Sentiment analysis from email pattern using feature selection algorithm

Today number of applications are available on mobile devices and computers for electronic mail (email) conversations. The demand for email communication is increasing day‐by‐day. Therefore the incoming and outgoing messages are also getting increased. However, extracting the sentiments from the emai...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems Ročník 41; číslo 2
Hlavní autoři: Srinivasarao, Ulligaddala, Sharaff, Aakanksha
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.02.2024
Témata:
ISSN:0266-4720, 1468-0394
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Today number of applications are available on mobile devices and computers for electronic mail (email) conversations. The demand for email communication is increasing day‐by‐day. Therefore the incoming and outgoing messages are also getting increased. However, extracting the sentiments from the emails is now demanding. Therefore in the proposed method, the pattern classification and sentiment clustering are carried out in two phases. Initially, the pattern classification is performed using support vector regression, then the sentiments from such classified patterns are clustered using a unsupervised fuzzy‐model‐based Gaussian clustering algorithm. Finally, the experimental analysis is performed in Python tool. The proposed sentiment clustering from email patterns has attained a better accuracy result of 97.13%, which is found higher than other existing techniques. Along with the parametric analysis, non‐parametric statistical analysis using the Wilcoxon rank‐sum test is also carried out to identify the proposed sentiment analysis architecture's effectiveness.
AbstractList Today number of applications are available on mobile devices and computers for electronic mail (email) conversations. The demand for email communication is increasing day‐by‐day. Therefore the incoming and outgoing messages are also getting increased. However, extracting the sentiments from the emails is now demanding. Therefore in the proposed method, the pattern classification and sentiment clustering are carried out in two phases. Initially, the pattern classification is performed using support vector regression, then the sentiments from such classified patterns are clustered using a unsupervised fuzzy‐model‐based Gaussian clustering algorithm. Finally, the experimental analysis is performed in Python tool. The proposed sentiment clustering from email patterns has attained a better accuracy result of 97.13%, which is found higher than other existing techniques. Along with the parametric analysis, non‐parametric statistical analysis using the Wilcoxon rank‐sum test is also carried out to identify the proposed sentiment analysis architecture's effectiveness.
Author Sharaff, Aakanksha
Srinivasarao, Ulligaddala
Author_xml – sequence: 1
  givenname: Ulligaddala
  orcidid: 0000-0001-9199-2700
  surname: Srinivasarao
  fullname: Srinivasarao, Ulligaddala
  email: usrinivasarao.phd2018.cs@nitrr.ac.in
  organization: National Institute of Technology Raipur
– sequence: 2
  givenname: Aakanksha
  orcidid: 0000-0001-5499-7289
  surname: Sharaff
  fullname: Sharaff, Aakanksha
  organization: National Institute of Technology Raipur
BookMark eNp9kE9LAzEQxYNUsK1e_AQBb8LWZLOb7B6l1CoUPFRBTyGbTmrK_qlJFt1vb2o9iTiHmcvvzbx5EzRquxYQuqRkRmPdwKcfZjQtuDhBY5rxIiGszEZoTFLOk0yk5AxNvN8RQqgQfIyWa2iDbWLDqlX14K3HxnUNhkbZGu9VCOBa3HvbbrEBFXoH2EMNOtiuxareds6Gt-YcnRpVe7j4mVP0fLd4mt8nq8flw_x2lWgWLyY6MyDKknEwxjCtq7zKxYZUwhiSM1NwpRTT-aYArRmUxOTGCFoWWRb5Da_YFF0d9-5d996DD3LX9S469zItaR5fznIaKXKktOu8d2CktkEdHAcX35KUyENc8hCX_I4rSq5_SfbONsoNf8P0CH_YGoZ_SLl4Wb8eNV-924Ae
CitedBy_id crossref_primary_10_1007_s00500_023_08368_6
crossref_primary_10_1007_s42979_023_02018_2
crossref_primary_10_1111_exsy_13506
crossref_primary_10_1007_s11042_023_15206_2
crossref_primary_10_1007_s10115_024_02214_3
crossref_primary_10_1145_3749842
crossref_primary_10_1007_s11227_025_07658_0
Cites_doi 10.1007/s00366-018-0620-8
10.1145/3278293.3278301
10.1016/j.cose.2012.12.002
10.1016/j.neucom.2017.10.010
10.1140/epjp/i2018-11845-y
10.5815/ijmecs.2018.09.02
10.1109/INISTA.2017.8001177
10.22364/bjmc.2019.7.1.04
10.1109/ICITEED.2014.7007894
10.1007/978-981-13-1274-8_2
10.1007/978-981-13-1498-8_38
10.1111/2041-210X.12132
10.1007/s11227-018-2398-2
10.1007/s10586-017-1615-8
10.5121/ijcsit.2011.3112
10.1109/ICPC2T48082.2020.9071488
10.1109/NLPKE.2005.1598723
10.1093/jigpal/jzz073
10.1007/978-3-030-22871-2_39
10.1016/j.knosys.2016.05.032
10.4018/IJWLTT.2020040102
10.1007/s11042-016-3605-x
10.1109/MCI.2019.2954667
10.1109/35021BIGCOMP.2015.7072831
10.1016/j.neucom.2016.09.117
10.1177/0165551515587854
10.1007/s42452-019-0394-7
10.1109/BigData.2017.8258136
10.1007/978-3-030-18305-9_1
10.11591/ijece.v9i5.pp4452-4459
10.1080/01969722.2018.1448242
10.1016/j.eswa.2018.01.026
10.1007/s00500-017-2729-x
10.1109/ISKE.2015.91
10.1007/s12559-014-9298-4
10.1177/0165551515616310
10.1109/ICCIKE47802.2019.9004372
10.1109/CyberSecPODS.2019.8885143
ContentType Journal Article
Copyright 2021 John Wiley & Sons Ltd.
2024 John Wiley & Sons, Ltd.
Copyright_xml – notice: 2021 John Wiley & Sons Ltd.
– notice: 2024 John Wiley & Sons, Ltd.
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.12867
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_12867
EXSY12867
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77I
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHQN
AAMMB
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEIGN
AEIMD
AEMOZ
AENEX
AEUYR
AEYWJ
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AHEFC
AHQJS
AI.
AIDQK
AIDYY
AIQQE
AITYG
AIURR
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
AAYXX
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3017-c4fe79936efff3ccb5b57d0b7ff053f86aaa3c5d8ecc3e90f5ff719844fffd6b3
IEDL.DBID DRFUL
ISICitedReferencesCount 9
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000714187800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4720
IngestDate Sat Sep 06 22:30:51 EDT 2025
Tue Nov 18 22:39:05 EST 2025
Sat Nov 29 03:32:45 EST 2025
Thu Sep 25 07:34:13 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3017-c4fe79936efff3ccb5b57d0b7ff053f86aaa3c5d8ecc3e90f5ff719844fffd6b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-9199-2700
0000-0001-5499-7289
PQID 2915146451
PQPubID 32130
PageCount 22
ParticipantIDs proquest_journals_2915146451
crossref_citationtrail_10_1111_exsy_12867
crossref_primary_10_1111_exsy_12867
wiley_primary_10_1111_exsy_12867_EXSY12867
PublicationCentury 2000
PublicationDate February 2024
2024-02-00
20240201
PublicationDateYYYYMMDD 2024-02-01
PublicationDate_xml – month: 02
  year: 2024
  text: February 2024
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2024
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2019; 7
2019; 9
2017; 2
2016; 108
2019; 1
2019; 35
2017; 43
2018a; 49
2020; 15
2005
2020; 76
2018; 22
2011; 3
2015; 7
2018; 133
2018; 275
2014; 5
2018; 4
2019; 22
2013; 34
2020
2015; 42
2017; 76
2020; 28
2019
2018
2017
2016
2017; 261
2015
2018b; 99
2014
2017; 263
2018; 10
e_1_2_12_4_1
e_1_2_12_3_1
e_1_2_12_6_1
e_1_2_12_5_1
Liu S. (e_1_2_12_29_1) 2016
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
e_1_2_12_39_1
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_44_1
e_1_2_12_22_1
e_1_2_12_43_1
e_1_2_12_23_1
e_1_2_12_24_1
e_1_2_12_25_1
e_1_2_12_26_1
e_1_2_12_40_1
Hassan M. K. (e_1_2_12_18_1) 2017
e_1_2_12_27_1
e_1_2_12_28_1
e_1_2_12_30_1
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
e_1_2_12_35_1
e_1_2_12_36_1
e_1_2_12_15_1
e_1_2_12_14_1
e_1_2_12_13_1
Schofield A. (e_1_2_12_37_1) 2017
e_1_2_12_12_1
e_1_2_12_8_1
e_1_2_12_11_1
e_1_2_12_7_1
e_1_2_12_10_1
e_1_2_12_9_1
Jawale D. S. (e_1_2_12_21_1) 2018; 4
References_xml – volume: 99
  start-page: 1
  year: 2018b
  end-page: 11
  article-title: Discovering sentiment sequence within email data through trajectory representation
  publication-title: Expert Systems with Applications
– start-page: 328
  year: 2019
  end-page: 333
  article-title: Sentiment Analysis using Unlabeled Email data
  publication-title: 2019 International Conference on Computational Intelligence and Knowledge Economy (ICCIKE)
– start-page: 1907
  year: 2017
  end-page: 1916
– volume: 2
  start-page: 432
  year: 2017
  end-page: 436
– volume: 35
  start-page: 619
  issue: 2
  year: 2019
  end-page: 626
  article-title: A sunflower optimization (SFO) algorithm applied to damage identification on laminated composite plates
  publication-title: Engineering with Computers
– volume: 34
  start-page: 123
  year: 2013
  end-page: 139
  article-title: Phishing detection and impersonated entity discovery using conditional random field and latent Dirichlet allocation
  publication-title: Computers & Security
– start-page: 312
  year: 2017
  end-page: 315
– start-page: 324
  year: 2015
  end-page: 330
– volume: 261
  start-page: 217
  year: 2017
  end-page: 230
  article-title: Ensemble application of convolutional neural networks and multiple kernel learning for multimodal sentiment analysis
  publication-title: Neurocomputing
– volume: 15
  start-page: 19
  issue: 2
  year: 2020
  end-page: 33
  article-title: ML‐EC2: An algorithm for multi‐label email classification using clustering
  publication-title: International Journal of Web‐Based Learning and Teaching Technologies (IJWLTT)
– volume: 133
  start-page: 1
  issue: 1
  year: 2018
  end-page: 9
  article-title: Support vector regression methodology for estimating global solar radiation in Algeria
  publication-title: The European Physical Journal Plus
– start-page: 573
  year: 2019
  end-page: 592
– start-page: 21
  year: 2019
  end-page: 33
– start-page: 194
  year: 2015
  end-page: 201
  article-title: Semi‐supervised microblog sentiment analysis using social relation and text similarity
– volume: 76
  start-page: 10191
  issue: 7
  year: 2017
  end-page: 10205
  article-title: A new fuzzy Gaussian mixture model (FGMM) based algorithm for mammography tumor image classification
  publication-title: Multimedia Tools and Applications
– volume: 22
  start-page: 33
  issue: 1
  year: 2019
  end-page: 46
  article-title: Visual and textual features based email spam classification using S‐cuckoo search and hybrid kernel support vector machine
  publication-title: Cluster Computing
– volume: 1
  start-page: 390
  issue: 5
  year: 2019
  article-title: Whale optimization algorithm‐based email spam feature selection method using rotation forest algorithm for classification
  publication-title: SN Applied Sciences
– volume: 263
  year: 2017
– volume: 7
  start-page: 47
  issue: 1
  year: 2019
  end-page: 60
  article-title: SVM and k‐means hybrid method for textual data sentiment analysis
  publication-title: Baltic Journal of Modern Computing
– volume: 15
  start-page: 64
  issue: 1
  year: 2020
  end-page: 75
  article-title: How intense are you? Predicting intensities of emotions and sentiments using stacked ensemble [application notes]
  publication-title: IEEE Computational Intelligence Magazine
– volume: 22
  start-page: 7281
  issue: 21
  year: 2018
  end-page: 7291
  article-title: Sentiment analysis and spam detection in short informal text using learning classifier systems
  publication-title: Soft Computing
– start-page: 1
  year: 2014
  end-page: 4
– volume: 76
  start-page: 4414
  issue: 6
  year: 2020
  end-page: 4429
  article-title: A big data approach to sentiment analysis using greedy feature selection with cat swarm optimization‐based long short‐term memory neural networks
  publication-title: The Journal of Supercomputing
– volume: 49
  start-page: 181
  issue: 3
  year: 2018a
  end-page: 199
  article-title: Email sentiment analysis through k‐means labeling and support vector machine classification
  publication-title: Cybernetics and Systems
– year: 2019
  article-title: Identifying categorical terms based on latent Dirichlet allocation for email categorization
  publication-title: Emerging Technologies in Data Mining and Information Security
– volume: 3
  start-page: 173
  issue: 1
  year: 2011
  end-page: 184
  article-title: Machine learning methods for spam e‐mail classification
  publication-title: International Journal of Computer Science & Information Technology (IJCSIT)
– volume: 7
  start-page: 369
  issue: 3
  year: 2015
  end-page: 380
  article-title: Word polarity disambiguation using bayesian model and opinion‐level features
  publication-title: Cognitive Computation
– start-page: 1
  year: 2019
  end-page: 2
  article-title: Classifying phishing email using machine learning and deep learning
  publication-title: 2019 International Conference on Cyber Security and Protection of Digital Services (Cyber Security)
– volume: 108
  start-page: 92
  year: 2016
  end-page: 101
  article-title: Contextual sentiment analysis for social media genres
  publication-title: Knowledge‐Based Systems
– start-page: 363
  year: 2016
  end-page: 371
  article-title: Sentiment clustering with topic and temporal information from large email dataset
– volume: 9
  start-page: 4452
  issue: 5
  year: 2019
  end-page: 4459
  article-title: Hybrid approach: naive bayes and sentiment VADER for analyzing sentiment of mobile unboxing video comments
  publication-title: International Journal of Electrical and Computer Engineering (IJECE)
– volume: 28
  start-page: 83
  year: 2020
  end-page: 94
  article-title: Novel email spam detection method using sentiment analysis and personality recognition
  publication-title: Logic Journal of the IGPL
– volume: 4
  start-page: 2828
  issue: 2
  year: 2018
  end-page: 2832
  article-title: Hybrid spam detection using machine learning
  publication-title: International Journal of Advance Research, Ideas and Innovations in Technology
– start-page: 316
  year: 2020
  end-page: 320
  article-title: Towards classification of email through selection of informative features
  publication-title: 2020 First International Conference on Power, Control and Computing Technologies (ICPC2T)
– year: 2017
– volume: 275
  start-page: 1662
  year: 2018
  end-page: 1673
  article-title: Semi‐supervised learning for big social data analysis
  publication-title: Neurocomputing
– volume: 10
  start-page: 11
  issue: 9
  year: 2018
  end-page: 19
  article-title: Developing an efficient text pre‐processing method with sparse generative naive Bayes for text mining
  publication-title: International Journal of Modern Education and Computer Science
– volume: 42
  start-page: 200
  issue: 2
  year: 2015
  end-page: 212
  article-title: Email thread identification using latent Dirichlet allocation and non‐negative matrix factorization based clustering techniques
  publication-title: Journal of Information Science
– volume: 43
  start-page: 75
  issue: 1
  year: 2017
  end-page: 87
  article-title: SMS spam filtering and thread identification using bi‐level text classification and clustering techniques
  publication-title: Journal of Information Science
– volume: 5
  start-page: 125
  issue: 2
  year: 2014
  end-page: 131
  article-title: Personal messages reduce vandalism and theft of unattended scientific equipment
  publication-title: Methods in Ecology and Evolution
– start-page: 3
  year: 2019
  end-page: 15
– start-page: 142
  year: 2005
  end-page: 146
– start-page: 12
  year: 2018
  end-page: 16
  article-title: A novel feature hashing with efficient collision resolution for bag‐of‐words representation of text data
  publication-title: Proceedings of the 2nd International Conference on Natural Language Processing and Information Retrieval
– ident: e_1_2_12_15_1
  doi: 10.1007/s00366-018-0620-8
– start-page: 363
  volume-title: Proceedings of the 30th Pacific Asia conference on language, information and computation: posters
  year: 2016
  ident: e_1_2_12_29_1
– ident: e_1_2_12_13_1
  doi: 10.1145/3278293.3278301
– ident: e_1_2_12_36_1
  doi: 10.1016/j.cose.2012.12.002
– ident: e_1_2_12_20_1
  doi: 10.1016/j.neucom.2017.10.010
– ident: e_1_2_12_16_1
  doi: 10.1140/epjp/i2018-11845-y
– ident: e_1_2_12_34_1
  doi: 10.5815/ijmecs.2018.09.02
– volume: 4
  start-page: 2828
  issue: 2
  year: 2018
  ident: e_1_2_12_21_1
  article-title: Hybrid spam detection using machine learning
  publication-title: International Journal of Advance Research, Ideas and Innovations in Technology
– ident: e_1_2_12_19_1
  doi: 10.1109/INISTA.2017.8001177
– ident: e_1_2_12_22_1
  doi: 10.22364/bjmc.2019.7.1.04
– start-page: 042090
  volume-title: IOP Conference Series: Materials Science and Engineering
  year: 2017
  ident: e_1_2_12_18_1
– ident: e_1_2_12_17_1
  doi: 10.1109/ICITEED.2014.7007894
– start-page: 432
  volume-title: Proceedings of the 15th conference of the European chapter of the Association for Computational Linguistics
  year: 2017
  ident: e_1_2_12_37_1
– ident: e_1_2_12_3_1
  doi: 10.1007/978-981-13-1274-8_2
– ident: e_1_2_12_39_1
  doi: 10.1007/978-981-13-1498-8_38
– ident: e_1_2_12_12_1
  doi: 10.1111/2041-210X.12132
– ident: e_1_2_12_31_1
– ident: e_1_2_12_4_1
  doi: 10.1007/s11227-018-2398-2
– ident: e_1_2_12_23_1
  doi: 10.1007/s10586-017-1615-8
– ident: e_1_2_12_8_1
  doi: 10.5121/ijcsit.2011.3112
– ident: e_1_2_12_41_1
  doi: 10.1109/ICPC2T48082.2020.9071488
– ident: e_1_2_12_25_1
  doi: 10.1109/NLPKE.2005.1598723
– ident: e_1_2_12_14_1
  doi: 10.1093/jigpal/jzz073
– ident: e_1_2_12_24_1
  doi: 10.1007/978-3-030-22871-2_39
– ident: e_1_2_12_32_1
  doi: 10.1016/j.knosys.2016.05.032
– ident: e_1_2_12_40_1
  doi: 10.4018/IJWLTT.2020040102
– ident: e_1_2_12_6_1
  doi: 10.1007/s11042-016-3605-x
– ident: e_1_2_12_2_1
  doi: 10.1109/MCI.2019.2954667
– ident: e_1_2_12_30_1
  doi: 10.1109/35021BIGCOMP.2015.7072831
– ident: e_1_2_12_35_1
  doi: 10.1016/j.neucom.2016.09.117
– ident: e_1_2_12_38_1
  doi: 10.1177/0165551515587854
– ident: e_1_2_12_42_1
  doi: 10.1007/s42452-019-0394-7
– ident: e_1_2_12_10_1
  doi: 10.1109/BigData.2017.8258136
– ident: e_1_2_12_44_1
  doi: 10.1007/978-3-030-18305-9_1
– ident: e_1_2_12_11_1
  doi: 10.11591/ijece.v9i5.pp4452-4459
– ident: e_1_2_12_27_1
  doi: 10.1080/01969722.2018.1448242
– ident: e_1_2_12_28_1
  doi: 10.1016/j.eswa.2018.01.026
– ident: e_1_2_12_7_1
  doi: 10.1007/s00500-017-2729-x
– ident: e_1_2_12_26_1
  doi: 10.1109/ISKE.2015.91
– ident: e_1_2_12_43_1
  doi: 10.1007/s12559-014-9298-4
– ident: e_1_2_12_33_1
  doi: 10.1177/0165551515616310
– ident: e_1_2_12_5_1
  doi: 10.1109/ICCIKE47802.2019.9004372
– ident: e_1_2_12_9_1
  doi: 10.1109/CyberSecPODS.2019.8885143
SSID ssj0001776
Score 2.3668664
Snippet Today number of applications are available on mobile devices and computers for electronic mail (email) conversations. The demand for email communication is...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Clustering
Data mining
Electronic mail
email pattern
Feature selection
feature selection unsupervised fuzzy Gaussian mixture model
Mobile computing
Parametric analysis
Pattern analysis
Pattern classification
Sentiment analysis
sentiment clustering
Statistical analysis
Support vector machines
support vector regression
Title Sentiment analysis from email pattern using feature selection algorithm
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.12867
https://www.proquest.com/docview/2915146451
Volume 41
WOSCitedRecordID wos000714187800001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NS8MwFH_o9ODF-YnTKQG9KFT6kTYteBHd9CBD1ME8lZcsmYN9sU7R_94kbTcFEcRbD6-hvM9f0pffAzhRwrf9fg4NJDq0i66DMXqONHR1TNdf30M7bIK1WnGnk9wvwUV5Fybnh5gfuJnIsPnaBDjy7EuQy_fs41xn14gtw4qvHZdWYOX6odm-m2dij9nhcnqbETmU-W5BT2o6eRZvfy9IC5T5FavaYtOs_u8zN2C9AJnkMveKTViSoy2olgMcSBHP23DzaHqFzPkgwYKchJj7JkQOsT8gE8u9OSKmN75HlLQcoCSzk3O0OQkOeuNpf_Yy3IF2s_F0desUkxUcEZiyJKiSTCOTSCqlAiF4yEPWdTlTSgeliiNEDETYjbWBA5m4KlSKeUlMqZbvRjzYhcpoPJJ7QHjAOdLE5RrX0NB1kQuhMRxiKBUK4dfgtFRvKgracTP9YpCW2w-jodRqqAbHc9lJTrbxo1S9tFJaBFyW-omGLuYvrVeDM2uPX1ZIG53HZ_u0_xfhA1jzNaTJe7brUJlNX-UhrIq3WT-bHhXO9wk7bOEz
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1JSwMxFH5oK-jFumK1akAvCiOzZCYzR9HWirWIbaGehiRNaqEbbRX99yZpuggiiLc5vAnDW79kXr4HcC65b_r9HBwI6uAWdR0aU88Rmq6OqPrre9QMmyDVatxsJk-2N0ffhZnyQ8wP3HRkmHytA1wfSC9FufgYf16p9BqRVchi5UdhBrK3z6VGZZ6KPWKmy6l9RuRg4ruWn1S38ize_l6RFjBzGayaalPK_fM7t2DTwkx0PfWLbVgR_R3IzUY4IBvRu3BX091C-oQQUUtPgvSNEyR6tNNFQ8O-2Ue6O76NpDAsoGhsZucogyLabQ9Gnclrbw8apWL9puzY2QoOD3Rh4lgKorBJJKSUAecsZCFpuYxIqcJSxhGlNOBhK1YmDkTiylBK4iUxxkq-FbFgHzL9QV8cAGIBYxQnLlPIBoeuSxnnCsVRGgpJOffzcDHTb8ot8bief9FNZxsQraHUaCgPZ3PZ4ZRu40epwsxMqQ25ceonCrzo_7ReHi6NQX5ZIS02ay_m6fAvwqewXq4_VtLKffXhCDZ8BXCmHdwFyExGb-IY1vj7pDMenVhP_AKwEuUj
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LSwMxEB60inixPrFaNaAXhZV9ZDe7R7GtiqUUa6GeliSb1EJftFX035uk6UMQQbztYTYsmXwzX7KTbwAuJPdNvZ-DA0EdnFHXoTH1HKHl6ojKv75HTbMJUqvFrVZSt7U5-i7MVB9ifuCmkWHitQa4GGZyCeXiY_x5rcJrRFZhDYdJpHC5VnqqNKvzUOwR011O7TMiBxPftfqkupRn8fb3jLSgmctk1WSbSv6f37kNW5ZmopvputiBFdHfhfyshQOyiN6Du4auFtInhIhaeRKkb5wg0aOdLhoa9c0-0tXxbSSFUQFFY9M7RzkU0W57MOpMXnv70KyUn2_vHdtbweGBTkwcS0EUN4mElDLgnIUsJJnLiJQKljKOKKUBD7NYuTgQiStDKYmXxBgr-yxiwQHk-oO-OATEAsYoTlymmA0OXZcyzhWLozQUknLuF-ByNr8pt8Ljuv9FN51tQPQMpWaGCnA-tx1O5TZ-tCrO3JRayI1TP1HkRf-n9QpwZRzyywhpudV4MU9HfzE-g416qZJWH2qPx7DpK34zLeAuQm4yehMnsM7fJ53x6NQuxC9kneSe
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Sentiment+analysis+from+email+pattern+using+feature+selection+algorithm&rft.jtitle=Expert+systems&rft.au=Srinivasarao%2C+Ulligaddala&rft.au=Sharaff%2C+Aakanksha&rft.date=2024-02-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=41&rft.issue=2&rft_id=info:doi/10.1111%2Fexsy.12867&rft.externalDBID=n%2Fa&rft.externalDocID=10_1111_exsy_12867
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon