Distributed nonlinear model predictive control for cobalt removal process in zinc hydrometallurgy considering error compensation modelling

To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved genetic algorithm (GA) backpropagation (BP) neural network combined with distributed nonlinear model predictive control (NMPC) is proposed. Th...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Canadian journal of chemical engineering Ročník 102; číslo 1; s. 307 - 323
Hlavní autoři: Wang, Qianqian, An, Aimin, Tang, Minan, Lu, Jiawei
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.01.2024
Wiley Subscription Services, Inc
Témata:
ISSN:0008-4034, 1939-019X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved genetic algorithm (GA) backpropagation (BP) neural network combined with distributed nonlinear model predictive control (NMPC) is proposed. This method was applied to improve the quality of the purification solution and reduce the consumption of zinc powder, overcoming the challenges faced by the current cobalt removal process. First, a synergistic continuously stirred tank reactor (SCSTR) model was constructed for the dynamic cobalt removal process. Second, aiming at the problem that a single SCSTR model has difficulty describing the process accurately, based on the highly nonlinear mapping ability of data‐driven models, a method that organically integrates the SCSTR model and an error compensation model based on the GA‐BP neural network was proposed (GA‐BP‐SCSTR) to provide a more accurate online prediction of the process indicators. Then, a distributed NMPC architecture was developed using the GA‐BP‐SCSTR model, control vector parameterization (CVP) technique, and sequential quadratic programming (SQP) algorithm to achieve the coordinated control of the cobalt removal process. Finally, simulation results of an actual site showed that the prediction accuracy of the GA‐BP‐SCSTR model was higher than those of other models. The proposed predictive control method can maintain the outlet cobalt ion concentrations at the set values while achieving accurate control of the zinc powder addition. This approach can provide guidance for on‐site production and eliminate the blindness of manual experience control. Distributed coordination control strategy architecture.
AbstractList To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved genetic algorithm (GA) backpropagation (BP) neural network combined with distributed nonlinear model predictive control (NMPC) is proposed. This method was applied to improve the quality of the purification solution and reduce the consumption of zinc powder, overcoming the challenges faced by the current cobalt removal process. First, a synergistic continuously stirred tank reactor (SCSTR) model was constructed for the dynamic cobalt removal process. Second, aiming at the problem that a single SCSTR model has difficulty describing the process accurately, based on the highly nonlinear mapping ability of data‐driven models, a method that organically integrates the SCSTR model and an error compensation model based on the GA‐BP neural network was proposed (GA‐BP‐SCSTR) to provide a more accurate online prediction of the process indicators. Then, a distributed NMPC architecture was developed using the GA‐BP‐SCSTR model, control vector parameterization (CVP) technique, and sequential quadratic programming (SQP) algorithm to achieve the coordinated control of the cobalt removal process. Finally, simulation results of an actual site showed that the prediction accuracy of the GA‐BP‐SCSTR model was higher than those of other models. The proposed predictive control method can maintain the outlet cobalt ion concentrations at the set values while achieving accurate control of the zinc powder addition. This approach can provide guidance for on‐site production and eliminate the blindness of manual experience control. Distributed coordination control strategy architecture.
To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved genetic algorithm (GA) backpropagation (BP) neural network combined with distributed nonlinear model predictive control (NMPC) is proposed. This method was applied to improve the quality of the purification solution and reduce the consumption of zinc powder, overcoming the challenges faced by the current cobalt removal process. First, a synergistic continuously stirred tank reactor (SCSTR) model was constructed for the dynamic cobalt removal process. Second, aiming at the problem that a single SCSTR model has difficulty describing the process accurately, based on the highly nonlinear mapping ability of data‐driven models, a method that organically integrates the SCSTR model and an error compensation model based on the GA‐BP neural network was proposed (GA‐BP‐SCSTR) to provide a more accurate online prediction of the process indicators. Then, a distributed NMPC architecture was developed using the GA‐BP‐SCSTR model, control vector parameterization (CVP) technique, and sequential quadratic programming (SQP) algorithm to achieve the coordinated control of the cobalt removal process. Finally, simulation results of an actual site showed that the prediction accuracy of the GA‐BP‐SCSTR model was higher than those of other models. The proposed predictive control method can maintain the outlet cobalt ion concentrations at the set values while achieving accurate control of the zinc powder addition. This approach can provide guidance for on‐site production and eliminate the blindness of manual experience control.
Author Wang, Qianqian
An, Aimin
Lu, Jiawei
Tang, Minan
Author_xml – sequence: 1
  givenname: Qianqian
  orcidid: 0000-0002-9335-6756
  surname: Wang
  fullname: Wang, Qianqian
  organization: Lanzhou University of Technology
– sequence: 2
  givenname: Aimin
  surname: An
  fullname: An, Aimin
  email: anaiminll@163.com
  organization: Lanzhou University of Technology
– sequence: 3
  givenname: Minan
  surname: Tang
  fullname: Tang, Minan
  organization: Lanzhou Jiaotong University
– sequence: 4
  givenname: Jiawei
  surname: Lu
  fullname: Lu, Jiawei
  organization: Lanzhou University of Technology
BookMark eNp9kEtrGzEUhUVxoE7STX-BILvAuNKM5rUMjvsikE0C2Q163HFlNJJzJbs4P6G_OmNPVyFkdXXhO-dcnXMy88EDIV85W3DG8m96o2GRl6yoPpE5b4s2Y7x9mpE5Y6zJBCvEZ3Ie42Zccyb4nPy7tTGhVbsEho5mznqQSIdgwNEtgrE62T1QHXzC4GgfcHwr6RJFGMJeHqmgIUZqPX2xXtM_B4NhgCSd2-H6cJRGawCtX1NAPBkMW_BRJhv8FDXGri_JWS9dhC__5wV5_L56WP7M7u5__Fre3GW6YLzKpC56qGWtBKiSKc6rCiSYxhhT86ruhapEWQolG8hL1SpT5qbvayGghkqWTXFBribf8fDnHcTUbcIO_RjZ5U3b1IyLRozU9URpDDEi9N0W7SDx0HHWHbvujl13p65HmL2BtU2n7yWU1r0v4ZPkr3Vw-MC8W_5eribNK8TNmMw
CitedBy_id crossref_primary_10_1016_j_scitotenv_2025_178420
crossref_primary_10_3390_pr13051423
Cites_doi 10.1002/cjce.24762
10.1016/j.conengprac.2015.07.008
10.1002/cjce.23860
10.1002/cjce.23563
10.1002/cjce.24409
10.1016/j.conengprac.2016.10.001
10.1016/j.energy.2022.124486
10.1016/j.hydromet.2020.105479
10.1016/j.mineng.2005.07.002
10.1109/TII.2018.2815659
10.1016/j.jprocont.2014.03.002
10.1016/j.hydromet.2018.09.007
10.1016/j.hydromet.2020.105327
10.1016/j.hydromet.2017.08.007
10.1016/j.hydromet.2020.105352
10.1016/j.jprocont.2012.09.008
10.1016/j.mineng.2007.10.002
10.1016/j.applthermaleng.2022.118178
10.1016/j.hydromet.2015.05.001
10.1109/JAS.2017.7510844
10.1016/j.cherd.2018.09.003
10.1016/j.hydromet.2003.09.005
10.3390/e23040387
10.1002/cjce.24573
10.1016/j.hydromet.2010.11.017
10.3934/jimo.2021159
10.1016/j.jprocont.2019.11.012
10.1016/j.cherd.2018.12.002
10.1109/TNNLS.2021.3136357
ContentType Journal Article
Copyright 2023 Canadian Society for Chemical Engineering.
2024 Canadian Society for Chemical Engineering
Copyright_xml – notice: 2023 Canadian Society for Chemical Engineering.
– notice: 2024 Canadian Society for Chemical Engineering
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
JG9
L7M
DOI 10.1002/cjce.25036
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
METADEX
DatabaseTitleList
Materials Research Database
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1939-019X
EndPage 323
ExternalDocumentID 10_1002_cjce_25036
CJCE25036
Genre researchArticle
GrantInformation_xml – fundername: Gansu Provincial Department of Education: “Star of Innovation” Project for Outstanding Graduate Students
  funderid: 2022CXZX‐465
– fundername: National Natural Science Foundation of China
  funderid: 61563032; 61963025
– fundername: Gansu Provincial Science and Technology Program
  funderid: 22CX8GA131; 22YF7GA164
GroupedDBID -~X
.3N
.DC
.GA
.Y3
05W
0R~
123
1L6
1OB
1OC
29B
31~
33P
3SF
3WU
4.4
50Y
50Z
52M
52O
52T
52U
52W
6J9
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8WZ
930
A03
A6W
AAESR
AAEVG
AAHQN
AAIKC
AAMMB
AAMNL
AAMNW
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABEFU
ABJIA
ABJNI
ABPVW
ACAHQ
ACBWZ
ACCZN
ACGFO
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
AEFGJ
AEGXH
AEIGN
AEIMD
AENEX
AEUYR
AEYWJ
AFBPY
AFFNX
AFFPM
AFGKR
AFWVQ
AFZJQ
AGHNM
AGQPQ
AGXDD
AGYGG
AHBTC
AI.
AIAGR
AIDQK
AIDYY
AITYG
AIURR
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BLYAC
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
CS3
D-E
D-F
DCZOG
DPXWK
DRFUL
DRSTM
DU5
EBS
EJD
F00
F01
F04
F21
FEDTE
G-S
G.N
GODZA
H.T
H.X
HBH
HF~
HGLYW
HVGLF
HZ~
H~9
IAO
ICQ
ISN
ITC
JPC
LATKE
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NDZJH
NF~
NNB
O66
O9-
OIG
P2P
P2W
P2X
P4D
PALCI
Q.N
QB0
QRW
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TN5
TUS
UB1
V2E
VH1
W8V
W99
WBFHL
WBKPD
WIH
WIK
WOHZO
WXSBR
WYISQ
XV2
ZY4
ZZTAW
~02
~IA
~WT
AAYXX
AIQQE
CITATION
O8X
7SR
7U5
8BQ
8FD
JG9
L7M
ID FETCH-LOGICAL-c3016-ac3fe7a7b4eb50b1166eaed8ddd7167f4b64554ba8e25b9bd52dff744e7e6a583
IEDL.DBID DRFUL
ISICitedReferencesCount 1
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001018956400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0008-4034
IngestDate Sun Nov 09 08:12:19 EST 2025
Tue Nov 18 20:55:49 EST 2025
Sat Nov 29 06:06:17 EST 2025
Sun Jul 06 04:45:20 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3016-ac3fe7a7b4eb50b1166eaed8ddd7167f4b64554ba8e25b9bd52dff744e7e6a583
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-9335-6756
PQID 2898701484
PQPubID 2045184
PageCount 17
ParticipantIDs proquest_journals_2898701484
crossref_primary_10_1002_cjce_25036
crossref_citationtrail_10_1002_cjce_25036
wiley_primary_10_1002_cjce_25036_CJCE25036
PublicationCentury 2000
PublicationDate January 2024
2024-01-00
20240101
PublicationDateYYYYMMDD 2024-01-01
PublicationDate_xml – month: 01
  year: 2024
  text: January 2024
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle Canadian journal of chemical engineering
PublicationYear 2024
Publisher John Wiley & Sons, Inc
Wiley Subscription Services, Inc
Publisher_xml – name: John Wiley & Sons, Inc
– name: Wiley Subscription Services, Inc
References 2022; 255
2018; 181
2021; 23
2020; 86
2019; 97
2023; 101
2015; 32
2014; 24
2017; 173
2020; 98
2018; 05
2019; 142
2016; 33
2022; 101
2004; 73
2011; 106
2021; 33
2020; 195
2018; 139
2017; 58
2020; 197
2015; 155
2015; 44
2020; 193
2008; 21
2016
2022; 207
2005; 18
2012; 22
2022; 18
2018; 14
e_1_2_10_23_1
e_1_2_10_24_1
Wang Y. L. (e_1_2_10_3_1) 2016; 33
e_1_2_10_21_1
e_1_2_10_22_1
e_1_2_10_20_1
Zhou X. J. (e_1_2_10_2_1) 2015; 32
Ding B. C. (e_1_2_10_30_1) 2016
e_1_2_10_4_1
e_1_2_10_18_1
e_1_2_10_19_1
e_1_2_10_6_1
e_1_2_10_16_1
e_1_2_10_5_1
e_1_2_10_17_1
e_1_2_10_8_1
e_1_2_10_14_1
e_1_2_10_7_1
e_1_2_10_15_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_10_1
e_1_2_10_33_1
e_1_2_10_11_1
e_1_2_10_32_1
e_1_2_10_31_1
e_1_2_10_29_1
e_1_2_10_27_1
e_1_2_10_28_1
e_1_2_10_25_1
e_1_2_10_26_1
References_xml – volume: 106
  start-page: 51
  issue: 1–2
  year: 2011
  publication-title: Hydrometallurgy
– volume: 101
  start-page: 380
  issue: 1
  year: 2023
  publication-title: Can. J. Chem. Eng.
– volume: 22
  start-page: 1878
  issue: 10
  year: 2012
  publication-title: J. Process Control
– volume: 86
  start-page: 30
  year: 2020
  publication-title: J. Process Control
– volume: 44
  start-page: 89
  year: 2015
  publication-title: Control Engineering Practice
– volume: 32
  start-page: 1158
  issue: 9
  year: 2015
  publication-title: Control Theory & Applications
– volume: 101
  start-page: 1874
  issue: 4
  year: 2022
  publication-title: Can. J. Chem. Eng.
– volume: 139
  start-page: 116
  year: 2018
  publication-title: Chem. Eng. Res. Des.
– volume: 173
  start-page: 134
  year: 2017
  publication-title: Hydrometallurgy
– volume: 33
  start-page: 2615
  issue: 6
  year: 2021
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 2016
– volume: 14
  start-page: 5278
  issue: 12
  year: 2018
  publication-title: IEEE Transactions on Industrial Informatics
– volume: 142
  start-page: 154
  year: 2019
  publication-title: Chem. Eng. Res. Des.
– volume: 101
  start-page: 3462
  year: 2023
  publication-title: Can. J. Chem. Eng.
– volume: 18
  start-page: 693
  issue: 1
  year: 2022
  publication-title: Journal of Industrial & Management Optimization
– volume: 197
  year: 2020
  publication-title: Hydrometallurgy
– volume: 181
  start-page: 169
  year: 2018
  publication-title: Hydrometallurgy
– volume: 21
  start-page: 100
  issue: 1
  year: 2008
  publication-title: Miner. Eng.
– volume: 18
  start-page: 1253
  issue: 13–14
  year: 2005
  publication-title: Miner. Eng.
– volume: 33
  start-page: 579
  issue: 5
  year: 2016
  publication-title: Control Theory & Applications
– volume: 05
  start-page: 564
  issue: 2
  year: 2018
  publication-title: IEEE/CAA Journal of Automatica Sinica
– volume: 97
  start-page: 3101
  issue: 12
  year: 2019
  publication-title: Can. J. Chem. Eng.
– volume: 23
  start-page: 387
  issue: 4
  year: 2021
  publication-title: Entropy
– volume: 24
  start-page: 586
  issue: 5
  year: 2014
  publication-title: J. Process Control
– volume: 98
  start-page: 2587
  issue: 12
  year: 2020
  publication-title: Can. J. Chem. Eng.
– volume: 58
  start-page: 54
  year: 2017
  publication-title: Control Engineering Practice
– volume: 255
  year: 2022
  publication-title: Energy
– volume: 155
  start-page: 132
  year: 2015
  publication-title: Hydrometallurgy
– volume: 193
  year: 2020
  publication-title: Hydrometallurgy
– volume: 195
  year: 2020
  publication-title: Hydrometallurgy
– volume: 207
  year: 2022
  publication-title: Appl. Therm. Eng.
– volume: 73
  start-page: 123
  issue: 1–2
  year: 2004
  publication-title: Hydrometallurgy
– ident: e_1_2_10_29_1
  doi: 10.1002/cjce.24762
– ident: e_1_2_10_18_1
  doi: 10.1016/j.conengprac.2015.07.008
– ident: e_1_2_10_23_1
  doi: 10.1002/cjce.23860
– ident: e_1_2_10_19_1
  doi: 10.1002/cjce.23563
– ident: e_1_2_10_22_1
  doi: 10.1002/cjce.24409
– ident: e_1_2_10_33_1
  doi: 10.1016/j.conengprac.2016.10.001
– ident: e_1_2_10_27_1
  doi: 10.1016/j.energy.2022.124486
– ident: e_1_2_10_11_1
  doi: 10.1016/j.hydromet.2020.105479
– volume-title: Industrial Predictive Control
  year: 2016
  ident: e_1_2_10_30_1
– ident: e_1_2_10_8_1
  doi: 10.1016/j.mineng.2005.07.002
– ident: e_1_2_10_32_1
  doi: 10.1109/TII.2018.2815659
– ident: e_1_2_10_17_1
  doi: 10.1016/j.jprocont.2014.03.002
– ident: e_1_2_10_9_1
  doi: 10.1016/j.hydromet.2018.09.007
– ident: e_1_2_10_28_1
  doi: 10.1016/j.hydromet.2020.105327
– ident: e_1_2_10_31_1
  doi: 10.1016/j.hydromet.2017.08.007
– ident: e_1_2_10_12_1
  doi: 10.1016/j.hydromet.2020.105352
– ident: e_1_2_10_16_1
  doi: 10.1016/j.jprocont.2012.09.008
– ident: e_1_2_10_5_1
  doi: 10.1016/j.mineng.2007.10.002
– ident: e_1_2_10_21_1
  doi: 10.1016/j.applthermaleng.2022.118178
– ident: e_1_2_10_10_1
  doi: 10.1016/j.hydromet.2015.05.001
– ident: e_1_2_10_4_1
  doi: 10.1109/JAS.2017.7510844
– ident: e_1_2_10_24_1
  doi: 10.1016/j.cherd.2018.09.003
– ident: e_1_2_10_7_1
  doi: 10.1016/j.hydromet.2003.09.005
– ident: e_1_2_10_15_1
  doi: 10.3390/e23040387
– ident: e_1_2_10_20_1
  doi: 10.1002/cjce.24573
– ident: e_1_2_10_6_1
  doi: 10.1016/j.hydromet.2010.11.017
– ident: e_1_2_10_14_1
  doi: 10.3934/jimo.2021159
– ident: e_1_2_10_13_1
  doi: 10.1016/j.jprocont.2019.11.012
– volume: 33
  start-page: 579
  issue: 5
  year: 2016
  ident: e_1_2_10_3_1
  publication-title: Control Theory & Applications
– ident: e_1_2_10_26_1
  doi: 10.1016/j.cherd.2018.12.002
– volume: 32
  start-page: 1158
  issue: 9
  year: 2015
  ident: e_1_2_10_2_1
  publication-title: Control Theory & Applications
– ident: e_1_2_10_25_1
  doi: 10.1109/TNNLS.2021.3136357
SSID ssj0002041
Score 2.3591459
Snippet To address the strong nonlinearity, uncertainty, and mutual coupling in the cobalt removal process of zinc hydrometallurgy, an algorithm based on an improved...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 307
SubjectTerms Algorithms
Back propagation networks
Cobalt
cobalt removal
Continuously stirred tank reactors
Control methods
distributed nonlinear model predictive control
Error compensation
Genetic algorithms
genetic algorithm‐backpropagation neural network
Hydrometallurgy
Mutual coupling
Neural networks
Nonlinear control
Nonlinearity
Parameterization
Predictive control
Quadratic programming
synergistic CSTR
Zinc
Title Distributed nonlinear model predictive control for cobalt removal process in zinc hydrometallurgy considering error compensation modelling
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fcjce.25036
https://www.proquest.com/docview/2898701484
Volume 102
WOSCitedRecordID wos001018956400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1939-019X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002041
  issn: 0008-4034
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD7o9EEfvIvzRkBfFKpdmjYd-CLTISIiouBbya06mXV0U9Cf4K_2JOk2BRHEtzykSZucnPOdNPk-gF2ec8WoDgPBQxZgvGZBqhsySKJGImMRI-pQTmyCX16md3fNqwk4Gt6F8fwQow03uzKcv7YLXMj-4Zg0VD0qc4ABPEomYYqi4cY1mDq5bt9ejDwxDVmlmJdinhSxET0pPRw__T0gjVHmV6zqgk17_n-vuQBzFcgkx94qFmHCFEsw-4V6cBk-TixjrhW7MpoUviNREieMQ3ql_X1jHSGpjrITxLZYlqI7IKV5ekb7JD1_x4B0CvLeKRR5eHPcB4jmuy_l_Zt91GmBYn_ElKVrAEF64c8P-a7sZfgVuG2f3rTOgkqXIVDoDpJAqCg3XHDJjIxD2WgkiRFGp1przL54zmTCEKVIkRoay6bUMdV5zhkz3CQiTqNVqOGHmTUgiP4w38lTKZsRi0SYIloN85xpTcMYkUUd9oaTk6mKtNxqZ3QzT7dMMzu-mRvfOuyM6vY8VcePtTaHc5xVy7WfYdaJfgszQ1aHfTebv7SQtc5bp660_pfKGzBDERD57ZtNqA3KF7MF0-p10OmX25XpfgLgqPWM
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bS8MwFD54A_XBuzivAX1RqOvatOkeZTq8zCGi4FvJrTqZddQp6E_wV3uS1E1BBPEtD2nSJifnfCdNvg9gh2VM0kD5Hmc-9TBeUy9RNeHFYS0WEY8QdUgrNsHa7eTmpn5Rns0xd2EcP8Rgw82sDOuvzQI3G9LVIWuovJd6HyN4GI_COEU7QgMfP7xsXrcGrjjwaSmZl2CiFNIBP2lQHT79PSINYeZXsGqjTXP2n-85BzMlzCQHzi7mYUTnCzD9hXxwEd4PDWeukbvSiuSuJ14QK41DeoX5gWNcISkPsxNEt1gWvNsnhX54RAslPXfLgHRy8tbJJbl7tewHiOe7z8Xtq3nUqoFif0QXhW0AYXruThC5rsx1-CW4bh5dNY69UpnBk-gQYo_LMNOMM0G1iHxRq8Wx5lolSinMv1hGRUwRpwie6CASdaGiQGUZo1QzHfMoCZdhDD9MrwBB_IcZT5YIUQ9pyP0E8aqfZVSpwI8QW1Rg93N2UlnSlhv1jG7qCJeD1Ixvase3AtuDuj1H1vFjrfXPSU7LBfuUYt6JngtzQ1qBPTudv7SQNk4bR7a0-pfKWzB5fHXeSlsn7bM1mAoQHrnNnHUY6xfPegMm5Eu_81Rslnb8AYhP-Xw
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1bSxtBFD5oLFIfar0UY9UO2BeFNZvd2Z3NY0kM2oYQSgXflrlqSrqGTSLoT_BXe2ZmTSyIIL7Nw1x253LOd-byfQDfmWGSRioMOAtpgP6aBplqiiCNm6lIeIKoQzqxCdbvZ5eXrUF1N8e-hfH8EPMNN7synL22C1yPlWksWEPlX6lP0IPH6TKsUKsiU4OVzu_uRW9uiqOQVpJ5GQZKMZ3zk0aNRen_PdICZj4Hq87bdNff-Z2f4VMFM8kPPy82YEkXm7D2jHxwCx46ljPXyl1pRQrfEi-Jk8Yh49Ie4FhTSKrL7ATRLaYFH01Jqf_d4AwlY__KgAwLcj8sJLm-c-wHiOdHs_LqzhZ1aqDYHtFl6SpAmF74G0S-Kfscfhsuuqd_2mdBpcwQSDQIacBlbDTjTFAtklA0m2mquVaZUgrjL2aoSCniFMEzHSWiJVQSKWMYpZrplCdZ_AVq-GN6BwjiP4x4TCZEK6YxDzPEq6ExVKkoTBBb1OHoaXRyWdGWW_WMUe4Jl6Pc9m_u-rcOh_O8Y0_W8WKuvadBzqsFO8kx7kTLhbEhrcOxG85XasjbP9unLrX7lszfYHXQ6ea98_6vr_AxQnTk93L2oDYtZ3ofPsjb6XBSHlTT-BEekvj3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Distributed+nonlinear+model+predictive+control+for+cobalt+removal+process+in+zinc+hydrometallurgy+considering+error+compensation+modelling&rft.jtitle=Canadian+journal+of+chemical+engineering&rft.au=Wang%2C+Qianqian&rft.au=An%2C+Aimin&rft.au=Tang%2C+Minan&rft.au=Lu%2C+Jiawei&rft.date=2024-01-01&rft.pub=John+Wiley+%26+Sons%2C+Inc&rft.issn=0008-4034&rft.eissn=1939-019X&rft.volume=102&rft.issue=1&rft.spage=307&rft.epage=323&rft_id=info:doi/10.1002%2Fcjce.25036&rft.externalDBID=10.1002%252Fcjce.25036&rft.externalDocID=CJCE25036
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0008-4034&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0008-4034&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0008-4034&client=summon