Distributed and vectorized method of characteristics for fast transient simulations in water distribution systems

Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer ph...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer-aided civil and infrastructure engineering Ročník 37; číslo 2; s. 163 - 184
Hlavní autori: Riaño‐Briceño, Gerardo, Sela, Lina, Hodges, Ben R.
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.02.2022
Predmet:
ISSN:1093-9687, 1467-8667
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer phenomenon in water distribution systems (WDSs), which is critical for design and operation. For applications that require fast modeling, existing methods for speeding up traditional MOC simulations either trade off accuracy for simulation time, or do not scale properly due to memory restrictions and prolonged computational times. This work proposes a novel parallel implementation of the MOC for networked systems, which relies on vectorization and distributed parallel computing to evaluate the transient dynamics of WDSs. The proposed method, referred to as distributed and vectorized MOC (DV‐MOC), relies on aligned memory allocation for vectorization and distributed‐memory parallelization to further accelerate vectorized operations and ensure scalability for arbitrary network topologies. The algorithm has been applied to a WDS from the battle of the sensor networks (BWSN‐II) composed by 14,824 pipes and nearly 6×1011 solution points. Through rigorous analyses, we show that the performance of DV‐MOC surpasses that of sequential MOC, with speeding up factors in the order of thousands for sufficiently dense numerical grids.
AbstractList Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer phenomenon in water distribution systems (WDSs), which is critical for design and operation. For applications that require fast modeling, existing methods for speeding up traditional MOC simulations either trade off accuracy for simulation time, or do not scale properly due to memory restrictions and prolonged computational times. This work proposes a novel parallel implementation of the MOC for networked systems, which relies on vectorization and distributed parallel computing to evaluate the transient dynamics of WDSs. The proposed method, referred to as distributed and vectorized MOC (DV‐MOC), relies on aligned memory allocation for vectorization and distributed‐memory parallelization to further accelerate vectorized operations and ensure scalability for arbitrary network topologies. The algorithm has been applied to a WDS from the battle of the sensor networks (BWSN‐II) composed by 14,824 pipes and nearly solution points. Through rigorous analyses, we show that the performance of DV‐MOC surpasses that of sequential MOC, with speeding up factors in the order of thousands for sufficiently dense numerical grids.
Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer phenomenon in water distribution systems (WDSs), which is critical for design and operation. For applications that require fast modeling, existing methods for speeding up traditional MOC simulations either trade off accuracy for simulation time, or do not scale properly due to memory restrictions and prolonged computational times. This work proposes a novel parallel implementation of the MOC for networked systems, which relies on vectorization and distributed parallel computing to evaluate the transient dynamics of WDSs. The proposed method, referred to as distributed and vectorized MOC (DV‐MOC), relies on aligned memory allocation for vectorization and distributed‐memory parallelization to further accelerate vectorized operations and ensure scalability for arbitrary network topologies. The algorithm has been applied to a WDS from the battle of the sensor networks (BWSN‐II) composed by 14,824 pipes and nearly 6×1011 solution points. Through rigorous analyses, we show that the performance of DV‐MOC surpasses that of sequential MOC, with speeding up factors in the order of thousands for sufficiently dense numerical grids.
Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering applications. Solutions of hyperbolic PDEs are commonly found using the method of characteristics (MOC), particularly when modeling the water hammer phenomenon in water distribution systems (WDSs), which is critical for design and operation. For applications that require fast modeling, existing methods for speeding up traditional MOC simulations either trade off accuracy for simulation time, or do not scale properly due to memory restrictions and prolonged computational times. This work proposes a novel parallel implementation of the MOC for networked systems, which relies on vectorization and distributed parallel computing to evaluate the transient dynamics of WDSs. The proposed method, referred to as distributed and vectorized MOC (DV‐MOC), relies on aligned memory allocation for vectorization and distributed‐memory parallelization to further accelerate vectorized operations and ensure scalability for arbitrary network topologies. The algorithm has been applied to a WDS from the battle of the sensor networks (BWSN‐II) composed by 14,824 pipes and nearly 6×1011 solution points. Through rigorous analyses, we show that the performance of DV‐MOC surpasses that of sequential MOC, with speeding up factors in the order of thousands for sufficiently dense numerical grids.
Author Hodges, Ben R.
Sela, Lina
Riaño‐Briceño, Gerardo
Author_xml – sequence: 1
  givenname: Gerardo
  surname: Riaño‐Briceño
  fullname: Riaño‐Briceño, Gerardo
  organization: The University of Texas at Austin
– sequence: 2
  givenname: Lina
  surname: Sela
  fullname: Sela, Lina
  email: linasela@utexas.edu
  organization: The University of Texas at Austin
– sequence: 3
  givenname: Ben R.
  surname: Hodges
  fullname: Hodges, Ben R.
  organization: The University of Texas at Austin
BookMark eNp9kM1OAyEUhYmpiW114xOQuDOZCgzzw9LUqk1q3OiaMAykNDNDC4xNfXppRzfGeFncy813DuFMwKiznQLgGqMZjnXXGqlmmBSInYExpnmRlHlejOKMWJqwvCwuwMT7DYpFaToGuwfjgzNVH1QNRVfDDyWDdeYzXlsV1raGVkO5Fk7IoFyEjfRQWwe18AEGJzpvVBegN23fiGBs56Hp4F5EGtY_5nEN_cEH1fpLcK5F49XVd5-C98fF2_w5Wb0-Lef3q0SmCLMkI7IiWZrJslBECqpphSpS1FVe0VRJUVIsKJGZLCjSpUJMMUHLGkmmUV1lJJ2Cm8F36-yuVz7wje1dF5_kJI-nLAjLI3U7UNJZ753SfOtMK9yBY8SPkfJjpPwUaYTRL1iacPpzzME0f0vwINmbRh3-Mecvy_li0HwB_VqOiw
CitedBy_id crossref_primary_10_1111_mice_13088
crossref_primary_10_1016_j_envsoft_2022_105554
crossref_primary_10_1061__ASCE_CP_1943_5487_0001020
crossref_primary_10_1029_2024WR039742
crossref_primary_10_1016_j_watres_2022_119538
crossref_primary_10_1111_mice_13049
Cites_doi 10.1088/1755-1315/240/5/052025
10.1109/MCSE.2011.37
10.1016/j.cma.2014.10.036
10.2166/aqua.2020.048
10.2166/hydro.2017.052
10.1061/(ASCE)0733-9429(2004)130:4(341)
10.1061/(ASCE)HY.1943-7900.0000497
10.1007/s40999-020-00546-z
10.1007/BF01742517
10.1002/j.1551-8833.2005.tb10892.x
10.1016/j.anucene.2013.12.012
10.1061/(ASCE)HY.1943-7900.0001432
10.1016/j.jfluidstructs.2018.05.004
10.1016/j.advengsoft.2020.102884
10.1115/1.3242524
10.1016/j.anucene.2013.06.039
10.1016/j.cpc.2016.01.007
10.1016/j.cma.2019.112583
10.3390/app9010091
10.3390/w11040639
10.1016/j.renene.2018.07.119
10.1061/(ASCE)HY.1943-7900.0001438
10.1002/j.1551-8833.2007.tb08109.x
10.1061/JYCEAJ.0001447
10.1145/996893.996853
10.1016/j.cma.2005.07.007
10.1061/9780784479872.020
10.2166/hydro.2020.163
10.1061/(ASCE)0733-9445(1995)121:10(1448)
10.1109/TPDS.2017.2671868
10.1007/s11269-020-02625-1
10.1038/s41586-020-2649-2
10.1145/3093338.3093385
10.5194/dwes-7-83-2014
10.1147/rd.112.0215
10.1080/00221686.2018.1522377
10.1115/1.4031202
10.1061/(ASCE)0733-9496(2008)134:6(556)
10.1061/(ASCE)0733-9429(1998)124:4(384)
10.1016/0142-727X(94)90051-5
10.1016/j.jfluidstructs.2019.102845
10.29007/w1bk
10.7551/mitpress/7056.001.0001
10.1088/1755-1315/49/5/052001
ContentType Journal Article
Copyright 2021
2022 Computer‐Aided Civil and Infrastructure Engineering
Copyright_xml – notice: 2021
– notice: 2022 Computer‐Aided Civil and Infrastructure Engineering
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12709
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 184
ExternalDocumentID 10_1111_mice_12709
MICE12709
Genre article
GrantInformation_xml – fundername: U.S. Environmental Protection Agency
  funderid: 83595001
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABFSI
ABJNI
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AHEFC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
E.L
EAD
EAP
EBS
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
R.K
RJQFR
RX1
SAMSI
SUPJJ
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3019-52cb2535c87e2ca4f4b0b27db6b43eca841a42c5c740f8e09e9a48d0c9f0db523
IEDL.DBID DRFUL
ISICitedReferencesCount 6
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000661553100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Sun Nov 09 08:31:52 EST 2025
Tue Nov 18 21:09:47 EST 2025
Sat Nov 29 05:42:08 EST 2025
Wed Jan 22 16:27:47 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3019-52cb2535c87e2ca4f4b0b27db6b43eca841a42c5c740f8e09e9a48d0c9f0db523
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2626287296
PQPubID 2045171
PageCount 22
ParticipantIDs proquest_journals_2626287296
crossref_primary_10_1111_mice_12709
crossref_citationtrail_10_1111_mice_12709
wiley_primary_10_1111_mice_12709_MICE12709
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
20220201
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2019; 11
2019; 57
2013; 62
2018; 81
1966; 92
2014; 68
2011; 13
2020; 18
2018; 3
2000
1967; 11
2004; 39
2020; 93
2004; 130
2019; 357
2020b
2020a
1995; 121
2012; 138
2014; 7
1998; 124
2015; 283
2018; 144
2017; 28
2009
2006; 195
2008
2020; 149
2006
1995
2020; 585
2004
2020; 34
1993
1985; 107
2003
2016; 202
2007; 99
2018; 20
1999
2019a; 9
2021
2019b
2020
2019
2005; 97
2018
2020; 69
2017
2016
1994; 15
2016; 138
2020; 22
2008; 134
1994; 7
2019; 132
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
Wylie E. B. (e_1_2_7_53_1) 1993
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_13_1
TACC ‐ Texas Advanced Computing Center (e_1_2_7_47_1) 2020
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_49_1
King H. W. (e_1_2_7_28_1) 2018
HAMMER, Bentley (e_1_2_7_22_1) 2019
Briceno G. (e_1_2_7_41_1) 2021
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
Environmental Protection Agency (e_1_2_7_16_1) 2008
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
Grama A. (e_1_2_7_20_1) 2003
e_1_2_7_18_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
Karypis G. (e_1_2_7_26_1) 2009
Bik A. J. (e_1_2_7_5_1) 2004
Briceno G. (e_1_2_7_40_1) 2020
Briceno G. (e_1_2_7_39_1) 2020
Rossum G. (e_1_2_7_43_1) 1995
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_36_1
Rossman L. A. (e_1_2_7_42_1) 2000
e_1_2_7_59_1
e_1_2_7_38_1
Hartell W. R. (e_1_2_7_24_1) 2006
References_xml – year: 2009
– volume: 68
  start-page: 43
  year: 2014
  end-page: 52
  article-title: The OpenMOC method of characteristics neutral particle transport code
  publication-title: Annals of Nuclear Energy
– volume: 283
  start-page: 971
  year: 2015
  end-page: 993
  article-title: Hybrid element‐based approximation for the Navier–Stokes equations in pipe‐like domains
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2021
– volume: 202
  start-page: 141
  year: 2016
  end-page: 150
  article-title: A task‐based parallelism and vectorized approach to 3D method of characteristics (MOC) reactor simulation for high performance computing architectures
  publication-title: Computer Physics Communications
– volume: 138
  start-page: 154
  issue: 2
  year: 2012
  end-page: 166
  article-title: Relevance of unsteady friction to pipe size and length in pipe fluid transients
  publication-title: Journal of Hydraulic Engineering
– year: 2018
– volume: 7
  start-page: 117
  issue: 1‐2
  year: 1994
  end-page: 125
  article-title: Impact of vectorization on large‐scale structural optimization
  publication-title: Structural Optimization
– volume: 97
  start-page: 111
  issue: 5
  year: 2005
  end-page: 124
  article-title: Hydraulic transient guidelines for protecting water distribution systems
  publication-title: Journal‐American Water Works Association
– volume: 138
  issue: 1
  year: 2016
  article-title: Sensitivity analysis of operational time differences for a pump–valve system on a water hammer response
  publication-title: Journal of Pressure Vessel Technology
– volume: 15
  start-page: 378
  issue: 5
  year: 1994
  end-page: 383
  article-title: An implicit method for transient gas flows in pipe networks
  publication-title: International Journal of Heat and Fluid Flow
– volume: 69
  start-page: 858
  issue: 8
  year: 2020
  end-page: 893
  article-title: State‐of‐the‐art review on the transient flow modeling and utilization for urban water supply system (UWSS) management
  publication-title: Journal of Water Supply: Research and Technology‐Aqua
– volume: 585
  start-page: 357
  issue: 7825
  year: 2020
  end-page: 362
  article-title: Array programming with NumPy
  publication-title: Nature
– volume: 124
  start-page: 384
  issue: 4
  year: 1998
  end-page: 393
  article-title: Energy estimates for discretization errors in water hammer problems
  publication-title: Journal of Hydraulic Engineering
– volume: 195
  start-page: 2788
  issue: 19–22
  year: 2006
  end-page: 2815
  article-title: A parallel 2D finite volume scheme for solving systems of balance laws with nonconservative products: Application to shallow flows
  publication-title: Computer Methods in Applied Mechanics and Engineering
– year: 2008
– start-page: 1
  year: 2017
  end-page: 8
– year: 2004
– volume: 134
  start-page: 556
  issue: 6
  year: 2008
  end-page: 568
  article-title: The Battle of the Water Sensor Networks (BWSN): A Design Challenge for Engineers and Algorithms
  publication-title: Journal of Water Resources Planning and Management
– year: 2019b
– volume: 130
  start-page: 341
  issue: 4
  year: 2004
  end-page: 348
  article-title: Godunov‐type solutions for water hammer flows
  publication-title: Journal of Hydraulic Engineering
– year: 2019
– year: 1993
– volume: 57
  start-page: 353
  issue: 3
  year: 2019
  end-page: 373
  article-title: Formulation of consistent finite volume schemes for hydraulic transients
  publication-title: Journal of Hydraulic Research
– volume: 11
  start-page: 639
  issue: 4
  year: 2019
  article-title: Comparison of shallow water solvers: Applications for dam‐break and tsunami cases with reordering strategy for efficient vectorization on modern hardware
  publication-title: Water
– volume: 9
  start-page: 91
  issue: 1
  year: 2019a
  article-title: GPU acceleration of hydraulic transient simulations of large‐scale water supply systems
  publication-title: Applied Sciences
– year: 2003
– volume: 81
  start-page: 230
  year: 2018
  end-page: 254
  article-title: Numerical methods for hydraulic transients in visco‐elastic pipes
  publication-title: Journal of Fluids and Structures
– year: 2000
– volume: 62
  start-page: 445
  year: 2013
  end-page: 451
  article-title: Accelerating a three‐dimensional MOC calculation using GPU with CUDA and two‐level GCMFD method
  publication-title: Annals of Nuclear Energy
– volume: 99
  start-page: 87
  issue: 12
  year: 2007
  end-page: 98
  article-title: Pitfalls of water distribution model skeletonization for surge analysis
  publication-title: Journal‐American Water Works Association
– volume: 13
  start-page: 22
  issue: 2
  year: 2011
  end-page: 30
  article-title: The NumPy array: A structure for efficient numerical computation
  publication-title: Computing in Science & Engineering
– volume: 34
  start-page: 3499
  issue: 11
  year: 2020
  end-page: 3513
  article-title: Control‐oriented impedance matrix and alternative transient control for pipe network systems
  publication-title: Water Resources Management
– volume: 357
  year: 2019
  article-title: Distributed‐memory parallelization of the aggregated unfitted finite element method
  publication-title: Computer Methods in Applied Mechanics and Engineering
– start-page: 191
  year: 2016
  end-page: 201
– year: 2020a
– volume: 20
  start-page: 535
  issue: 3
  year: 2018
  end-page: 550
  article-title: Relevance of hydraulic modelling in planning and operating real‐time pressure control: Case of Oppegård municipality
  publication-title: Journal of Hydroinformatics
– volume: 11
  start-page: 215
  issue: 2
  year: 1967
  end-page: 234
  article-title: On the partial difference equations of mathematical physics
  publication-title: IBM journal of Research and Development
– volume: 39
  start-page: 82
  issue: 6
  year: 2004
  end-page: 93
  article-title: Vectorization for SIMD architectures with alignment constraints
  publication-title: ACM Sigplan Notices
– year: 2016
– volume: 7
  start-page: 83
  issue: 2
  year: 2014
  end-page: 92
  article-title: Finite volume simulation of unsteady water pipe flow
  publication-title: Drinking Water Engineering and Science
– volume: 92
  start-page: 83
  issue: 2
  year: 1966
  end-page: 110
  article-title: Wave‐plan analysis of unsteady flow in closed conduits
  publication-title: Journal of the Hydraulics Division
– volume: 149
  year: 2020
  article-title: Transient simulations in water distribution networks: TSNet python package
  publication-title: Advances in Engineering Software
– volume: 28
  start-page: 2625
  year: 2017
  end-page: 2638
  article-title: Parallel graph partitioning for complex networks
  publication-title: IEEE Transactions on Parallel and Distributed Systems
– volume: 3
  start-page: 1971
  year: 2018
  end-page: 1978
  article-title: Complex network theory for water distribution networks analysis
  publication-title: EPiC Series in Engineering
– volume: 121
  start-page: 1448
  issue: 10
  year: 1995
  end-page: 1455
  article-title: Distributed finite‐element analysis on network of workstations—Algorithms
  publication-title: Journal of Structural Engineering
– year: 2006
– year: 2020
– volume: 18
  start-page: 1327
  issue: 12
  year: 2020
  end-page: 1345
  article-title: Unified matrix frameworks for water hammer analysis in pipe networks
  publication-title: International Journal of Civil Engineering
– volume: 107
  start-page: 523
  issue: 4
  year: 1985
  end-page: 529
  article-title: Second‐order accurate explicit finite‐difference schemes for water hammer analysis
  publication-title: Journal of Fluids Engineering
– year: 1995
– volume: 22
  start-page: 1217
  issue: 5
  year: 2020
  end-page: 1235
  article-title: High‐performance computing in water resources hydrodynamics
  publication-title: Journal of Hydroinformatics
– volume: 132
  start-page: 157
  year: 2019
  end-page: 166
  article-title: Wave tracking method of hydraulic transients in pipe systems with pump shut‐off under simultaneous closing of spherical valves
  publication-title: Renewable Energy
– year: 2020b
– volume: 144
  issue: 4
  year: 2018
  article-title: Faster inverse transient analysis with a head‐based method of characteristics and a flexible computational grid for pipeline condition assessment
  publication-title: Journal of Hydraulic Engineering
– volume: 93
  year: 2020
  article-title: Finite element for the dynamic analysis of pipes subjected to water hammer
  publication-title: Journal of Fluids and Structures
– volume: 144
  issue: 7
  year: 2018
  article-title: Generalized flexible method for simulating transient pipe network hydraulics
  publication-title: Journal of Hydraulic Engineering
– year: 1999
– ident: e_1_2_7_31_1
  doi: 10.1088/1755-1315/240/5/052025
– ident: e_1_2_7_50_1
  doi: 10.1109/MCSE.2011.37
– ident: e_1_2_7_6_1
  doi: 10.1016/j.cma.2014.10.036
– ident: e_1_2_7_14_1
  doi: 10.2166/aqua.2020.048
– volume-title: Water hammer and transient analysis software
  year: 2019
  ident: e_1_2_7_22_1
– ident: e_1_2_7_3_1
  doi: 10.2166/hydro.2017.052
– volume-title: EPANET 2: Users manual
  year: 2000
  ident: e_1_2_7_42_1
– ident: e_1_2_7_59_1
  doi: 10.1061/(ASCE)0733-9429(2004)130:4(341)
– ident: e_1_2_7_13_1
  doi: 10.1061/(ASCE)HY.1943-7900.0000497
– volume-title: Method and system for reduction of a network topology‐based system having automated optimization features
  year: 2006
  ident: e_1_2_7_24_1
– ident: e_1_2_7_34_1
  doi: 10.1007/s40999-020-00546-z
– ident: e_1_2_7_45_1
  doi: 10.1007/BF01742517
– volume-title: Python reference manual
  year: 1995
  ident: e_1_2_7_43_1
– ident: e_1_2_7_7_1
  doi: 10.1002/j.1551-8833.2005.tb10892.x
– volume-title: BWSN Network for transient simulation
  year: 2020
  ident: e_1_2_7_39_1
– volume-title: Handbook of hydraulics
  year: 2018
  ident: e_1_2_7_28_1
– volume-title: FACTOIDS: Drinking water and ground water statistics for 2007
  year: 2008
  ident: e_1_2_7_16_1
– ident: e_1_2_7_8_1
  doi: 10.1016/j.anucene.2013.12.012
– ident: e_1_2_7_37_1
  doi: 10.1061/(ASCE)HY.1943-7900.0001432
– ident: e_1_2_7_4_1
  doi: 10.1016/j.jfluidstructs.2018.05.004
– volume-title: Stampede 2 user guide
  year: 2020
  ident: e_1_2_7_47_1
– ident: e_1_2_7_54_1
  doi: 10.1016/j.advengsoft.2020.102884
– volume-title: The software vectorization handbook: Applying Intel multimedia extensions for maximum performance
  year: 2004
  ident: e_1_2_7_5_1
– ident: e_1_2_7_11_1
  doi: 10.1115/1.3242524
– volume-title: Python code DV‐MOC
  year: 2020
  ident: e_1_2_7_40_1
– ident: e_1_2_7_58_1
  doi: 10.1016/j.anucene.2013.06.039
– ident: e_1_2_7_48_1
  doi: 10.1016/j.cpc.2016.01.007
– ident: e_1_2_7_49_1
  doi: 10.1016/j.cma.2019.112583
– volume-title: Fluid transients in systems
  year: 1993
  ident: e_1_2_7_53_1
– ident: e_1_2_7_30_1
  doi: 10.3390/app9010091
– volume-title: MeTis: Unstructured graph partitioning and sparse matrix ordering system
  year: 2009
  ident: e_1_2_7_26_1
– ident: e_1_2_7_19_1
  doi: 10.3390/w11040639
– ident: e_1_2_7_57_1
  doi: 10.1016/j.renene.2018.07.119
– ident: e_1_2_7_55_1
  doi: 10.1061/(ASCE)HY.1943-7900.0001438
– ident: e_1_2_7_25_1
  doi: 10.1002/j.1551-8833.2007.tb08109.x
– ident: e_1_2_7_52_1
  doi: 10.1061/JYCEAJ.0001447
– volume-title: Introduction to parallel computing
  year: 2003
  ident: e_1_2_7_20_1
– ident: e_1_2_7_15_1
  doi: 10.1145/996893.996853
– volume-title: Supporting information—Distributed and vectorized method of characteristics for fast transient simulations in water distribution systems
  year: 2021
  ident: e_1_2_7_41_1
– ident: e_1_2_7_10_1
  doi: 10.1016/j.cma.2005.07.007
– ident: e_1_2_7_36_1
  doi: 10.1061/9780784479872.020
– ident: e_1_2_7_35_1
  doi: 10.2166/hydro.2020.163
– ident: e_1_2_7_2_1
  doi: 10.1061/(ASCE)0733-9445(1995)121:10(1448)
– ident: e_1_2_7_33_1
  doi: 10.1109/TPDS.2017.2671868
– ident: e_1_2_7_27_1
  doi: 10.1007/s11269-020-02625-1
– ident: e_1_2_7_23_1
  doi: 10.1038/s41586-020-2649-2
– ident: e_1_2_7_46_1
  doi: 10.1145/3093338.3093385
– ident: e_1_2_7_17_1
  doi: 10.5194/dwes-7-83-2014
– ident: e_1_2_7_12_1
  doi: 10.1147/rd.112.0215
– ident: e_1_2_7_32_1
  doi: 10.1080/00221686.2018.1522377
– ident: e_1_2_7_51_1
  doi: 10.1115/1.4031202
– ident: e_1_2_7_38_1
  doi: 10.1061/(ASCE)0733-9496(2008)134:6(556)
– ident: e_1_2_7_18_1
  doi: 10.1061/(ASCE)0733-9429(1998)124:4(384)
– ident: e_1_2_7_29_1
  doi: 10.1016/0142-727X(94)90051-5
– ident: e_1_2_7_9_1
  doi: 10.1016/j.jfluidstructs.2019.102845
– ident: e_1_2_7_44_1
  doi: 10.29007/w1bk
– ident: e_1_2_7_21_1
  doi: 10.7551/mitpress/7056.001.0001
– ident: e_1_2_7_56_1
  doi: 10.1088/1755-1315/49/5/052001
SSID ssj0000443
Score 2.3397403
Snippet Modeling transient flow in networked dynamical systems characterized by hyperbolic partial differential equations (PDEs) is essential to engineering...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 163
SubjectTerms Algorithms
Distributed memory
Dynamical systems
Hammers
Memory management
Method of characteristics
Network topologies
Partial differential equations
Simulation
Unsteady flow
Vector processing (computers)
Water distribution
Water engineering
Water hammer
Title Distributed and vectorized method of characteristics for fast transient simulations in water distribution systems
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12709
https://www.proquest.com/docview/2626287296
Volume 37
WOSCitedRecordID wos000661553100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5080EfnE7F6ZSAvihUujRrG_BF3IYPMkQUfCv5VRhop-uc4F9vrk3dBiKIb224JCXJXe7S3PcBnArfYGqA8HypqYeQbh6XuuuZUKdBwDuamiJR-DYaDuOnJ363ApdVLkyJD_F94IaaUdhrVHAh8wUlR7b2C_xvylehjllVdk3Xe_eDx9u5JWbugj0PPB7GkYMnxZs889rLG9Lcy1z0VYvNZtD432duwaZzMslVuSq2YcVkTWg4h5M4dc5tUcXpUJU1YWMBoHAH3nqIq4uUWLaeyDSZFYf8o0_7WnJPk3FK1DLoM7F-MElFPiVT3Agx4ZLkoxfHE5aTUUY-BHaqq8ZtMSkhpfNdeBz0H65vPEfS4ClrG7gNZJWk3aCr4shQJVjKpC9ppGUoWWCUiFlHMKq6KmJ-GhufGy5YrH3FU19LGwbvQS0bZ2YfSCeWSlj3ESndGYaC1IZz1FqYMAp9HbAWnFUzlSiHYI5EGs9JFcngYCfFYLfg5Fv2tcTt-FGqXU144nQ3T6iN8bBjHrbgvJjaX1pIrLL0i6eDvwgfwjrFPIri-ncbatPJuzmCNTWbjvLJsVvHX4oO-C4
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB50FdSDb3F9BvSiUMmm2bY5iroorouIgreSV2FBu2pXBX-9mTZ1VxBBvLUhj5JkJjPpzPcB7EtqMTVABlQZFiCkWyCUaQc2MlkYipZhtkwU7sa9XnJ_L659bA7mwlT4EF8XbigZpb5GAccL6TEpR7r2I_xxKiZhirt9RBswdXrTueuOVDH3EfYiDESUxB6fFEN5Rq2_n0gjM3PcWC1Pm87CP79zEea9mUmOq32xBBM2X4YFb3ISL9CFK6pZHeqyZZgbgyhcgedTRNZFUizXTuaGvJXX_P0P91qxT5NBRvR32GfiLGGSyWJIhngUYsolKfqPnimsIP2cvEsc1NSdu2JSgUoXq3DXObs9OQ88TUOgnXYQzpXVirXDtk5iy7TkGVdUsdioSPHQapnwluRMt3XMaZZYKqyQPDFUi4wa5RzhNWjkg9yuA2klSktnQCKpO0dnkDmHjjkdE8URNSFvwkG9VKn2GOZIpfGQ1r4MTnZaTnYT9r7qPlXIHT_W2qpXPPXSW6TMeXk4sIiacFiu7S89pE5czsqnjb9U3oWZ89urbtq96F1uwizDrIoyGHwLGsOXV7sN0_pt2C9edvym_gRGvfwV
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7oJqIP3sV5DeiLQqVL00sexTkUxxBR8K3kVhhop3ZO8Neb06ZuggjiWxtyKUnOyTnpOd8HcCR8g6kBwvOlph5Cunlc6tAzkc6CgLc1NWWicC_u95OHB37jYnMwF6bCh_i6cEPJKPU1Crh51tmUlCNd-yn-OOWz0GShNfQb0Ozcdu97E1XMXIQ9DzweJbHDJ8VQnknr7yfSxMycNlbL06a7_M_vXIElZ2aSs2pfrMKMyddg2ZmcxAl0YYtqVoe6bA0WpyAK1-Glg8i6SIpl24lck3F5zT_4sK8V-zQZZkR9h30m1hImmShGZIRHIaZckmLw5JjCCjLIybvAQXXduS0mFah0sQH33Yu780vP0TR4ymoHbl1ZJWkYhCqJDVWCZUz6ksZaRpIFRomEtQWjKlQx87PE-NxwwRLtK575WlpHeBMa-TA3W0DaiVTCGpBI6s7QGaTWoaNWx0Rx5OuAteC4XqpUOQxzpNJ4TGtfBic7LSe7BYdfdZ8r5I4fa-3WK5466S1Sar08HJhHLTgp1_aXHlIrLhfl0_ZfKh_A_E2nm_au-tc7sEAxqaKMBd-Fxuj1zezBnBqPBsXrvtvTn_IG-5k
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+and+vectorized+method+of+characteristics+for+fast+transient+simulations+in+water+distribution+systems&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Gerardo+Ria%C3%B1o%E2%80%90Brice%C3%B1o&rft.au=Sela%2C+Lina&rft.au=Hodges%2C+Ben+R&rft.date=2022-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=37&rft.issue=2&rft.spage=163&rft.epage=184&rft_id=info:doi/10.1111%2Fmice.12709&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon