Three‐dimensional dental image segmentation and classification using deep learning with tunicate swarm algorithm

Dentistry frequently makes use of intraoral scanning technologies to digitally acquire the three‐dimensional (3D) geometry of teeth. In recent times, dental clinics over the globe utilize used computer aided diagnosis (CAD) models to make treatment plans, for example, orthodontics. Orthodontic CAD s...

Full description

Saved in:
Bibliographic Details
Published in:Expert systems Vol. 41; no. 6
Main Authors: Awari, Harshavardhan, Subramani, Neelakandan, Janagaraj, Avanija, Balasubramaniapillai Thanammal, Geetha, Thangarasu, Jackulin, Kohar, Rachna
Format: Journal Article
Language:English
Published: Oxford Blackwell Publishing Ltd 01.06.2024
Subjects:
ISSN:0266-4720, 1468-0394
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Abstract Dentistry frequently makes use of intraoral scanning technologies to digitally acquire the three‐dimensional (3D) geometry of teeth. In recent times, dental clinics over the globe utilize used computer aided diagnosis (CAD) models to make treatment plans, for example, orthodontics. Orthodontic CAD system acts as a vital part of the advanced dentistry field. A 3D dental model, computed by patient impression, as input and aids dentist in the extraction, moving, deletion, and rearranging of teeth to simulate treatment output. Tooth segmentation and labelling is the basic and foremost element of the CAD model which needs to be addressed. Automated segmentation and classification of 3D dental images using advanced machine learning and deep learning (DL) models become essential. This article introduces a new 3D dental image segmentation and classification using DL with tunicate swarm algorithm (3DDISC‐DLTSA) model. The major intention of the 3DDISC‐DLTSA system is to segment the tooth model and identify seven distinct tooth types. To accomplish this, the presented 3DDISC‐DLTSA model performs image pre‐processing in two stages namely image filtering and U‐Net segmentation. In addition, the 3DDISC‐DLTSA model derives DenseNet‐169 model for feature extraction purposes. For the recognition and classification of tooth type, the TSA based hyperparameter tuning process is carried out which helps to accomplish maximum classification performance. A wide range of experimental analyses is performed and the outcomes are inspected under many aspects. On dataset‐1, 3DDISC‐DLTSA model accuracy rose by 96.67%. On dataset‐3, 3DDISC‐DLTSA model accuracy rose by 97.48% and algorithm accuracy by 97.35%. The 3DDISC‐DLTSA model outperformed more modern models, according to the comparative investigation.
AbstractList Dentistry frequently makes use of intraoral scanning technologies to digitally acquire the three‐dimensional (3D) geometry of teeth. In recent times, dental clinics over the globe utilize used computer aided diagnosis (CAD) models to make treatment plans, for example, orthodontics. Orthodontic CAD system acts as a vital part of the advanced dentistry field. A 3D dental model, computed by patient impression, as input and aids dentist in the extraction, moving, deletion, and rearranging of teeth to simulate treatment output. Tooth segmentation and labelling is the basic and foremost element of the CAD model which needs to be addressed. Automated segmentation and classification of 3D dental images using advanced machine learning and deep learning (DL) models become essential. This article introduces a new 3D dental image segmentation and classification using DL with tunicate swarm algorithm (3DDISC‐DLTSA) model. The major intention of the 3DDISC‐DLTSA system is to segment the tooth model and identify seven distinct tooth types. To accomplish this, the presented 3DDISC‐DLTSA model performs image pre‐processing in two stages namely image filtering and U‐Net segmentation. In addition, the 3DDISC‐DLTSA model derives DenseNet‐169 model for feature extraction purposes. For the recognition and classification of tooth type, the TSA based hyperparameter tuning process is carried out which helps to accomplish maximum classification performance. A wide range of experimental analyses is performed and the outcomes are inspected under many aspects. On dataset‐1, 3DDISC‐DLTSA model accuracy rose by 96.67%. On dataset‐3, 3DDISC‐DLTSA model accuracy rose by 97.48% and algorithm accuracy by 97.35%. The 3DDISC‐DLTSA model outperformed more modern models, according to the comparative investigation.
Author Subramani, Neelakandan
Janagaraj, Avanija
Thangarasu, Jackulin
Awari, Harshavardhan
Balasubramaniapillai Thanammal, Geetha
Kohar, Rachna
Author_xml – sequence: 1
  givenname: Harshavardhan
  surname: Awari
  fullname: Awari, Harshavardhan
  organization: VNR Vignana Jyothi Institute of Engineering and Technology
– sequence: 2
  givenname: Neelakandan
  orcidid: 0000-0001-8583-0019
  surname: Subramani
  fullname: Subramani, Neelakandan
  email: snksnk17@gmail.com
  organization: R.M.K Engineering College
– sequence: 3
  givenname: Avanija
  surname: Janagaraj
  fullname: Janagaraj, Avanija
  organization: Sree Vidyanikethan Engineering College
– sequence: 4
  givenname: Geetha
  surname: Balasubramaniapillai Thanammal
  fullname: Balasubramaniapillai Thanammal, Geetha
  organization: Saveetha University
– sequence: 5
  givenname: Jackulin
  surname: Thangarasu
  fullname: Thangarasu, Jackulin
  organization: Panimalar Engineering College
– sequence: 6
  givenname: Rachna
  surname: Kohar
  fullname: Kohar, Rachna
  organization: Bennett University
BookMark eNp9kM9KAzEQxoNUsK1efIIFb8LWpEmT7FFK_QMFD1bQ05JmJ23KbrYmW2pvPoLP6JOYdT2JOJdhZn7fB_MNUM_VDhA6J3hEYl3BWziMCCWZPEJ9wrhMMc1YD_XxmPOUiTE-QYMQNhhjIgTvI79Ye4DP94_CVuCCrZ0qkwJcE5ut1AqSAKuqnZt4S5QrEl2qEKyxulvtgnWrKIFtUoLyrp32tlknzc61THTYK18lqlzVPu6rU3RsVBng7KcP0dPNbDG9S-cPt_fT63mqKSYyzRifMANSCsIIcDCGLPlYCEnxUlOtecEnSypAET6mUDBJTYGFkZxhzSeG0SG66Hy3vn7dQWjyTb3z8b-QU8wymVHBZaRwR2lfh-DB5Np2zzZe2TInOG-Tzdtk8-9ko-Tyl2TrY1b-8DdMOnhvSzj8Q-az58eXTvMFOVKPZg
CitedBy_id crossref_primary_10_1109_ACCESS_2025_3556523
crossref_primary_10_3390_diagnostics13152512
crossref_primary_10_3390_electronics11244178
crossref_primary_10_3390_app13010468
Cites_doi 10.1016/j.measurement.2021.109804
10.1016/j.gmod.2020.101071
10.1177/00220345211005338
10.1109/ICDE51399.2021.00319
10.1016/j.jdent.2021.103865
10.3390/s21041302
10.1016/j.cmpb.2021.106295
10.1109/ACCESS.2019.2924262
10.1109/CVPR.2019.00653
10.32604/iasc.2022.019117
10.1016/j.imavis.2022.104404
10.1007/s11042-019-7233-0
10.3390/ijerph17124424
10.1109/ISBI45749.2020.9098542
10.1117/12.2582205
10.1080/03772063.2021.1967793
10.1109/ACCESS.2021.3072336
10.1109/TVCG.2018.2839685
10.1007/s12539-021-00467-y
10.3390/s19183904
10.1007/978-3-030-86159-9_32
10.1007/978-3-030-61056-2_12
10.1016/j.eswa.2022.116968
10.1016/j.joen.2021.09.009
10.1007/978-3-030-59719-1_68
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.13198
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Dentistry
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_13198
EXSY13198
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIG
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3018-94654fe887141e6eff1b6277830bc3cc6d65b37ea1623ed483fd07f8640c65f43
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000890240300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4720
IngestDate Sat Jul 19 20:41:04 EDT 2025
Sat Nov 29 03:32:47 EST 2025
Tue Nov 18 21:07:09 EST 2025
Wed Jan 22 17:19:15 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3018-94654fe887141e6eff1b6277830bc3cc6d65b37ea1623ed483fd07f8640c65f43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8583-0019
PQID 3049893768
PQPubID 32130
PageCount 18
ParticipantIDs proquest_journals_3049893768
crossref_citationtrail_10_1111_exsy_13198
crossref_primary_10_1111_exsy_13198
wiley_primary_10_1111_exsy_13198_EXSY13198
PublicationCentury 2000
PublicationDate June 2024
2024-06-00
20240601
PublicationDateYYYYMMDD 2024-06-01
PublicationDate_xml – month: 06
  year: 2024
  text: June 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2021; 9
2021; 14
2021; 47
2022; 199
2021; 208
2019; 7
2022; 121
2021; 21
2021
2021; 115
2021; 11596
2020
2020; 17
2019
2019; 19
2021; 183
2020; 79
2022; 31
2021; 100
2020; 109
2018; 25
e_1_2_7_6_1
e_1_2_7_5_1
e_1_2_7_4_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_11_1
e_1_2_7_10_1
e_1_2_7_26_1
e_1_2_7_25_1
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
References_xml – volume: 47
  start-page: 1907
  issue: 12
  year: 2021
  end-page: 1916
  article-title: A deep learning approach to segment and classify C‐shaped canal morphologies in mandibular second molars using cone‐beam computed tomography
  publication-title: Journal of Endodontics
– volume: 79
  start-page: 15381
  issue: 21
  year: 2020
  end-page: 15396
  article-title: Deep extreme learning machine with leaky rectified linear unit for multiclass classification of pathological brain images
  publication-title: Multimedia Tools and Applications
– volume: 14
  start-page: 113
  year: 2021
  end-page: 129
  article-title: Deep learning based capsule neural network model for breast cancer diagnosis using mammogram images
  publication-title: Interdisciplinary Sciences: Computational Life Sciences
– start-page: 1
  year: 2021
  end-page: 17
  article-title: Dental image segmentation and classification using inception Resnetv2
  publication-title: IETE Journal of Research
– volume: 11596
  year: 2021
– start-page: 440
  year: 2021
  end-page: 454
– volume: 19
  start-page: 3904
  issue: 18
  year: 2019
  article-title: Estimation of arsenic content in soil based on laboratory and field reflectance spectroscopy
  publication-title: Sensors
– start-page: 145
  year: 2020
  end-page: 153
– volume: 208
  year: 2021
  article-title: Hierarchical CNN‐based occlusal surface morphology analysis for classifying posterior tooth type using augmented images from 3D dental surface models
  publication-title: Computer Methods and Programs in Biomedicine
– start-page: 939
  year: 2020
  end-page: 942
– volume: 9
  start-page: 56066
  year: 2021
  end-page: 56092
  article-title: An improved tunicate swarm algorithm for global optimization and image segmentation
  publication-title: IEEE Access
– start-page: 6368
  year: 2019
  end-page: 6377
– volume: 199
  year: 2022
  article-title: Progress in deep learning‐based dental and maxillofacial image analysis: A systematic review
  publication-title: Expert Systems with Applications
– volume: 25
  start-page: 2336
  issue: 7
  year: 2018
  end-page: 2348
  article-title: 3D tooth segmentation and labeling using deep convolutional neural networks
  publication-title: IEEE Transactions on Visualization and Computer Graphics
– volume: 17
  start-page: 4424
  issue: 12
  year: 2020
  article-title: Current applications, opportunities, and limitations of AI for 3D imaging in dental research and practice
  publication-title: International Journal of Environmental Research and Public Health
– volume: 183
  year: 2021
  article-title: Interpretable filter based convolutional neural network (IF‐CNN) for glucose prediction and classification using PD‐SS algorithm
  publication-title: Measurement
– volume: 31
  start-page: 621
  issue: 1
  year: 2022
  end-page: 634
  article-title: Deep learning‐based skin lesion diagnosis model using Dermoscopic images
  publication-title: Intelligent Automation & Soft Computing
– volume: 21
  start-page: 1302
  issue: 4
  year: 2021
  article-title: A low‐cost three‐dimensional DenseNet neural network for Alzheimer's disease early discovery
  publication-title: Sensors
– start-page: 2750
  year: 2021
  end-page: 2755
– volume: 100
  start-page: 943
  issue: 9
  year: 2021
  end-page: 949
  article-title: Multiclass CBCT image segmentation for orthodontics with deep learning
  publication-title: Journal of Dental Research
– start-page: 703
  year: 2020
  end-page: 712
– volume: 7
  start-page: 84817
  year: 2019
  end-page: 84828
  article-title: Automatic classification and segmentation of teeth on 3D dental model using hierarchical deep learning networks
  publication-title: IEEE Access
– volume: 109
  year: 2020
  article-title: Automatic 3D tooth segmentation using convolutional neural networks in harmonic parameter space
  publication-title: Graphical Models
– volume: 115
  year: 2021
  article-title: A novel deep learning system for multi‐class tooth segmentation and classification on cone beam computed tomography: A validation study
  publication-title: Journal of Dentistry
– volume: 121
  year: 2022
  article-title: Geetha, Aditya Kumar Singh Pundir, Vinay Kumar, intelligent deep learning based ethnicity recognition and classification using facial images
  publication-title: Image and Vision Computing
– ident: e_1_2_7_11_1
  doi: 10.1016/j.measurement.2021.109804
– ident: e_1_2_7_26_1
  doi: 10.1016/j.gmod.2020.101071
– ident: e_1_2_7_22_1
  doi: 10.1177/00220345211005338
– ident: e_1_2_7_9_1
  doi: 10.1109/ICDE51399.2021.00319
– ident: e_1_2_7_16_1
  doi: 10.1016/j.jdent.2021.103865
– ident: e_1_2_7_19_1
  doi: 10.3390/s21041302
– ident: e_1_2_7_4_1
  doi: 10.1016/j.cmpb.2021.106295
– ident: e_1_2_7_21_1
  doi: 10.1109/ACCESS.2019.2924262
– ident: e_1_2_7_5_1
  doi: 10.1109/CVPR.2019.00653
– ident: e_1_2_7_15_1
  doi: 10.32604/iasc.2022.019117
– ident: e_1_2_7_7_1
  doi: 10.1016/j.imavis.2022.104404
– ident: e_1_2_7_13_1
  doi: 10.1007/s11042-019-7233-0
– ident: e_1_2_7_10_1
  doi: 10.3390/ijerph17124424
– ident: e_1_2_7_24_1
  doi: 10.1109/ISBI45749.2020.9098542
– ident: e_1_2_7_3_1
  doi: 10.1117/12.2582205
– ident: e_1_2_7_14_1
  doi: 10.1080/03772063.2021.1967793
– ident: e_1_2_7_8_1
  doi: 10.1109/ACCESS.2021.3072336
– ident: e_1_2_7_25_1
  doi: 10.1109/TVCG.2018.2839685
– ident: e_1_2_7_12_1
  doi: 10.1007/s12539-021-00467-y
– ident: e_1_2_7_23_1
  doi: 10.3390/s19183904
– ident: e_1_2_7_2_1
  doi: 10.1007/978-3-030-86159-9_32
– ident: e_1_2_7_6_1
  doi: 10.1007/978-3-030-61056-2_12
– ident: e_1_2_7_18_1
  doi: 10.1016/j.eswa.2022.116968
– ident: e_1_2_7_17_1
  doi: 10.1016/j.joen.2021.09.009
– ident: e_1_2_7_20_1
  doi: 10.1007/978-3-030-59719-1_68
SSID ssj0001776
Score 2.3776026
Snippet Dentistry frequently makes use of intraoral scanning technologies to digitally acquire the three‐dimensional (3D) geometry of teeth. In recent times, dental...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Accuracy
Algorithms
Classification
computer vision
Datasets
Deep learning
dental models
Dentistry
Feature extraction
Image classification
Image filters
Image segmentation
Machine learning
Model accuracy
Orthodontics
Teeth
Three dimensional models
tooth type classification
Title Three‐dimensional dental image segmentation and classification using deep learning with tunicate swarm algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13198
https://www.proquest.com/docview/3049893768
Volume 41
WOSCitedRecordID wos000890240300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEB509eDFt_gmoBeFSrtNkxa8iLp4EBEfsJ5Kmk6XBbdKu75u_gR_o7_ESZuuCiKIt5ImoWQe-ZLOfAOwHbgcEXXkBImf0AFFcUd5UjgY0V6RJYGfhFlVbEKenYXdbnQ-BvtNLkzNDzG6cDOWUflrY-AqKb8YOT6XL3seaVA4DhNtUlzegomji8716cgTe7IqLkfHDOFw2XYtPamJ5Pkc_X1D-kSZX7Fqtdl0Zv73mbMwbUEmO6i1Yg7GMJ-HmaaAA7P2vADFFUkS31_fUsPxX_NzsLRKkGT9AXkaVmJvYLOTcqbylGmDtk14Ud1kwuZ7NATvma0_0WPmapcN66wTmuFJFQOmbnt3BbUPFuG6c3x1eOLYIgyOJtsnZ2gI1zIkX-RxDwVmmZeItpSh7yba11qkgsQsUXkEpDDloZ-lrsxCwV0tgoz7S9DK73JcBoaGPk1x5QeYcBQyUoGvBfe0jsKIoN4K7DSSiLVlKDeFMm7j5qRiFjOuFnMFtkZ972tejh97rTcCja1tlrH5sWhQmqDXu5XofpkhPu5e3lRPq3_pvAZTbUI_dUzZOrSGxQNuwKR-HPbLYtPq6QcWp_A8
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD50SaF9WXpZabquE2wvK3jYsSzZj6Vr6FgWypZA9mRk-dgEEic42bq97SfsN-6X7MhWLoUxKHszsiSMzkWf5HO-A_A6cDki6sgJEj-hA4rijvKkcDCivSJLAj8Js6rYhOz3w9EourOxOSYXpuaHWF-4Gcuo_LUxcHMhvWXl-H3x461HKhQ-gSYnPQoa0Hz3qTvsrV2xJ6vqcnTOEA6XHdfyk5pQns3ohzvSBmZug9Vqt-m2_vM7D-CphZnsqtaLQ9jB4ghaqxIOzFr0MZQDkiX-_vkrNSz_NUMHS6sUSTaekq9hC8ynNj-pYKpImTZ42wQY1U0mcD6nIThntgJFzszlLlvWeSc0w70qp0xN8llJ7dNnMOzeDK5vHVuGwdFk_eQODeVahuSNPO6hwCzzEtGRMvTdRPtai1SQoCUqj6AUpjz0s9SVWSi4q0WQcf8EGsWswFNgaAjUFFd-gAlHISMV-FpwT-sojAjsteHNShSxthzlplTGJF6dVcxixtVituHVuu-8Zub4a6_zlURja52L2PxaNDhN0OvLSnb_mCG-GX3-Uj2dPabzS9i7HXzsxb33_Q_PYb9DWKiOMDuHxrL8ii9gV39bjhflhVXaP2z-9Cw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFA7eEF-8i3cD-qJQadc0aR_FbSjKEC8wn0qanozB1o1u3t78Cf5Gf4knbTYVRBDfSnoSSk7OyZf0nO8QchC4DABU5ASJn-ABRTJHeoI7EOFeoZPAT0JdFJsQjUbYbEZXNjbH5MKU_BDjCzdjGYW_NgYO_VR_sXJ4Hrwce7iEwkkyzYKIo11OV6_rd5djV-yJorocnjO4w0TFtfykJpTns_f3HekTZn4Fq8VuU1_453cuknkLM-lJuS6WyARky2RhVMKBWoteIfkt6hLeX99Sw_JfMnTQtEiRpO0u-ho6gFbX5idlVGYpVQZvmwCjsskEzrewC_SprUDRouZylw7LvBMc4UnmXSo7rV6O7d1Vclev3Z6eObYMg6PQ-tEdGso1DeiNPOYBB629hFeECH03Ub5SPOWoaAHSQygFKQt9nbpCh5y5igea-WtkKutlsE4oGAI1yaQfQMKAi0gGvuLMUyoKIwR7G-RwpIpYWY5yUyqjE4_OKmYy42IyN8j-WLZfMnP8KLU90mhsrXMQm1-LBqdxfH1U6O6XEeJa8-a-eNr8i_Aemb2q1uPL88bFFpmrIBQqA8y2ydQwf4AdMqMeh-1BvmvX7AcLofOn
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three%E2%80%90dimensional+dental+image+segmentation+and+classification+using+deep+learning+with+tunicate+swarm+algorithm&rft.jtitle=Expert+systems&rft.au=Awari%2C+Harshavardhan&rft.au=Subramani%2C+Neelakandan&rft.au=Janagaraj%2C+Avanija&rft.au=Balasubramaniapillai+Thanammal%2C+Geetha&rft.date=2024-06-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=41&rft.issue=6&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.13198&rft.externalDBID=10.1111%252Fexsy.13198&rft.externalDocID=EXSY13198
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon