_xml | – fundername: U.S. Environmental Protection Agency funderid: 83595001 |
| GroupedDBID | ..I .3N .4S .DC .GA 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5HH 5LA 5VS 66C 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCQN ABCUV ABDBF ABEML ABFSI ABJNI ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFEBI AFFPM AFGKR AFPWT AHBTC AHEFC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ARCSS ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CAG COF CS3 CWDTD D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 E.L EAD EAP EBS EDO EJD EMK EST ESX F00 F01 F04 FEDTE G-S G.N GODZA H.T H.X HF~ HGLYW HVGLF HZI HZ~ I-F IHE IX1 J0M K48 LATKE LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NF~ O66 O9- OIG P2P P2W P2X P4D PALCI Q.N Q11 QB0 R.K RJQFR RX1 SAMSI SUPJJ TN5 TUS UB1 VH1 W8V W99 WBKPD WIH WIK WLBEL WOHZO WQJ WRC WXSBR WYISQ XG1 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION O8X 7SC 8FD FR3 JQ2 KR7 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3019-52cb2535c87e2ca4f4b0b27db6b43eca841a42c5c740f8e09e9a48d0c9f0db523 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 6 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661553100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1093-9687 |
| IngestDate | Sun Nov 09 08:31:52 EST 2025 Tue Nov 18 21:09:47 EST 2025 Sat Nov 29 05:42:08 EST 2025 Wed Jan 22 16:27:47 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3019-52cb2535c87e2ca4f4b0b27db6b43eca841a42c5c740f8e09e9a48d0c9f0db523 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2626287296 |
| PQPubID | 2045171 |
| PageCount | 22 |
| ParticipantIDs | proquest_journals_2626287296 crossref_primary_10_1111_mice_12709 crossref_citationtrail_10_1111_mice_12709 wiley_primary_10_1111_mice_12709_MICE12709 |
| PublicationCentury | 2000 |
| PublicationDate | February 2022 2022-02-00 20220201 |
| PublicationDateYYYYMMDD | 2022-02-01 |
| PublicationDate_xml | – month: 02 year: 2022 text: February 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken |
| PublicationPlace_xml | – name: Hoboken |
| PublicationTitle | Computer-aided civil and infrastructure engineering |
| PublicationYear | 2022 |
| Publisher | Wiley Subscription Services, Inc |
| Publisher_xml | – name: Wiley Subscription Services, Inc |
| References | 2019; 11 2019; 57 2013; 62 2018; 81 1966; 92 2014; 68 2011; 13 2020; 18 2018; 3 2000 1967; 11 2004; 39 2020; 93 2004; 130 2019; 357 2020b 2020a 1995; 121 2012; 138 2014; 7 1998; 124 2015; 283 2018; 144 2017; 28 2009 2006; 195 2008 2020; 149 2006 1995 2020; 585 2004 2020; 34 1993 1985; 107 2003 2016; 202 2007; 99 2018; 20 1999 2019a; 9 2021 2019b 2020 2019 2005; 97 2018 2020; 69 2017 2016 1994; 15 2016; 138 2020; 22 2008; 134 1994; 7 2019; 132 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_7_1 Wylie E. B. (e_1_2_7_53_1) 1993 e_1_2_7_19_1 e_1_2_7_17_1 e_1_2_7_15_1 e_1_2_7_13_1 TACC ‐ Texas Advanced Computing Center (e_1_2_7_47_1) 2020 e_1_2_7_11_1 e_1_2_7_45_1 e_1_2_7_49_1 King H. W. (e_1_2_7_28_1) 2018 HAMMER, Bentley (e_1_2_7_22_1) 2019 Briceno G. (e_1_2_7_41_1) 2021 e_1_2_7_50_1 e_1_2_7_25_1 e_1_2_7_31_1 e_1_2_7_52_1 e_1_2_7_23_1 e_1_2_7_33_1 e_1_2_7_54_1 e_1_2_7_21_1 e_1_2_7_35_1 e_1_2_7_56_1 e_1_2_7_37_1 e_1_2_7_58_1 Environmental Protection Agency (e_1_2_7_16_1) 2008 e_1_2_7_6_1 e_1_2_7_4_1 e_1_2_7_8_1 Grama A. (e_1_2_7_20_1) 2003 e_1_2_7_18_1 e_1_2_7_2_1 e_1_2_7_14_1 e_1_2_7_12_1 e_1_2_7_44_1 e_1_2_7_10_1 e_1_2_7_46_1 e_1_2_7_48_1 e_1_2_7_27_1 e_1_2_7_29_1 Karypis G. (e_1_2_7_26_1) 2009 Bik A. J. (e_1_2_7_5_1) 2004 Briceno G. (e_1_2_7_40_1) 2020 Briceno G. (e_1_2_7_39_1) 2020 Rossum G. (e_1_2_7_43_1) 1995 e_1_2_7_51_1 e_1_2_7_30_1 e_1_2_7_32_1 e_1_2_7_55_1 e_1_2_7_34_1 e_1_2_7_57_1 e_1_2_7_36_1 Rossman L. A. (e_1_2_7_42_1) 2000 e_1_2_7_59_1 e_1_2_7_38_1 Hartell W. R. (e_1_2_7_24_1) 2006 |
| References_xml | – year: 2009 – volume: 68 start-page: 43 year: 2014 end-page: 52 article-title: The OpenMOC method of characteristics neutral particle transport code publication-title: Annals of Nuclear Energy – volume: 283 start-page: 971 year: 2015 end-page: 993 article-title: Hybrid element‐based approximation for the Navier–Stokes equations in pipe‐like domains publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2021 – volume: 202 start-page: 141 year: 2016 end-page: 150 article-title: A task‐based parallelism and vectorized approach to 3D method of characteristics (MOC) reactor simulation for high performance computing architectures publication-title: Computer Physics Communications – volume: 138 start-page: 154 issue: 2 year: 2012 end-page: 166 article-title: Relevance of unsteady friction to pipe size and length in pipe fluid transients publication-title: Journal of Hydraulic Engineering – year: 2018 – volume: 7 start-page: 117 issue: 1‐2 year: 1994 end-page: 125 article-title: Impact of vectorization on large‐scale structural optimization publication-title: Structural Optimization – volume: 97 start-page: 111 issue: 5 year: 2005 end-page: 124 article-title: Hydraulic transient guidelines for protecting water distribution systems publication-title: Journal‐American Water Works Association – volume: 138 issue: 1 year: 2016 article-title: Sensitivity analysis of operational time differences for a pump–valve system on a water hammer response publication-title: Journal of Pressure Vessel Technology – volume: 15 start-page: 378 issue: 5 year: 1994 end-page: 383 article-title: An implicit method for transient gas flows in pipe networks publication-title: International Journal of Heat and Fluid Flow – volume: 69 start-page: 858 issue: 8 year: 2020 end-page: 893 article-title: State‐of‐the‐art review on the transient flow modeling and utilization for urban water supply system (UWSS) management publication-title: Journal of Water Supply: Research and Technology‐Aqua – volume: 585 start-page: 357 issue: 7825 year: 2020 end-page: 362 article-title: Array programming with NumPy publication-title: Nature – volume: 124 start-page: 384 issue: 4 year: 1998 end-page: 393 article-title: Energy estimates for discretization errors in water hammer problems publication-title: Journal of Hydraulic Engineering – volume: 195 start-page: 2788 issue: 19–22 year: 2006 end-page: 2815 article-title: A parallel 2D finite volume scheme for solving systems of balance laws with nonconservative products: Application to shallow flows publication-title: Computer Methods in Applied Mechanics and Engineering – year: 2008 – start-page: 1 year: 2017 end-page: 8 – year: 2004 – volume: 134 start-page: 556 issue: 6 year: 2008 end-page: 568 article-title: The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms publication-title: Journal of Water Resources Planning and Management – year: 2019b – volume: 130 start-page: 341 issue: 4 year: 2004 end-page: 348 article-title: Godunov‐type solutions for water hammer flows publication-title: Journal of Hydraulic Engineering – year: 2019 – year: 1993 – volume: 57 start-page: 353 issue: 3 year: 2019 end-page: 373 article-title: Formulation of consistent finite volume schemes for hydraulic transients publication-title: Journal of Hydraulic Research – volume: 11 start-page: 639 issue: 4 year: 2019 article-title: Comparison of shallow water solvers: Applications for dam‐break and tsunami cases with reordering strategy for efficient vectorization on modern hardware publication-title: Water – volume: 9 start-page: 91 issue: 1 year: 2019a article-title: GPU acceleration of hydraulic transient simulations of large‐scale water supply systems publication-title: Applied Sciences – year: 2003 – volume: 81 start-page: 230 year: 2018 end-page: 254 article-title: Numerical methods for hydraulic transients in visco‐elastic pipes publication-title: Journal of Fluids and Structures – year: 2000 – volume: 62 start-page: 445 year: 2013 end-page: 451 article-title: Accelerating a three‐dimensional MOC calculation using GPU with CUDA and two‐level GCMFD method publication-title: Annals of Nuclear Energy – volume: 99 start-page: 87 issue: 12 year: 2007 end-page: 98 article-title: Pitfalls of water distribution model skeletonization for surge analysis publication-title: Journal‐American Water Works Association – volume: 13 start-page: 22 issue: 2 year: 2011 end-page: 30 article-title: The NumPy array: A structure for efficient numerical computation publication-title: Computing in Science & Engineering – volume: 34 start-page: 3499 issue: 11 year: 2020 end-page: 3513 article-title: Control‐oriented impedance matrix and alternative transient control for pipe network systems publication-title: Water Resources Management – volume: 357 year: 2019 article-title: Distributed‐memory parallelization of the aggregated unfitted finite element method publication-title: Computer Methods in Applied Mechanics and Engineering – start-page: 191 year: 2016 end-page: 201 – year: 2020a – volume: 20 start-page: 535 issue: 3 year: 2018 end-page: 550 article-title: Relevance of hydraulic modelling in planning and operating real‐time pressure control: Case of Oppegård municipality publication-title: Journal of Hydroinformatics – volume: 11 start-page: 215 issue: 2 year: 1967 end-page: 234 article-title: On the partial difference equations of mathematical physics publication-title: IBM journal of Research and Development – volume: 39 start-page: 82 issue: 6 year: 2004 end-page: 93 article-title: Vectorization for SIMD architectures with alignment constraints publication-title: ACM Sigplan Notices – year: 2016 – volume: 7 start-page: 83 issue: 2 year: 2014 end-page: 92 article-title: Finite volume simulation of unsteady water pipe flow publication-title: Drinking Water Engineering and Science – volume: 92 start-page: 83 issue: 2 year: 1966 end-page: 110 article-title: Wave‐plan analysis of unsteady flow in closed conduits publication-title: Journal of the Hydraulics Division – volume: 149 year: 2020 article-title: Transient simulations in water distribution networks: TSNet python package publication-title: Advances in Engineering Software – volume: 28 start-page: 2625 year: 2017 end-page: 2638 article-title: Parallel graph partitioning for complex networks publication-title: IEEE Transactions on Parallel and Distributed Systems – volume: 3 start-page: 1971 year: 2018 end-page: 1978 article-title: Complex network theory for water distribution networks analysis publication-title: EPiC Series in Engineering – volume: 121 start-page: 1448 issue: 10 year: 1995 end-page: 1455 article-title: Distributed finite‐element analysis on network of workstations—Algorithms publication-title: Journal of Structural Engineering – year: 2006 – year: 2020 – volume: 18 start-page: 1327 issue: 12 year: 2020 end-page: 1345 article-title: Unified matrix frameworks for water hammer analysis in pipe networks publication-title: International Journal of Civil Engineering – volume: 107 start-page: 523 issue: 4 year: 1985 end-page: 529 article-title: Second‐order accurate explicit finite‐difference schemes for water hammer analysis publication-title: Journal of Fluids Engineering – year: 1995 – volume: 22 start-page: 1217 issue: 5 year: 2020 end-page: 1235 article-title: High‐performance computing in water resources hydrodynamics publication-title: Journal of Hydroinformatics – volume: 132 start-page: 157 year: 2019 end-page: 166 article-title: Wave tracking method of hydraulic transients in pipe systems with pump shut‐off under simultaneous closing of spherical valves publication-title: Renewable Energy – year: 2020b – volume: 144 issue: 4 year: 2018 article-title: Faster inverse transient analysis with a head‐based method of characteristics and a flexible computational grid for pipeline condition assessment publication-title: Journal of Hydraulic Engineering – volume: 93 year: 2020 article-title: Finite element for the dynamic analysis of pipes subjected to water hammer publication-title: Journal of Fluids and Structures – volume: 144 issue: 7 year: 2018 article-title: Generalized flexible method for simulating transient pipe network hydraulics publication-title: Journal of Hydraulic Engineering – year: 1999 – ident: e_1_2_7_31_1 doi: 10.1088/1755-1315/240/5/052025 – ident: e_1_2_7_50_1 doi: 10.1109/MCSE.2011.37 – ident: e_1_2_7_6_1 doi: 10.1016/j.cma.2014.10.036 – ident: e_1_2_7_14_1 doi: 10.2166/aqua.2020.048 – volume-title: Water hammer and transient analysis software year: 2019 ident: e_1_2_7_22_1 – ident: e_1_2_7_3_1 doi: 10.2166/hydro.2017.052 – volume-title: EPANET 2: Users manual year: 2000 ident: e_1_2_7_42_1 – ident: e_1_2_7_59_1 doi: 10.1061/(ASCE)0733-9429(2004)130:4(341) – ident: e_1_2_7_13_1 doi: 10.1061/(ASCE)HY.1943-7900.0000497 – volume-title: Method and system for reduction of a network topology‐based system having automated optimization features year: 2006 ident: e_1_2_7_24_1 – ident: e_1_2_7_34_1 doi: 10.1007/s40999-020-00546-z – ident: e_1_2_7_45_1 doi: 10.1007/BF01742517 – volume-title: Python reference manual year: 1995 ident: e_1_2_7_43_1 – ident: e_1_2_7_7_1 doi: 10.1002/j.1551-8833.2005.tb10892.x – volume-title: BWSN Network for transient simulation year: 2020 ident: e_1_2_7_39_1 – volume-title: Handbook of hydraulics year: 2018 ident: e_1_2_7_28_1 – volume-title: FACTOIDS: Drinking water and ground water statistics for 2007 year: 2008 ident: e_1_2_7_16_1 – ident: e_1_2_7_8_1 doi: 10.1016/j.anucene.2013.12.012 – ident: e_1_2_7_37_1 doi: 10.1061/(ASCE)HY.1943-7900.0001432 – ident: e_1_2_7_4_1 doi: 10.1016/j.jfluidstructs.2018.05.004 – volume-title: Stampede 2 user guide year: 2020 ident: e_1_2_7_47_1 – ident: e_1_2_7_54_1 doi: 10.1016/j.advengsoft.2020.102884 – volume-title: The software vectorization handbook: Applying Intel multimedia extensions for maximum performance year: 2004 ident: e_1_2_7_5_1 – ident: e_1_2_7_11_1 doi: 10.1115/1.3242524 – volume-title: Python code DV‐MOC year: 2020 ident: e_1_2_7_40_1 – ident: e_1_2_7_58_1 doi: 10.1016/j.anucene.2013.06.039 – ident: e_1_2_7_48_1 doi: 10.1016/j.cpc.2016.01.007 – ident: e_1_2_7_49_1 doi: 10.1016/j.cma.2019.112583 – volume-title: Fluid transients in systems year: 1993 ident: e_1_2_7_53_1 – ident: e_1_2_7_30_1 doi: 10.3390/app9010091 – volume-title: MeTis: Unstructured graph partitioning and sparse matrix ordering system year: 2009 ident: e_1_2_7_26_1 – ident: e_1_2_7_19_1 doi: 10.3390/w11040639 – ident: e_1_2_7_57_1 doi: 10.1016/j.renene.2018.07.119 – ident: e_1_2_7_55_1 doi: 10.1061/(ASCE)HY.1943-7900.0001438 – ident: e_1_2_7_25_1 doi: 10.1002/j.1551-8833.2007.tb08109.x – ident: e_1_2_7_52_1 doi: 10.1061/JYCEAJ.0001447 – volume-title: Introduction to parallel computing year: 2003 ident: e_1_2_7_20_1 – ident: e_1_2_7_15_1 doi: 10.1145/996893.996853 – volume-title: Supporting information—Distributed and vectorized method of characteristics for fast transient simulations in water distribution systems year: 2021 ident: e_1_2_7_41_1 – ident: e_1_2_7_10_1 doi: 10.1016/j.cma.2005.07.007 – ident: e_1_2_7_36_1 doi: 10.1061/9780784479872.020 – ident: e_1_2_7_35_1 doi: 10.2166/hydro.2020.163 – ident: e_1_2_7_2_1 doi: 10.1061/(ASCE)0733-9445(1995)121:10(1448) – ident: e_1_2_7_33_1 doi: 10.1109/TPDS.2017.2671868 – ident: e_1_2_7_27_1 doi: 10.1007/s11269-020-02625-1 – ident: e_1_2_7_23_1 doi: 10.1038/s41586-020-2649-2 – ident: e_1_2_7_46_1 doi: 10.1145/3093338.3093385 – ident: e_1_2_7_17_1 doi: 10.5194/dwes-7-83-2014 – ident: e_1_2_7_12_1 doi: 10.1147/rd.112.0215 – ident: e_1_2_7_32_1 doi: 10.1080/00221686.2018.1522377 – ident: e_1_2_7_51_1 doi: 10.1115/1.4031202 – ident: e_1_2_7_38_1 doi: 10.1061/(ASCE)0733-9496(2008)134:6(556) – ident: e_1_2_7_18_1 doi: 10.1061/(ASCE)0733-9429(1998)124:4(384) – ident: e_1_2_7_29_1 doi: 10.1016/0142-727X(94)90051-5 – ident: e_1_2_7_9_1 doi: 10.1016/j.jfluidstructs.2019.102845 – ident: e_1_2_7_44_1 doi: 10.29007/w1bk – ident: e_1_2_7_21_1 doi: 10.7551/mitpress/7056.001.0001 – ident: e_1_2_7_56_1 doi: 10.1088/1755-1315/49/5/052001 |
| SSID | ssj0000443 |
| Score | 2.3397403 |
| Snippet | Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 163 |
| SubjectTerms | Algorithms Distributed memory Dynamical systems Hammers Memory management Method of characteristics Network topologies Partial differential equations Simulation Unsteady flow Vector processing (computers) Water distribution Water engineering Water hammer |
| Title | Distributed and vectorized method of characteristics for fast transient simulations in water distribution systems |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12709 https://www.proquest.com/docview/2626287296 |
| Volume | 37 |
| WOSCitedRecordID | wos000661553100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1467-8667 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000443 issn: 1093-9687 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5080EfnE7F6ZSAvihUujRrG_BF3IYPMkQUfCv5VRhop-uc4F9vrk3dBiKIb224JCXJXe7S3PcBnArfYGqA8HypqYeQbh6XuuuZUKdBwDuamiJR-DYaDuOnJ363ApdVLkyJD_F94IaaUdhrVHAh8wUlR7b2C_xvylehjllVdk3Xe_eDx9u5JWbugj0PPB7GkYMnxZs889rLG9Lcy1z0VYvNZtD432duwaZzMslVuSq2YcVkTWg4h5M4dc5tUcXpUJU1YWMBoHAH3nqIq4uUWLaeyDSZFYf8o0_7WnJPk3FK1DLoM7F-MElFPiVT3Agx4ZLkoxfHE5aTUUY-BHaqq8ZtMSkhpfNdeBz0H65vPEfS4ClrG7gNZJWk3aCr4shQJVjKpC9ppGUoWWCUiFlHMKq6KmJ-GhufGy5YrH3FU19LGwbvQS0bZ2YfSCeWSlj3ESndGYaC1IZz1FqYMAp9HbAWnFUzlSiHYI5EGs9JFcngYCfFYLfg5Fv2tcTt-FGqXU144nQ3T6iN8bBjHrbgvJjaX1pIrLL0i6eDvwgfwjrFPIri-ncbatPJuzmCNTWbjvLJsVvHX4oO-C4 |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdSDb3F9BvSiUMmm2bY5iroorouIgreSV2FBu2pXBX-9mTZ1VxBBvLUhj5JkJjPpzPcB7EtqMTVABlQZFiCkWyCUaQc2MlkYipZhtkwU7sa9XnJ_L659bA7mwlT4EF8XbigZpb5GAccL6TEpR7r2I_xxKiZhirt9RBswdXrTueuOVDH3EfYiDESUxB6fFEN5Rq2_n0gjM3PcWC1Pm87CP79zEea9mUmOq32xBBM2X4YFb3ISL9CFK6pZHeqyZZgbgyhcgedTRNZFUizXTuaGvJXX_P0P91qxT5NBRvR32GfiLGGSyWJIhngUYsolKfqPnimsIP2cvEsc1NSdu2JSgUoXq3DXObs9OQ88TUOgnXYQzpXVirXDtk5iy7TkGVdUsdioSPHQapnwluRMt3XMaZZYKqyQPDFUi4wa5RzhNWjkg9yuA2klSktnQCKpO0dnkDmHjjkdE8URNSFvwkG9VKn2GOZIpfGQ1r4MTnZaTnYT9r7qPlXIHT_W2qpXPPXSW6TMeXk4sIiacFiu7S89pE5czsqnjb9U3oWZ89urbtq96F1uwizDrIoyGHwLGsOXV7sN0_pt2C9edvym_gRGvfwV |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJqIP3sV5DeiLQqVL00sexTkUxxBR8K3kVhhop3ZO8Neb06ZuggjiWxtyKUnOyTnpOd8HcCR8g6kBwvOlph5Cunlc6tAzkc6CgLc1NWWicC_u95OHB37jYnMwF6bCh_i6cEPJKPU1Crh51tmUlCNd-yn-OOWz0GShNfQb0Ozcdu97E1XMXIQ9DzweJbHDJ8VQnknr7yfSxMycNlbL06a7_M_vXIElZ2aSs2pfrMKMyddg2ZmcxAl0YYtqVoe6bA0WpyAK1-Glg8i6SIpl24lck3F5zT_4sK8V-zQZZkR9h30m1hImmShGZIRHIaZckmLw5JjCCjLIybvAQXXduS0mFah0sQH33Yu780vP0TR4ymoHbl1ZJWkYhCqJDVWCZUz6ksZaRpIFRomEtQWjKlQx87PE-NxwwRLtK575WlpHeBMa-TA3W0DaiVTCGpBI6s7QGaTWoaNWx0Rx5OuAteC4XqpUOQxzpNJ4TGtfBic7LSe7BYdfdZ8r5I4fa-3WK5466S1Sar08HJhHLTgp1_aXHlIrLhfl0_ZfKh_A_E2nm_au-tc7sEAxqaKMBd-Fxuj1zezBnBqPBsXrvtvTn_IG-5k |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+and+vectorized+method+of+characteristics+for+fast+transient+simulations+in+water+distribution+systems&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Gerardo+Ria%C3%B1o%E2%80%90Brice%C3%B1o&rft.au=Sela%2C+Lina&rft.au=Hodges%2C+Ben+R&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=37&rft.issue=2&rft.spage=163&rft.epage=184&rft_id=info:doi/10.1111%2Fmice.12709&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon |