Self‐supervised representation learning of metro interior noise based on variational autoencoder and deep embedding clustering

The noise within train is a paradox; while harmful to passenger health, it is useful to operators as it provides insights into the working status of vehicles and tracks. Recently, methods for identifying defects based on interior noise signals are emerging, among which representation learning is the...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Computer-aided civil and infrastructure engineering Ročník 40; číslo 4; s. 503 - 522
Hlavní autoři: Wang, Yang, Xiao, Hong, Zhang, Zhihai, Guo, Xiaoxuan, Liu, Qiang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken Wiley Subscription Services, Inc 01.02.2025
Témata:
ISSN:1093-9687, 1467-8667
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract The noise within train is a paradox; while harmful to passenger health, it is useful to operators as it provides insights into the working status of vehicles and tracks. Recently, methods for identifying defects based on interior noise signals are emerging, among which representation learning is the foundation for deep neural network models to understand the key information and structure of the data. To provide foundational data for track fault detection, a representation learning framework for interior noise, named the interior noise representation framework, is introduced. The method includes: (i) using wavelet transform to represent the original noise signal and designing a soft and hard denoising module for dataset denoising; (ii) deep residual convolutional denoising variational autoencoder (VAE) module performs representation learning with a VAE and deep residual convolutional neural networks, enabling richer data augmentation for sparsely labeled samples by manipulating the embedding space; (iii) deep embedding clustering submodule balances the representation of reconstruction and clustering features through the joint optimization of these aspects, categorizing metro noise into three distinct classes and effectively discriminating significantly different features. The experimental results show that, compared to traditional mechanism‐based models for characterizing interior noise, this approach offers a data‐driven general analysis framework, providing a foundational model for downstream tasks.
AbstractList The noise within train is a paradox; while harmful to passenger health, it is useful to operators as it provides insights into the working status of vehicles and tracks. Recently, methods for identifying defects based on interior noise signals are emerging, among which representation learning is the foundation for deep neural network models to understand the key information and structure of the data. To provide foundational data for track fault detection, a representation learning framework for interior noise, named the interior noise representation framework, is introduced. The method includes: (i) using wavelet transform to represent the original noise signal and designing a soft and hard denoising module for dataset denoising; (ii) deep residual convolutional denoising variational autoencoder (VAE) module performs representation learning with a VAE and deep residual convolutional neural networks, enabling richer data augmentation for sparsely labeled samples by manipulating the embedding space; (iii) deep embedding clustering submodule balances the representation of reconstruction and clustering features through the joint optimization of these aspects, categorizing metro noise into three distinct classes and effectively discriminating significantly different features. The experimental results show that, compared to traditional mechanism‐based models for characterizing interior noise, this approach offers a data‐driven general analysis framework, providing a foundational model for downstream tasks.
Author Wang, Yang
Guo, Xiaoxuan
Zhang, Zhihai
Liu, Qiang
Xiao, Hong
Author_xml – sequence: 1
  givenname: Yang
  surname: Wang
  fullname: Wang, Yang
  organization: Beijing Jiaotong University
– sequence: 2
  givenname: Hong
  surname: Xiao
  fullname: Xiao, Hong
  email: xiaoh@bjtu.edu.cn
  organization: Beijing Jiaotong University
– sequence: 3
  givenname: Zhihai
  surname: Zhang
  fullname: Zhang, Zhihai
  organization: Chang'an University
– sequence: 4
  givenname: Xiaoxuan
  surname: Guo
  fullname: Guo, Xiaoxuan
  organization: Beijing Jiaotong University
– sequence: 5
  givenname: Qiang
  surname: Liu
  fullname: Liu, Qiang
  organization: Beijing Jiaotong University
BookMark eNp9kLFOwzAQhi0EEm1h4QkssSGlxHViJyOqClQqYgDmyLEvlavUDnZS1K2PwDPyJDgNE0Lccjd836_TP0anxhpA6IrEUxLmdqslTAmllJ2gEUkYjzLG-Gm445xGOcv4ORp7v4nDJAkdocML1NXX4dN3Dbid9qCwg8aBB9OKVluDaxDOaLPGtsJbaJ3F2rTgtHXY2CDgUvRWIHfC6aMjaiy61oKRVoHDwiisABoM2xKU6rNk3fk-xKwv0Fklag-XP3uC3u4Xr_PHaPX8sJzfrSJJY8KiLBUJ5IzOyopyFVPgeZWzVHDIaAoSJGNllSYxZXmelKVSSpKUM-CqAsUEpxN0PeQ2zr534NtiYzsXXvUFJWmWBjebBepmoKSz3juoisbprXD7gsRF33DRN1wcGw5w_AuWeiitdULXfytkUD50Dft_woun5XwxON8peJTp
CitedBy_id crossref_primary_10_1016_j_engstruct_2025_120574
crossref_primary_10_1016_j_engstruct_2025_120940
crossref_primary_10_3390_app142411899
crossref_primary_10_1016_j_measurement_2025_119073
crossref_primary_10_1016_j_engappai_2025_110349
crossref_primary_10_1016_j_engappai_2025_110976
Cites_doi 10.1109/ICASSP40776.2020.9054438
10.14359/51689560
10.1109/CVPR.2016.90
10.18653/v1/K16-1002
10.1111/0885-9507.00229
10.1111/mice.12908
10.1007/s12206-023-0509-3
10.1016/j.eswa.2021.115729
10.1109/TNNLS.2022.3190448
10.1109/JSTSP.2022.3207050
10.1145/3068335
10.1186/s10033-019-0375-1
10.1098/rsta.2022.0171
10.1111/mice.13062
10.1126/science.aaa8415
10.1038/nature14539
10.1016/j.ymssp.2013.11.014
10.1016/j.engappai.2015.01.018
10.1111/exsy.12494
10.3233/ICA-230714
10.1016/j.conbuildmat.2023.132782
10.1111/mice.12821
10.1109/TITS.2023.3334290
10.1002/tal.1400
10.1111/mice.12961
10.1109/TPAMI.2013.50
10.1016/j.apacoust.2021.108064
10.1142/S0129065723500193
10.1111/mice.12943
10.1126/science.1127647
10.1016/j.engstruct.2023.115676
10.24963/ijcai.2017/243
10.1162/neco.2006.18.7.1527
10.1142/S0129065723500661
10.1111/mice.12938
10.1007/978-3-319-70096-0_39
10.1109/TASLP.2021.3122291
10.1007/s00521-019-04359-7
10.21437/Interspeech.2019-2605
10.1186/s40463-017-0239-6
10.1111/mice.13160
10.1002/ima.10038
10.1109/JSTSP.2022.3188113
10.1016/j.patrec.2009.09.011
10.1109/TNNLS.2017.2682102
ContentType Journal Article
Copyright 2024  .
2025 Computer‐Aided Civil and Infrastructure Engineering.
Copyright_xml – notice: 2024  .
– notice: 2025 Computer‐Aided Civil and Infrastructure Engineering.
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.13336
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 522
ExternalDocumentID 10_1111_mice_13336
MICE13336
Genre article
GrantInformation_xml – fundername: Beijing Municipal Natural Science Foundation
  funderid: L211006
– fundername: Fundamental Research Funds for the Central Universities
  funderid: 2022JBXT010; 2023YJS052
GroupedDBID ..I
.3N
.DC
.GA
05W
0R~
10A
1OC
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAP
EBS
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
.4S
1OB
31~
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACUHS
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AHEFC
AI.
AIDQK
AIDYY
AIQQE
ARCSS
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EAD
EDO
EJD
EMK
FEDTE
HF~
HVGLF
I-F
LH4
LW6
MK~
O8X
PALCI
RJQFR
SAMSI
TUS
VH1
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3016-85a4e9632bf37d03e79f965a7e835ecec66bf54036994bbdddc1576e7dfed6a73
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=001307880100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Wed Aug 13 04:59:19 EDT 2025
Sat Nov 29 05:42:12 EST 2025
Tue Nov 18 22:33:10 EST 2025
Fri Jan 24 09:42:09 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3016-85a4e9632bf37d03e79f965a7e835ecec66bf54036994bbdddc1576e7dfed6a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 3158554082
PQPubID 2045171
PageCount 20
ParticipantIDs proquest_journals_3158554082
crossref_primary_10_1111_mice_13336
crossref_citationtrail_10_1111_mice_13336
wiley_primary_10_1111_mice_13336_MICE13336
PublicationCentury 2000
PublicationDate 2025-02-01
PublicationDateYYYYMMDD 2025-02-01
PublicationDate_xml – month: 02
  year: 2025
  text: 2025-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2025
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2010; 11
2017; 42
2010; 31
2023; 30
2023; 281
2017b; 26
2023; 33
2011
2015; 521
2023; 37
2023; 381
2023; 38
2019; 32
2021; 29
2017; 46
2019; 36
2003; 13
2006; 18
2014; 46
2023; 400
2021; 186
2020; 33
2015; 349
2020; 32
2006; 313
2017; 114
2024; 39
2015; 28
2023; 25
2021; 179
2022
2013; 35
2020
2015; 41
2011; 72
2019
2022; 35
2018
2017
2022; 37
2016
2015
2001; 16
2013
2022; 16
2017a; 28
e_1_2_8_28_1
Masci J. (e_1_2_8_33_1) 2011
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_20_1
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_45_1
Vincent P. (e_1_2_8_48_1) 2010; 11
e_1_2_8_41_1
e_1_2_8_60_1
e_1_2_8_17_1
e_1_2_8_19_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_59_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_57_1
e_1_2_8_32_1
e_1_2_8_55_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
e_1_2_8_51_1
Ng A. (e_1_2_8_35_1) 2011; 72
e_1_2_8_30_1
e_1_2_8_29_1
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
e_1_2_8_23_1
e_1_2_8_44_1
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_14_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_58_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_56_1
e_1_2_8_12_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 36
  issue: 6
  year: 2019
  article-title: A novel end‐to‐end deep learning scheme for classifying multi‐class motor imagery electroencephalography signals
  publication-title: Expert Systems
– start-page: 52
  year: 2011
  end-page: 59
– volume: 16
  start-page: 1505
  issue: 6
  year: 2022
  end-page: 1518
  article-title: WavLM: Large‐scale self‐supervised pre‐training for full stack speech processing
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  end-page: 3408
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of machine learning research
– volume: 13
  start-page: 133
  issue: 2
  year: 2003
  end-page: 140
  article-title: Wavelet energy spectrum for time‐frequency localization of earthquake energy
  publication-title: International Journal of Imaging Systems and Technology
– start-page: 373
  year: 2017
  end-page: 382
  article-title: Deep clustering with convolutional autoencoders
– volume: 37
  start-page: 2821
  issue: 6
  year: 2023
  end-page: 2830
  article-title: Low‐frequency noise inside metro: Contribution analysis and noise control treatment
  publication-title: Journal of Mechanical Science and Technology
– volume: 521
  start-page: 436
  issue: 7553
  year: 2015
  end-page: 444
  article-title: Deep learning
  publication-title: Nature
– volume: 37
  start-page: 1703
  issue: 13
  year: 2022
  end-page: 1720
  article-title: A scalable, self‐supervised calibration and confounder removal model for opportunistic monitoring of road degradation
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 38
  start-page: 1142
  issue: 9
  year: 2023
  end-page: 1161
  article-title: A self‐supervised monocular depth estimation model with scale recovery and transfer learning for construction scene analysis
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 3497
  year: 2020
  end-page: 3501
  article-title: Generative pre‐training for speech with autoregressive predictive coding
– volume: 29
  start-page: 3451
  year: 2021
  end-page: 3460
  article-title: HuBERT: Self‐supervised speech representation learning by masked prediction of hidden units
  publication-title: IEEE/ACM Transactions on Audio, Speech, and Language Processing
– volume: 31
  start-page: 651
  issue: 8
  year: 2010
  end-page: 666
  article-title: Data clustering: 50 years beyond K‐means
  publication-title: Pattern recognition Letters
– year: 2018
– start-page: 770
  year: 2016
  end-page: 778
  article-title: Deep residual learning for image recognition
– volume: 281
  year: 2023
  article-title: Vision‐based real‐time structural vibration measurement through deep‐learning‐based detection and tracking methods
  publication-title: Engineering Structures
– volume: 16
  start-page: 239
  issue: 4
  year: 2001
  end-page: 245
  article-title: Enhancing neural network traffic incident‐detection algorithms using wavelets
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  article-title: Supervised deep restricted Boltzmann machine for estimation of concrete
  publication-title: ACI Materials Journal
– volume: 42
  start-page: 1
  issue: 3
  year: 2017
  end-page: 21
  article-title: DBSCAN revisited, revisited: Why and how you should (still) use DBSCAN
  publication-title: ACM Transactions on Database Systems (TODS)
– volume: 32
  issue: 1
  year: 2019
  article-title: Sound source localisation for a high‐speed train and its transfer path to interior noise
  publication-title: Chinese Journal of Mechanical Engineering
– volume: 32
  start-page: 8675
  issue: 12
  year: 2020
  end-page: 8690
  article-title: A dynamic ensemble learning algorithm for neural networks
  publication-title: Neural Computing and Applications
– volume: 381
  issue: 2254
  year: 2023
  article-title: Machine learning‐based rail corrugation recognition: A metro vehicle response and noise perspective
  publication-title: Philosophical Transactions of the Royal Society A—Mathematical Physical and Engineering Sciences
– start-page: 1753
  year: 2017
  end-page: 1759
  article-title: Improved Deep embedded clustering with local structure preservation
– volume: 33
  issue: 4
  year: 2023
  article-title: Enhancing multimodal patterns in neuroimaging by siamese neural networks with self‐attention mechanism
  publication-title: International Journal of Neural Systems
– volume: 38
  start-page: 601
  issue: 5
  year: 2023
  end-page: 620
  article-title: Deciphering the noisy landscape: Architectural conceptual design space interpretation using disentangled representation learning
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 28
  year: 2015
  article-title: A recurrent latent variable model for sequential data
– volume: 400
  year: 2023
  article-title: Mechanism of rail corrugation combined with friction self‐excited vibration and wheel‐track resonance
  publication-title: Construction and Building Materials
– start-page: 478
  year: 2016
  end-page: 487
  article-title: Unsupervised deep embedding for clustering analysis
– volume: 46
  start-page: 62
  year: 2017
  article-title: Noise exposure while commuting in Toronto—A study of personal and public transportation in Toronto
  publication-title: Journal of Otolaryngology‐Head & Neck Surgery
– volume: 39
  start-page: 102
  issue: 1
  year: 2024
  end-page: 119
  article-title: A feature extraction and deep learning approach for network traffic volume prediction considering detector reliability
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– year: 2019
– year: 2015
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  end-page: 260
  article-title: Machine learning: Trends, perspectives, and prospects
  publication-title: Science
– volume: 46
  start-page: 481
  issue: 2
  year: 2014
  end-page: 493
  article-title: Application of sound intensity and partial coherence to identify interior noise sources on the high speed train
  publication-title: Mechanical Systems and Signal Processing
– volume: 41
  start-page: 249
  year: 2015
  end-page: 258
  article-title: Self‐constructing wavelet neural network algorithm for nonlinear control of large structures
  publication-title: Engineering Applications of Artificial Intelligence
– volume: 72
  start-page: 1
  issue: 2011
  year: 2011
  end-page: 19
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture notes
– volume: 313
  start-page: 504
  issue: 5786
  year: 2006
  end-page: 507
  article-title: Reducing the dimensionality of data with neural networks
  publication-title: Science
– volume: 39
  start-page: 1597
  year: 2024
  end-page: 1615
  article-title: Deep spatial‐temporal embedding for vehicle trajectory validation and refinement
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 35
  start-page: 1457
  issue: 2
  year: 2022
  end-page: 1471
  article-title: Self‐supervised learning for electroencephalography
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017a
  end-page: 3083
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 179
  year: 2021
  article-title: A framework to predict the airborne noise inside railway vehicles with application to rolling noise
  publication-title: Applied Acoustics
– year: 2016
– volume: 35
  start-page: 1798
  issue: 8
  year: 2013
  end-page: 1828
  article-title: Representation learning: A review and new perspectives
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– start-page: 3881
  year: 2017
  end-page: 3890
  article-title: Improved variational autoencoders for text modeling using dilated convolutions
– volume: 25
  start-page: 5045
  issue: 6
  year: 2023
  end-page: 5058
  article-title: A multitask learning method for rail corrugation detection using in‐vehicle responses and noise data
  publication-title: IEEE Transactions on Intelligent Transportation Systems
– volume: 186
  year: 2021
  article-title: Unsupervised embedded feature learning for deep clustering with stacked sparse auto‐encoder
  publication-title: Expert Systems with Applications
– volume: 30
  start-page: 395
  issue: 4
  year: 2023
  end-page: 412
  article-title: A measured data correlation‐based strain estimation technique for building structures using convolutional neural network
  publication-title: Integrated Computer‐Aided Engineering
– volume: 16
  start-page: 1179
  issue: 6
  year: 2022
  end-page: 1210
  article-title: Self‐supervised speech representation learning: A review
  publication-title: IEEE Journal of Selected Topics in Signal Processing
– volume: 38
  start-page: 1955
  issue: 14
  year: 2023
  end-page: 1972
  article-title: Signal timing at an isolated intersection under mixed traffic environment with self‐organizing connected and automated vehicles
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 26
  issue: 18
  year: 2017b
  article-title: A novel machine learning‐based algorithm to detect damage in high‐rise building structures
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 33
  start-page: 12449
  year: 2020
  end-page: 12460
  article-title: wav2vec 2.0: A framework for self‐supervised learning of speech representations
– volume: 33
  issue: 12
  year: 2023
  article-title: Self‐supervised EEG representation learning with contrastive predictive coding for post‐stroke patients
  publication-title: International Journal of Neural Systems
– year: 2017
– start-page: 1298
  year: 2022
  end-page: 1312
  article-title: data2vec: A general framework for self‐supervised learning in speech
– volume: 38
  start-page: 959
  issue: 8
  year: 2023
  end-page: 974
  article-title: Autoencoders for unsupervised real‐time bridge health assessment
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 18
  start-page: 1527
  issue: 7
  year: 2006
  end-page: 1554
  article-title: A fast learning algorithm for deep belief nets
  publication-title: Neural Computation
– year: 2013
– ident: e_1_2_8_14_1
  doi: 10.1109/ICASSP40776.2020.9054438
– start-page: 52
  volume-title: Lecture notes in computer science: Vol. 6791. Artificial neural networks and machine learning
  year: 2011
  ident: e_1_2_8_33_1
– ident: e_1_2_8_43_1
  doi: 10.14359/51689560
– ident: e_1_2_8_37_1
– ident: e_1_2_8_22_1
  doi: 10.1109/CVPR.2016.90
– ident: e_1_2_8_8_1
  doi: 10.18653/v1/K16-1002
– ident: e_1_2_8_44_1
  doi: 10.1111/0885-9507.00229
– ident: e_1_2_8_11_1
  doi: 10.1111/mice.12908
– ident: e_1_2_8_58_1
  doi: 10.1007/s12206-023-0509-3
– ident: e_1_2_8_9_1
  doi: 10.1016/j.eswa.2021.115729
– ident: e_1_2_8_28_1
– ident: e_1_2_8_42_1
  doi: 10.1109/TNNLS.2022.3190448
– ident: e_1_2_8_34_1
  doi: 10.1109/JSTSP.2022.3207050
– ident: e_1_2_8_45_1
  doi: 10.1145/3068335
– ident: e_1_2_8_13_1
– ident: e_1_2_8_56_1
  doi: 10.1186/s10033-019-0375-1
– ident: e_1_2_8_10_1
  doi: 10.1098/rsta.2022.0171
– ident: e_1_2_8_60_1
  doi: 10.1111/mice.13062
– ident: e_1_2_8_27_1
  doi: 10.1126/science.aaa8415
– ident: e_1_2_8_29_1
  doi: 10.1038/nature14539
– volume: 72
  start-page: 1
  issue: 2011
  year: 2011
  ident: e_1_2_8_35_1
  article-title: Sparse autoencoder
  publication-title: CS294A Lecture notes
– ident: e_1_2_8_17_1
  doi: 10.1016/j.ymssp.2013.11.014
– ident: e_1_2_8_49_1
  doi: 10.1016/j.engappai.2015.01.018
– ident: e_1_2_8_15_1
– ident: e_1_2_8_21_1
  doi: 10.1111/exsy.12494
– ident: e_1_2_8_36_1
  doi: 10.3233/ICA-230714
– ident: e_1_2_8_50_1
  doi: 10.1016/j.conbuildmat.2023.132782
– ident: e_1_2_8_47_1
  doi: 10.1111/mice.12821
– ident: e_1_2_8_53_1
– ident: e_1_2_8_30_1
  doi: 10.1109/TITS.2023.3334290
– ident: e_1_2_8_41_1
  doi: 10.1002/tal.1400
– ident: e_1_2_8_6_1
– ident: e_1_2_8_32_1
  doi: 10.1111/mice.12961
– ident: e_1_2_8_7_1
  doi: 10.1109/TPAMI.2013.50
– ident: e_1_2_8_51_1
– ident: e_1_2_8_31_1
  doi: 10.1016/j.apacoust.2021.108064
– ident: e_1_2_8_4_1
  doi: 10.1142/S0129065723500193
– ident: e_1_2_8_18_1
  doi: 10.1111/mice.12943
– ident: e_1_2_8_24_1
  doi: 10.1126/science.1127647
– ident: e_1_2_8_38_1
  doi: 10.1016/j.engstruct.2023.115676
– ident: e_1_2_8_19_1
  doi: 10.24963/ijcai.2017/243
– ident: e_1_2_8_55_1
– ident: e_1_2_8_2_1
– ident: e_1_2_8_5_1
– ident: e_1_2_8_16_1
– ident: e_1_2_8_23_1
  doi: 10.1162/neco.2006.18.7.1527
– volume: 11
  start-page: 3371
  issue: 12
  year: 2010
  ident: e_1_2_8_48_1
  article-title: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
  publication-title: Journal of machine learning research
– ident: e_1_2_8_52_1
  doi: 10.1142/S0129065723500661
– ident: e_1_2_8_46_1
  doi: 10.1111/mice.12938
– ident: e_1_2_8_20_1
  doi: 10.1007/978-3-319-70096-0_39
– ident: e_1_2_8_25_1
  doi: 10.1109/TASLP.2021.3122291
– ident: e_1_2_8_3_1
  doi: 10.1007/s00521-019-04359-7
– ident: e_1_2_8_39_1
  doi: 10.21437/Interspeech.2019-2605
– ident: e_1_2_8_54_1
  doi: 10.1186/s40463-017-0239-6
– ident: e_1_2_8_57_1
  doi: 10.1111/mice.13160
– ident: e_1_2_8_59_1
  doi: 10.1002/ima.10038
– ident: e_1_2_8_12_1
  doi: 10.1109/JSTSP.2022.3188113
– ident: e_1_2_8_26_1
  doi: 10.1016/j.patrec.2009.09.011
– ident: e_1_2_8_40_1
  doi: 10.1109/TNNLS.2017.2682102
SSID ssj0000443
Score 2.4400296
Snippet The noise within train is a paradox; while harmful to passenger health, it is useful to operators as it provides insights into the working status of vehicles...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 503
SubjectTerms Artificial neural networks
Clustering
Data augmentation
Embedding
Fault detection
Machine learning
Modules
Neural networks
Noise reduction
Representations
Wavelet transforms
Title Self‐supervised representation learning of metro interior noise based on variational autoencoder and deep embedding clustering
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.13336
https://www.proquest.com/docview/3158554082
Volume 40
WOSCitedRecordID wos001307880100001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fSxwxEB-s-lAfqtWK11oJtC8KW-42uWQX-lJajz6IlKrFtyV_JiKcu8func9-BD-jn8TJXtY7QQqlbyFMskuSmflNmPwG4LPKfKpsXyR2qMPVjR8kGqVIOPep5XRoXEul9OdEnZ5ml5f5rxX42r2FmfNDPF24Bc1o7XVQcG2aJSUP1dq_UITF5StYC6-qKPRa-_F7dHGysMQiJtjnPMllpiI9acjkWYx-7pAWKHMZq7bOZrT5f7-5BW8iyGTf5qfiLaxguQ2bEXCyqM4NdXU1Hbq-bdhYIijcgbszHPuHu_tmNgk2paHRLQtm92KpZLHqxBWrPLvBaV2xQEBRX1c1KysawIKbdIwkbykqjzePTM-mVWDQdPRpXTrmECcMbwy64EqZHc8CfwM138HF6Pj8-88k1mxILJkKmWRDLZCUOjWeK9fnqHKfy6FWSFAPLVopjSeUyGWeC2Occ3ZAIQ8q59FJrfgurJZViXvAjLDCIOcm4yhI0GA_9ZnWXCDPzcD24LDbuMJGQvNQV2NcdIFNWPuiXfsefHqSncxpPF6U2u_2v4iq3BR8MAypfASVenDU7vRfZihId47b1vt_Ef4Ar9NQV7jNBt-H1Wk9w4-wbm-n1019EI_1Ix23AFY
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB_0KlgfrNZKT2sN6IvClrtNLtl9FO3R4nmIttK3JX8mUrjuHrt3fe5H8DP6SczsZXsniCC-hTDJLsn8Z_IbgNcq86myA5HYkabUjR8mGqVIOPep5YFpXAul9G2iptPs4iL_HGtz6C3MCh_iNuFGktHqaxJwSkhvSDm1az8KIRaXd2FLSK6yHmx9-DI-n6xVsYgV9jlPcpmpiE9KpTzr1b9bpLWbuemsttZmvPOf__kIHkY3k71b8cVjuIPlLuxEl5NFgW7CVNfVoZvbhQcbEIVP4OYrzvzPmx_Nck5apQmrWxzM7s1SyWLfie-s8uwKF3XFCIKivqxqVlZhASND6VigvA5xecw9Mr1cVISh6cKndemYQ5wzvDLoyJgyO1sSgkMY7sH5-Pjs_UkSuzYkNigLmWQjLTCIdWo8V27AUeU-lyOtMDh7aNFKaXzwE7nMc2GMc84OQ9CDynl0Uiv-FHplVeI-MCOsMMi5yTiKQGhwkPpMay6Q52Zo-_Cmu7nCRkhz6qwxK7rQhs6-aM--D69uaecrII8_Uh10DFBEYW4KPhxRMV9wlvrwtr3qv-xQBOk5bkfP_oX4Jdw_Ofs0KSan04_PYTulLsNtbfgB9Bb1El_APXu9uGzqw8jjvwBjXwRG
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dahQxFD7UrUh7YbW2dLVqQG8UpuxOMsnkUmyXistS1ErvhvyclMJ2ZpnZ7XUfoc_YJzGZzXRXEEG8G8LJzJCcn--Ek-8AvBe5S4UZsMRkKhzduGGikLOEUpca6pXGtlRKP8diMskvLuRZrM0Jd2GW_BAPB27BMlp_HQwcZ9atWXlo137kUyzKH8Emy2TGerB5_G10Pl65YhYr7CVNJM9F5CcNpTyr2b9HpBXMXAerbbQZ7fznfz6DpxFmkk9LvXgOG1juwk6EnCQadOOHuq4O3dgubK9RFL6A2-84dfe3d81iFrxK42e3PJjdnaWSxL4Tl6Ry5BrndUUCBUV9VdWkrPwEEgKlJV7yxufl8eyRqMW8Chya1n9alZZYxBnBa402BFNipovA4OAf9-B8dPLj82kSuzYkxjsLnuSZYujNOtWOCjugKKSTPFMCPdhDg4Zz7TxOpFxKprW11gx90oPCOrRcCboPvbIq8QCIZoZppFTnFJkX1DhIXa4UZUilHpo-fOh2rjCR0jx01pgWXWoT1r5o174P7x5kZ0sijz9KHXYKUERjbgo6zEIxnwdLffjYbvVf3lB46zlpn17-i_BbeHJ2PCrGXyZfX8FWGpoMt6Xhh9Cb1wt8DY_Nzfyqqd9EFf8F6l4DwQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self%E2%80%90supervised+representation+learning+of+metro+interior+noise+based+on+variational+autoencoder+and+deep+embedding+clustering&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Wang%2C+Yang&rft.au=Xiao%2C+Hong&rft.au=Zhang%2C+Zhihai&rft.au=Guo%2C+Xiaoxuan&rft.date=2025-02-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=40&rft.issue=4&rft.spage=503&rft.epage=522&rft_id=info:doi/10.1111%2Fmice.13336&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon