Distributed nonlinear model predictive control for cobalt removal process in zinc hydrometallurgy considering error compensation modelling
To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved genetic algorithm (GA) backpropagation (BP) neural network combined with distributed nonlinear model predictive control (NMPC) is proposed. Th...
Uloženo v:
| Vydáno v: | Canadian journal of chemical engineering Ročník 102; číslo 1; s. 307 - 323 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.01.2024
Wiley Subscription Services, Inc |
| Témata: | |
| ISSN: | 0008-4034, 1939-019X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved genetic algorithm (GA) backpropagation (BP) neural network combined with distributed nonlinear model predictive control (NMPC) is proposed. This method was applied to improve the quality of the purification solution and reduce the consumption of zinc powder, overcoming the challenges faced by the current cobalt removal process. First, a synergistic continuously stirred tank reactor (SCSTR) model was constructed for the dynamic cobalt removal process. Second, aiming at the problem that a single SCSTR model has difficulty describing the process accurately, based on the highly nonlinear mapping ability of data‐driven models, a method that organically integrates the SCSTR model and an error compensation model based on the GA‐BP neural network was proposed (GA‐BP‐SCSTR) to provide a more accurate online prediction of the process indicators. Then, a distributed NMPC architecture was developed using the GA‐BP‐SCSTR model, control vector parameterization (CVP) technique, and sequential quadratic programming (SQP) algorithm to achieve the coordinated control of the cobalt removal process. Finally, simulation results of an actual site showed that the prediction accuracy of the GA‐BP‐SCSTR model was higher than those of other models. The proposed predictive control method can maintain the outlet cobalt ion concentrations at the set values while achieving accurate control of the zinc powder addition. This approach can provide guidance for on‐site production and eliminate the blindness of manual experience control.
Distributed coordination control strategy architecture. |
|---|---|
| AbstractList | To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved genetic algorithm (GA) backpropagation (BP) neural network combined with distributed nonlinear model predictive control (NMPC) is proposed. This method was applied to improve the quality of the purification solution and reduce the consumption of zinc powder, overcoming the challenges faced by the current cobalt removal process. First, a synergistic continuously stirred tank reactor (SCSTR) model was constructed for the dynamic cobalt removal process. Second, aiming at the problem that a single SCSTR model has difficulty describing the process accurately, based on the highly nonlinear mapping ability of data‐driven models, a method that organically integrates the SCSTR model and an error compensation model based on the GA‐BP neural network was proposed (GA‐BP‐SCSTR) to provide a more accurate online prediction of the process indicators. Then, a distributed NMPC architecture was developed using the GA‐BP‐SCSTR model, control vector parameterization (CVP) technique, and sequential quadratic programming (SQP) algorithm to achieve the coordinated control of the cobalt removal process. Finally, simulation results of an actual site showed that the prediction accuracy of the GA‐BP‐SCSTR model was higher than those of other models. The proposed predictive control method can maintain the outlet cobalt ion concentrations at the set values while achieving accurate control of the zinc powder addition. This approach can provide guidance for on‐site production and eliminate the blindness of manual experience control.
Distributed coordination control strategy architecture. To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved genetic algorithm (GA) backpropagation (BP) neural network combined with distributed nonlinear model predictive control (NMPC) is proposed. This method was applied to improve the quality of the purification solution and reduce the consumption of zinc powder, overcoming the challenges faced by the current cobalt removal process. First, a synergistic continuously stirred tank reactor (SCSTR) model was constructed for the dynamic cobalt removal process. Second, aiming at the problem that a single SCSTR model has difficulty describing the process accurately, based on the highly nonlinear mapping ability of data‐driven models, a method that organically integrates the SCSTR model and an error compensation model based on the GA‐BP neural network was proposed (GA‐BP‐SCSTR) to provide a more accurate online prediction of the process indicators. Then, a distributed NMPC architecture was developed using the GA‐BP‐SCSTR model, control vector parameterization (CVP) technique, and sequential quadratic programming (SQP) algorithm to achieve the coordinated control of the cobalt removal process. Finally, simulation results of an actual site showed that the prediction accuracy of the GA‐BP‐SCSTR model was higher than those of other models. The proposed predictive control method can maintain the outlet cobalt ion concentrations at the set values while achieving accurate control of the zinc powder addition. This approach can provide guidance for on‐site production and eliminate the blindness of manual experience control. |
| Author | Wang, Qianqian An, Aimin Lu, Jiawei Tang, Minan |
| Author_xml | – sequence: 1 givenname: Qianqian orcidid: 0000-0002-9335-6756 surname: Wang fullname: Wang, Qianqian organization: Lanzhou University of Technology – sequence: 2 givenname: Aimin surname: An fullname: An, Aimin email: anaiminll@163.com organization: Lanzhou University of Technology – sequence: 3 givenname: Minan surname: Tang fullname: Tang, Minan organization: Lanzhou Jiaotong University – sequence: 4 givenname: Jiawei surname: Lu fullname: Lu, Jiawei organization: Lanzhou University of Technology |
| BookMark | eNp9kEtrGzEUhUVxoE7STX-BILvAuNKM5rUMjvsikE0C2Q163HFlNJJzJbs4P6G_OmNPVyFkdXXhO-dcnXMy88EDIV85W3DG8m96o2GRl6yoPpE5b4s2Y7x9mpE5Y6zJBCvEZ3Ie42Zccyb4nPy7tTGhVbsEho5mznqQSIdgwNEtgrE62T1QHXzC4GgfcHwr6RJFGMJeHqmgIUZqPX2xXtM_B4NhgCSd2-H6cJRGawCtX1NAPBkMW_BRJhv8FDXGri_JWS9dhC__5wV5_L56WP7M7u5__Fre3GW6YLzKpC56qGWtBKiSKc6rCiSYxhhT86ruhapEWQolG8hL1SpT5qbvayGghkqWTXFBribf8fDnHcTUbcIO_RjZ5U3b1IyLRozU9URpDDEi9N0W7SDx0HHWHbvujl13p65HmL2BtU2n7yWU1r0v4ZPkr3Vw-MC8W_5eribNK8TNmMw |
| CitedBy_id | crossref_primary_10_1016_j_scitotenv_2025_178420 crossref_primary_10_3390_pr13051423 |
| Cites_doi | 10.1002/cjce.24762 10.1016/j.conengprac.2015.07.008 10.1002/cjce.23860 10.1002/cjce.23563 10.1002/cjce.24409 10.1016/j.conengprac.2016.10.001 10.1016/j.energy.2022.124486 10.1016/j.hydromet.2020.105479 10.1016/j.mineng.2005.07.002 10.1109/TII.2018.2815659 10.1016/j.jprocont.2014.03.002 10.1016/j.hydromet.2018.09.007 10.1016/j.hydromet.2020.105327 10.1016/j.hydromet.2017.08.007 10.1016/j.hydromet.2020.105352 10.1016/j.jprocont.2012.09.008 10.1016/j.mineng.2007.10.002 10.1016/j.applthermaleng.2022.118178 10.1016/j.hydromet.2015.05.001 10.1109/JAS.2017.7510844 10.1016/j.cherd.2018.09.003 10.1016/j.hydromet.2003.09.005 10.3390/e23040387 10.1002/cjce.24573 10.1016/j.hydromet.2010.11.017 10.3934/jimo.2021159 10.1016/j.jprocont.2019.11.012 10.1016/j.cherd.2018.12.002 10.1109/TNNLS.2021.3136357 |
| ContentType | Journal Article |
| Copyright | 2023 Canadian Society for Chemical Engineering. 2024 Canadian Society for Chemical Engineering |
| Copyright_xml | – notice: 2023 Canadian Society for Chemical Engineering. – notice: 2024 Canadian Society for Chemical Engineering |
| DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD JG9 L7M |
| DOI | 10.1002/cjce.25036 |
| DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database Materials Research Database Advanced Technologies Database with Aerospace |
| DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Solid State and Superconductivity Abstracts Technology Research Database Advanced Technologies Database with Aerospace METADEX |
| DatabaseTitleList | Materials Research Database CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1939-019X |
| EndPage | 323 |
| ExternalDocumentID | 10_1002_cjce_25036 CJCE25036 |
| Genre | researchArticle |
| GrantInformation_xml | – fundername: Gansu Provincial Department of Education: “Star of Innovation” Project for Outstanding Graduate Students funderid: 2022CXZX‐465 – fundername: National Natural Science Foundation of China funderid: 61563032; 61963025 – fundername: Gansu Provincial Science and Technology Program funderid: 22CX8GA131; 22YF7GA164 |
| GroupedDBID | -~X .3N .DC .GA .Y3 05W 0R~ 123 1L6 1OB 1OC 29B 31~ 33P 3SF 3WU 4.4 50Y 50Z 52M 52O 52T 52U 52W 6J9 6P2 702 7PT 8-0 8-1 8-3 8-4 8-5 8WZ 930 A03 A6W AAESR AAEVG AAHQN AAIKC AAMMB AAMNL AAMNW AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABEFU ABJIA ABJNI ABPVW ACAHQ ACBWZ ACCZN ACGFO ACGFS ACIWK ACNCT ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADMLS ADNMO ADOZA ADXAS ADZMN AEFGJ AEGXH AEIGN AEIMD AENEX AEUYR AEYWJ AFBPY AFFNX AFFPM AFGKR AFWVQ AFZJQ AGHNM AGQPQ AGXDD AGYGG AHBTC AI. AIAGR AIDQK AIDYY AITYG AIURR AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BLYAC BMNLL BMXJE BNHUX BROTX BRXPI CS3 D-E D-F DCZOG DPXWK DRFUL DRSTM DU5 EBS EJD F00 F01 F04 F21 FEDTE G-S G.N GODZA H.T H.X HBH HF~ HGLYW HVGLF HZ~ H~9 IAO ICQ ISN ITC JPC LATKE LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 NDZJH NF~ NNB O66 O9- OIG P2P P2W P2X P4D PALCI Q.N QB0 QRW R.K RIWAO RJQFR ROL RX1 SAMSI SUPJJ TAE TN5 TUS UB1 V2E VH1 W8V W99 WBFHL WBKPD WIH WIK WOHZO WXSBR WYISQ XV2 ZY4 ZZTAW ~02 ~IA ~WT AAYXX AIQQE CITATION O8X 7SR 7U5 8BQ 8FD JG9 L7M |
| ID | FETCH-LOGICAL-c3016-ac3fe7a7b4eb50b1166eaed8ddd7167f4b64554ba8e25b9bd52dff744e7e6a583 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 1 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018956400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 0008-4034 |
| IngestDate | Sun Nov 09 08:12:19 EST 2025 Tue Nov 18 20:55:49 EST 2025 Sat Nov 29 06:06:17 EST 2025 Sun Jul 06 04:45:20 EDT 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3016-ac3fe7a7b4eb50b1166eaed8ddd7167f4b64554ba8e25b9bd52dff744e7e6a583 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-9335-6756 |
| PQID | 2898701484 |
| PQPubID | 2045184 |
| PageCount | 17 |
| ParticipantIDs | proquest_journals_2898701484 crossref_primary_10_1002_cjce_25036 crossref_citationtrail_10_1002_cjce_25036 wiley_primary_10_1002_cjce_25036_CJCE25036 |
| PublicationCentury | 2000 |
| PublicationDate | January 2024 2024-01-00 20240101 |
| PublicationDateYYYYMMDD | 2024-01-01 |
| PublicationDate_xml | – month: 01 year: 2024 text: January 2024 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | Canadian journal of chemical engineering |
| PublicationYear | 2024 |
| Publisher | John Wiley & Sons, Inc Wiley Subscription Services, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc – name: Wiley Subscription Services, Inc |
| References | 2022; 255 2018; 181 2021; 23 2020; 86 2019; 97 2023; 101 2015; 32 2014; 24 2017; 173 2020; 98 2018; 05 2019; 142 2016; 33 2022; 101 2004; 73 2011; 106 2021; 33 2020; 195 2018; 139 2017; 58 2020; 197 2015; 155 2015; 44 2020; 193 2008; 21 2016 2022; 207 2005; 18 2012; 22 2022; 18 2018; 14 e_1_2_10_23_1 e_1_2_10_24_1 Wang Y. L. (e_1_2_10_3_1) 2016; 33 e_1_2_10_21_1 e_1_2_10_22_1 e_1_2_10_20_1 Zhou X. J. (e_1_2_10_2_1) 2015; 32 Ding B. C. (e_1_2_10_30_1) 2016 e_1_2_10_4_1 e_1_2_10_18_1 e_1_2_10_19_1 e_1_2_10_6_1 e_1_2_10_16_1 e_1_2_10_5_1 e_1_2_10_17_1 e_1_2_10_8_1 e_1_2_10_14_1 e_1_2_10_7_1 e_1_2_10_15_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_10_1 e_1_2_10_33_1 e_1_2_10_11_1 e_1_2_10_32_1 e_1_2_10_31_1 e_1_2_10_29_1 e_1_2_10_27_1 e_1_2_10_28_1 e_1_2_10_25_1 e_1_2_10_26_1 |
| References_xml | – volume: 106 start-page: 51 issue: 1–2 year: 2011 publication-title: Hydrometallurgy – volume: 101 start-page: 380 issue: 1 year: 2023 publication-title: Can. J. Chem. Eng. – volume: 22 start-page: 1878 issue: 10 year: 2012 publication-title: J. Process Control – volume: 86 start-page: 30 year: 2020 publication-title: J. Process Control – volume: 44 start-page: 89 year: 2015 publication-title: Control Engineering Practice – volume: 32 start-page: 1158 issue: 9 year: 2015 publication-title: Control Theory & Applications – volume: 101 start-page: 1874 issue: 4 year: 2022 publication-title: Can. J. Chem. Eng. – volume: 139 start-page: 116 year: 2018 publication-title: Chem. Eng. Res. Des. – volume: 173 start-page: 134 year: 2017 publication-title: Hydrometallurgy – volume: 33 start-page: 2615 issue: 6 year: 2021 publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 2016 – volume: 14 start-page: 5278 issue: 12 year: 2018 publication-title: IEEE Transactions on Industrial Informatics – volume: 142 start-page: 154 year: 2019 publication-title: Chem. Eng. Res. Des. – volume: 101 start-page: 3462 year: 2023 publication-title: Can. J. Chem. Eng. – volume: 18 start-page: 693 issue: 1 year: 2022 publication-title: Journal of Industrial & Management Optimization – volume: 197 year: 2020 publication-title: Hydrometallurgy – volume: 181 start-page: 169 year: 2018 publication-title: Hydrometallurgy – volume: 21 start-page: 100 issue: 1 year: 2008 publication-title: Miner. Eng. – volume: 18 start-page: 1253 issue: 13–14 year: 2005 publication-title: Miner. Eng. – volume: 33 start-page: 579 issue: 5 year: 2016 publication-title: Control Theory & Applications – volume: 05 start-page: 564 issue: 2 year: 2018 publication-title: IEEE/CAA Journal of Automatica Sinica – volume: 97 start-page: 3101 issue: 12 year: 2019 publication-title: Can. J. Chem. Eng. – volume: 23 start-page: 387 issue: 4 year: 2021 publication-title: Entropy – volume: 24 start-page: 586 issue: 5 year: 2014 publication-title: J. Process Control – volume: 98 start-page: 2587 issue: 12 year: 2020 publication-title: Can. J. Chem. Eng. – volume: 58 start-page: 54 year: 2017 publication-title: Control Engineering Practice – volume: 255 year: 2022 publication-title: Energy – volume: 155 start-page: 132 year: 2015 publication-title: Hydrometallurgy – volume: 193 year: 2020 publication-title: Hydrometallurgy – volume: 195 year: 2020 publication-title: Hydrometallurgy – volume: 207 year: 2022 publication-title: Appl. Therm. Eng. – volume: 73 start-page: 123 issue: 1–2 year: 2004 publication-title: Hydrometallurgy – ident: e_1_2_10_29_1 doi: 10.1002/cjce.24762 – ident: e_1_2_10_18_1 doi: 10.1016/j.conengprac.2015.07.008 – ident: e_1_2_10_23_1 doi: 10.1002/cjce.23860 – ident: e_1_2_10_19_1 doi: 10.1002/cjce.23563 – ident: e_1_2_10_22_1 doi: 10.1002/cjce.24409 – ident: e_1_2_10_33_1 doi: 10.1016/j.conengprac.2016.10.001 – ident: e_1_2_10_27_1 doi: 10.1016/j.energy.2022.124486 – ident: e_1_2_10_11_1 doi: 10.1016/j.hydromet.2020.105479 – volume-title: Industrial Predictive Control year: 2016 ident: e_1_2_10_30_1 – ident: e_1_2_10_8_1 doi: 10.1016/j.mineng.2005.07.002 – ident: e_1_2_10_32_1 doi: 10.1109/TII.2018.2815659 – ident: e_1_2_10_17_1 doi: 10.1016/j.jprocont.2014.03.002 – ident: e_1_2_10_9_1 doi: 10.1016/j.hydromet.2018.09.007 – ident: e_1_2_10_28_1 doi: 10.1016/j.hydromet.2020.105327 – ident: e_1_2_10_31_1 doi: 10.1016/j.hydromet.2017.08.007 – ident: e_1_2_10_12_1 doi: 10.1016/j.hydromet.2020.105352 – ident: e_1_2_10_16_1 doi: 10.1016/j.jprocont.2012.09.008 – ident: e_1_2_10_5_1 doi: 10.1016/j.mineng.2007.10.002 – ident: e_1_2_10_21_1 doi: 10.1016/j.applthermaleng.2022.118178 – ident: e_1_2_10_10_1 doi: 10.1016/j.hydromet.2015.05.001 – ident: e_1_2_10_4_1 doi: 10.1109/JAS.2017.7510844 – ident: e_1_2_10_24_1 doi: 10.1016/j.cherd.2018.09.003 – ident: e_1_2_10_7_1 doi: 10.1016/j.hydromet.2003.09.005 – ident: e_1_2_10_15_1 doi: 10.3390/e23040387 – ident: e_1_2_10_20_1 doi: 10.1002/cjce.24573 – ident: e_1_2_10_6_1 doi: 10.1016/j.hydromet.2010.11.017 – ident: e_1_2_10_14_1 doi: 10.3934/jimo.2021159 – ident: e_1_2_10_13_1 doi: 10.1016/j.jprocont.2019.11.012 – volume: 33 start-page: 579 issue: 5 year: 2016 ident: e_1_2_10_3_1 publication-title: Control Theory & Applications – ident: e_1_2_10_26_1 doi: 10.1016/j.cherd.2018.12.002 – volume: 32 start-page: 1158 issue: 9 year: 2015 ident: e_1_2_10_2_1 publication-title: Control Theory & Applications – ident: e_1_2_10_25_1 doi: 10.1109/TNNLS.2021.3136357 |
| SSID | ssj0002041 |
| Score | 2.3591459 |
| Snippet | To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 307 |
| SubjectTerms | Algorithms Back propagation networks Cobalt cobalt removal Continuously stirred tank reactors Control methods distributed nonlinear model predictive control Error compensation Genetic algorithms genetic algorithm‐backpropagation neural network Hydrometallurgy Mutual coupling Neural networks Nonlinear control Nonlinearity Parameterization Predictive control Quadratic programming synergistic CSTR Zinc |
| Title | Distributed nonlinear model predictive control for cobalt removal process in zinc hydrometallurgy considering error compensation modelling |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.25036 https://www.proquest.com/docview/2898701484 |
| Volume | 102 |
| WOSCitedRecordID | wos001018956400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1939-019X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002041 issn: 0008-4034 databaseCode: DRFUL dateStart: 19970101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9EEfvIvzRkBfFKpdmjYd-CLTISIiouBbya06mXV0U9Cf4K_2JOk2BRHEtzykSZucnPOdNPk-gF2ec8WoDgPBQxZgvGZBqhsySKJGImMRI-pQTmyCX16md3fNqwk4Gt6F8fwQow03uzKcv7YLXMj-4Zg0VD0qc4ABPEomYYqi4cY1mDq5bt9ejDwxDVmlmJdinhSxET0pPRw__T0gjVHmV6zqgk17_n-vuQBzFcgkx94qFmHCFEsw-4V6cBk-TixjrhW7MpoUviNREieMQ3ql_X1jHSGpjrITxLZYlqI7IKV5ekb7JD1_x4B0CvLeKRR5eHPcB4jmuy_l_Zt91GmBYn_ElKVrAEF64c8P-a7sZfgVuG2f3rTOgkqXIVDoDpJAqCg3XHDJjIxD2WgkiRFGp1przL54zmTCEKVIkRoay6bUMdV5zhkz3CQiTqNVqOGHmTUgiP4w38lTKZsRi0SYIloN85xpTcMYkUUd9oaTk6mKtNxqZ3QzT7dMMzu-mRvfOuyM6vY8VcePtTaHc5xVy7WfYdaJfgszQ1aHfTebv7SQtc5bp660_pfKGzBDERD57ZtNqA3KF7MF0-p10OmX25XpfgLgqPWM |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54A_XBuzivAX1RqOvatOkeZTq8zCGi4FvJrTqZddQp6E_wV3uS1E1BBPEtD2nSJifnfCdNvg9gh2VM0kD5Hmc-9TBeUy9RNeHFYS0WEY8QdUgrNsHa7eTmpn5Rns0xd2EcP8Rgw82sDOuvzQI3G9LVIWuovJd6HyN4GI_COEU7QgMfP7xsXrcGrjjwaSmZl2CiFNIBP2lQHT79PSINYeZXsGqjTXP2n-85BzMlzCQHzi7mYUTnCzD9hXxwEd4PDWeukbvSiuSuJ14QK41DeoX5gWNcISkPsxNEt1gWvNsnhX54RAslPXfLgHRy8tbJJbl7tewHiOe7z8Xtq3nUqoFif0QXhW0AYXruThC5rsx1-CW4bh5dNY69UpnBk-gQYo_LMNOMM0G1iHxRq8Wx5lolSinMv1hGRUwRpwie6CASdaGiQGUZo1QzHfMoCZdhDD9MrwBB_IcZT5YIUQ9pyP0E8aqfZVSpwI8QW1Rg93N2UlnSlhv1jG7qCJeD1Ixvase3AtuDuj1H1vFjrfXPSU7LBfuUYt6JngtzQ1qBPTudv7SQNk4bR7a0-pfKWzB5fHXeSlsn7bM1mAoQHrnNnHUY6xfPegMm5Eu_81Rslnb8AYhP-Xw |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxtBFD5oLFIfar0UY9UO2BeFNZvd2Z3NY0kM2oYQSgXflrlqSrqGTSLoT_BXe2ZmTSyIIL7Nw1x253LOd-byfQDfmWGSRioMOAtpgP6aBplqiiCNm6lIeIKoQzqxCdbvZ5eXrUF1N8e-hfH8EPMNN7synL22C1yPlWksWEPlX6lP0IPH6TKsUKsiU4OVzu_uRW9uiqOQVpJ5GQZKMZ3zk0aNRen_PdICZj4Hq87bdNff-Z2f4VMFM8kPPy82YEkXm7D2jHxwCx46ljPXyl1pRQrfEi-Jk8Yh49Ie4FhTSKrL7ATRLaYFH01Jqf_d4AwlY__KgAwLcj8sJLm-c-wHiOdHs_LqzhZ1aqDYHtFl6SpAmF74G0S-Kfscfhsuuqd_2mdBpcwQSDQIacBlbDTjTFAtklA0m2mquVaZUgrjL2aoSCniFMEzHSWiJVQSKWMYpZrplCdZ_AVq-GN6BwjiP4x4TCZEK6YxDzPEq6ExVKkoTBBb1OHoaXRyWdGWW_WMUe4Jl6Pc9m_u-rcOh_O8Y0_W8WKuvadBzqsFO8kx7kTLhbEhrcOxG85XasjbP9unLrX7lszfYHXQ6ea98_6vr_AxQnTk93L2oDYtZ3ofPsjb6XBSHlTT-BEekvj3 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+nonlinear+model+predictive+control+for+cobalt+removal+process+in+zinc+hydrometallurgy+considering+error+compensation+modelling&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Wang%2C+Qianqian&rft.au=An%2C+Aimin&rft.au=Tang%2C+Minan&rft.au=Lu%2C+Jiawei&rft.date=2024-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=102&rft.issue=1&rft.spage=307&rft.epage=323&rft_id=info:doi/10.1002%2Fcjce.25036&rft.externalDBID=10.1002%252Fcjce.25036&rft.externalDocID=CJCE25036 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon |