A novel U‐shaped encoder–decoder network with attention mechanism for detection and evaluation of road cracks at pixel level

As the most common road distress, cracks have a substantial influence on the integrity of pavement structures. Accurate identification of crack existence and quantification of crack geometry are thus critical for the decision‐making of maintenance measures. This paper proposes a novel neural network...

Celý popis

Uložené v:
Podrobná bibliografia
Vydané v:Computer-aided civil and infrastructure engineering Ročník 37; číslo 13; s. 1721 - 1736
Hlavní autori: Chen, Jun, He, Ye
Médium: Journal Article
Jazyk:English
Vydavateľské údaje: Hoboken Wiley Subscription Services, Inc 01.11.2022
Predmet:
ISSN:1093-9687, 1467-8667
On-line prístup:Získať plný text
Tagy: Pridať tag
Žiadne tagy, Buďte prvý, kto otaguje tento záznam!
Abstract As the most common road distress, cracks have a substantial influence on the integrity of pavement structures. Accurate identification of crack existence and quantification of crack geometry are thus critical for the decision‐making of maintenance measures. This paper proposes a novel neural network for the detection and evaluation of road cracks at pixel level, which combines the advantage of encoding–decoding network and attention mechanism and can thus extract the crack pixels more accurately and efficiently. The proposed network achieves an excellent detection performance with IOU = 92.85%, precision = 96.90%, recall = 95.36%, F1 = 95.53%. Compared with the other advanced networks, the accuracy of the proposed method is substantially enhanced. The quantitative estimation of key geometrical features of cracks including length, width, and area is successfully realized with the development of a prototype of an intelligent mobile system. Compared with the ground truth, the maximum crack width shows the lowest relative error rate, which ranges −31.75%∼28.57%.
AbstractList As the most common road distress, cracks have a substantial influence on the integrity of pavement structures. Accurate identification of crack existence and quantification of crack geometry are thus critical for the decision‐making of maintenance measures. This paper proposes a novel neural network for the detection and evaluation of road cracks at pixel level, which combines the advantage of encoding–decoding network and attention mechanism and can thus extract the crack pixels more accurately and efficiently. The proposed network achieves an excellent detection performance with IOU = 92.85%, precision = 96.90%, recall = 95.36%, F1 = 95.53%. Compared with the other advanced networks, the accuracy of the proposed method is substantially enhanced. The quantitative estimation of key geometrical features of cracks including length, width, and area is successfully realized with the development of a prototype of an intelligent mobile system. Compared with the ground truth, the maximum crack width shows the lowest relative error rate, which ranges −31.75%∼28.57%.
As the most common road distress, cracks have a substantial influence on the integrity of pavement structures. Accurate identification of crack existence and quantification of crack geometry are thus critical for the decision‐making of maintenance measures. This paper proposes a novel neural network for the detection and evaluation of road cracks at pixel level, which combines the advantage of encoding–decoding network and attention mechanism and can thus extract the crack pixels more accurately and efficiently. The proposed network achieves an excellent detection performance with IOU = 92.85%, precision = 96.90%, recall = 95.36%, F1 = 95.53%. Compared with the other advanced networks, the accuracy of the proposed method is substantially enhanced. The quantitative estimation of key geometrical features of cracks including length, width, and area is successfully realized with the development of a prototype of an intelligent mobile system. Compared with the ground truth, the maximum crack width shows the lowest relative error rate, which ranges −31.75%∼28.57%.
Author Chen, Jun
He, Ye
Author_xml – sequence: 1
  givenname: Jun
  surname: Chen
  fullname: Chen, Jun
  email: junchen@buaa.edu.cn
  organization: Beihang University
– sequence: 2
  givenname: Ye
  surname: He
  fullname: He, Ye
  organization: Beihang University
BookMark eNp9kM9OAjEQxhuDiYBefIIm3kwW292l7R4J8Q8JxoueN6U7GypLi20BvfEIJr4hT2JZPBnjXGY6-X3zpV8PdYw1gNAlJQMa62apFQxoKlJ2gro0ZzwRjPFOnEmRJQUT_Az1vH8lsfI866LdCBu7gQa_7Heffi5XUGEwylbg9ruvCtoJGwhb6xZ4q8McyxDABG0NXoKaS6P9EtfW4QoCqHYvTTyykc1atk9bY2dlhZWTauGjHq_0e7RsIBqfo9NaNh4ufnofvdzdPo8fkunT_WQ8miYqI5Qlac6HOaW1YNlQ5UIKAYwrRQSvgNCiqikQDgpkXXCo6mzGOMzkEGZFwUkq86yPro53V86-rcGH8tWunYmWZcpTRjJacBEpcqSUs947qEulQ_uL4KRuSkrKQ87lIeeyzTlKrn9JVk4vpfv4G6ZHeKsb-PiHLB8n49uj5huS95Rc
CitedBy_id crossref_primary_10_1016_j_autcon_2023_105186
crossref_primary_10_1111_mice_13200
crossref_primary_10_1080_01616412_2025_2527899
crossref_primary_10_1080_10298436_2023_2246097
crossref_primary_10_1111_mice_13241
crossref_primary_10_1109_TITS_2024_3384018
crossref_primary_10_1111_mice_13128
crossref_primary_10_1007_s11760_025_04362_7
crossref_primary_10_1111_mice_13446
crossref_primary_10_1016_j_aei_2025_103610
crossref_primary_10_1111_mice_13489
crossref_primary_10_1111_mice_13444
crossref_primary_10_3390_s24010003
crossref_primary_10_1109_TASE_2025_3565647
crossref_primary_10_1111_mice_13003
crossref_primary_10_1111_mice_70041
crossref_primary_10_1007_s42452_024_06207_3
crossref_primary_10_1016_j_engappai_2025_110784
crossref_primary_10_1109_TITS_2024_3467257
crossref_primary_10_1016_j_ymssp_2024_111131
crossref_primary_10_1111_mice_12909
crossref_primary_10_1061_JCCEE5_CPENG_5868
crossref_primary_10_1108_ECAM_07_2023_0705
crossref_primary_10_1111_mice_13132
crossref_primary_10_1080_10298436_2024_2402838
crossref_primary_10_1016_j_autcon_2024_105797
crossref_primary_10_1155_2023_9940881
crossref_primary_10_3390_app14051892
crossref_primary_10_1016_j_dsp_2024_104598
crossref_primary_10_1111_mice_13014
crossref_primary_10_1111_mice_12918
crossref_primary_10_1038_s44172_025_00431_4
crossref_primary_10_1016_j_eswa_2023_121686
crossref_primary_10_1155_2023_9982080
crossref_primary_10_3233_ICA_240734
crossref_primary_10_1007_s11709_024_1048_4
crossref_primary_10_1016_j_eswa_2024_123314
crossref_primary_10_1111_mice_13063
crossref_primary_10_1016_j_jobe_2024_111440
crossref_primary_10_1111_mice_12932
crossref_primary_10_1111_mice_13467
crossref_primary_10_1016_j_autcon_2023_104950
crossref_primary_10_1016_j_autcon_2024_105322
crossref_primary_10_1111_mice_13103
crossref_primary_10_1061_JCCEE5_CPENG_6621
crossref_primary_10_3390_app13127227
crossref_primary_10_1155_2024_5532909
crossref_primary_10_1016_j_engstruct_2023_116988
crossref_primary_10_1016_j_aei_2024_102498
crossref_primary_10_1007_s42947_025_00573_w
crossref_primary_10_1111_mice_70021
crossref_primary_10_1016_j_measurement_2024_116595
crossref_primary_10_3390_s24175586
crossref_primary_10_1007_s11440_023_01889_2
crossref_primary_10_1038_s41598_025_91352_x
crossref_primary_10_1016_j_autcon_2024_105331
crossref_primary_10_1111_mice_13233
crossref_primary_10_1186_s40537_025_01065_1
crossref_primary_10_1111_mice_13110
crossref_primary_10_1111_mice_13231
crossref_primary_10_1016_j_neucom_2025_131485
crossref_primary_10_1111_mice_12987
crossref_primary_10_1111_mice_13437
crossref_primary_10_1111_mice_13117
crossref_primary_10_1177_14727978251321985
crossref_primary_10_1111_mice_12984
crossref_primary_10_1111_mice_13477
crossref_primary_10_1109_TITS_2025_3558279
crossref_primary_10_1016_j_aei_2024_102586
crossref_primary_10_1111_mice_70050
crossref_primary_10_1111_mice_13071
crossref_primary_10_3390_e26040328
Cites_doi 10.1109/ICIP.2016.7533052
10.1111/mice.12519
10.1109/RCAE51546.2020.9294343
10.1016/j.autcon.2018.11.028
10.1109/TSMC.1979.4310076
10.1111/mice.12141
10.1061/(ASCE)CO.1943-7862.0001570
10.1111/exsy.12647
10.1080/15732479.2011.593891
10.14359/51689560
10.1109/ISPA.2019.8868619
10.1111/mice.12622
10.1002/ecj.10151
10.1061/9780784413623.088
10.1016/j.autcon.2019.04.005
10.1111/mice.12550
10.1111/mice.12334
10.1111/mice.12564
10.3233/ICA-2010-0345
10.1007/978-3-319-24574-4_28
10.1109/CVPR.2019.00065
10.1111/mice.12433
10.1007/s00521-019-04146-4
10.1016/S0146-664X(77)80024-5
10.1109/TNNLS.2017.2682102
10.1002/tal.1400
10.3390/s20030717
10.1111/mice.12297
10.1111/mice.12532
10.1111/mice.12440
10.1061/(ASCE)CO.1943-7862.0001047
10.1111/j.1467-8667.2011.00716.x
10.1111/mice.12263
10.1109/TPAMI.1986.4767851
10.1111/mice.12387
10.1159/000512985
10.3390/app10228089
10.1016/j.autcon.2020.103176
10.1016/j.soildyn.2017.05.013
10.1111/mice.12412
10.1007/s00521-019-04359-7
10.1177/0361198120907283
10.1016/j.autcon.2020.103357
10.1145/357994.358023
ContentType Journal Article
Copyright 2022  .
2022 Computer‐Aided Civil and Infrastructure Engineering.
Copyright_xml – notice: 2022  .
– notice: 2022 Computer‐Aided Civil and Infrastructure Engineering.
DBID AAYXX
CITATION
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
DOI 10.1111/mice.12826
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef
Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Computer Science
EISSN 1467-8667
EndPage 1736
ExternalDocumentID 10_1111_mice_12826
MICE12826
Genre article
GroupedDBID ..I
.3N
.4S
.DC
.GA
05W
0R~
10A
1OB
1OC
29F
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6P2
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANLZ
AAONW
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABFSI
ABJNI
ACAHQ
ACCFJ
ACCZN
ACGFS
ACPOU
ACUHS
ACXBN
ACXQS
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AHBTC
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ATUGU
AUFTA
AZBYB
AZVAB
BAFTC
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBS
EDO
EMK
EST
ESX
F00
F01
F04
G-S
G.N
GODZA
H.T
H.X
HGLYW
HZI
HZ~
I-F
IHE
IX1
J0M
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
NF~
O66
O9-
OIG
P2P
P2W
P2X
P4D
Q.N
Q11
QB0
R.K
RX1
SUPJJ
TN5
TUS
UB1
W8V
W99
WBKPD
WIH
WIK
WLBEL
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
ZZTAW
~IA
~WT
31~
AAMMB
AANHP
AASGY
AAYXX
ABEML
ACBWZ
ACRPL
ACSCC
ACYXJ
ADMLS
ADNMO
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AHEFC
AI.
AIDQK
AIDYY
AIQQE
ASPBG
AVWKF
AZFZN
BDRZF
CAG
CITATION
COF
CWDTD
E.L
EJD
FEDTE
HF~
HVGLF
LW6
O8X
PALCI
RJQFR
SAMSI
VH1
7SC
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
ID FETCH-LOGICAL-c3016-2475411f8635c48a88e67cc087de019df1e07eceaf97edf3b67eba5eb99702a43
IEDL.DBID DRFUL
ISICitedReferencesCount 79
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000757245200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1093-9687
IngestDate Sun Nov 09 07:15:27 EST 2025
Tue Nov 18 22:42:18 EST 2025
Sat Nov 29 05:42:09 EST 2025
Wed Jan 22 16:23:30 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 13
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3016-2475411f8635c48a88e67cc087de019df1e07eceaf97edf3b67eba5eb99702a43
Notes Funding information
National Key Research and Development Program of China, Grant/Award Number: 2018YFB1600200; National Natural Science Foundation of China, Grant/Award Number: 51978027.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2726031978
PQPubID 2045171
PageCount 16
ParticipantIDs proquest_journals_2726031978
crossref_citationtrail_10_1111_mice_12826
crossref_primary_10_1111_mice_12826
wiley_primary_10_1111_mice_12826_MICE12826
PublicationCentury 2000
PublicationDate 1 November 2022
2022-11-00
20221101
PublicationDateYYYYMMDD 2022-11-01
PublicationDate_xml – month: 11
  year: 2022
  text: 1 November 2022
  day: 01
PublicationDecade 2020
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
PublicationTitle Computer-aided civil and infrastructure engineering
PublicationYear 2022
Publisher Wiley Subscription Services, Inc
Publisher_xml – name: Wiley Subscription Services, Inc
References 2015; 37
2018; 144
2020; 20
2017b; 100
2019; 99
1984; 27
2010; 17
2020; 83
2019; 34
2015; 30
2019; 104
1998
2020; 37
2020; 35
2020; 32
2020; 10
2017c; 26
2017; 114
2016; 142
2013; 9
2021; 36
2009; 92
2018; 1801.05746
2020
2018; 11(4)
2017; 32
2019
2020; 27
2017
2016
2015
2012; 27
2014
2020; 114
1986; PAMI‐8
2018; 33
2020; 2674
2020; 119
2017a; 28
1979; 9
1977; 6
e_1_2_8_28_1
Oktay O. (e_1_2_8_32_1) 2018; 11
e_1_2_8_24_1
e_1_2_8_47_1
e_1_2_8_26_1
e_1_2_8_49_1
Simonyan K. (e_1_2_8_44_1) 2014
e_1_2_8_3_1
e_1_2_8_5_1
e_1_2_8_7_1
e_1_2_8_9_1
Kelvin X. (e_1_2_8_20_1) 2015; 37
e_1_2_8_43_1
e_1_2_8_22_1
e_1_2_8_41_1
e_1_2_8_17_1
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_53_1
Tillotson H. (e_1_2_8_45_1) 1998
e_1_2_8_51_1
e_1_2_8_30_1
e_1_2_8_29_1
Ju H. (e_1_2_8_19_1) 2020; 27
e_1_2_8_25_1
e_1_2_8_46_1
e_1_2_8_27_1
e_1_2_8_48_1
e_1_2_8_2_1
e_1_2_8_4_1
e_1_2_8_6_1
e_1_2_8_8_1
e_1_2_8_21_1
e_1_2_8_42_1
Iglovikov V. (e_1_2_8_14_1) 2018; 1801
e_1_2_8_23_1
Goodfellow B. Y. I. (e_1_2_8_12_1) 2016
e_1_2_8_40_1
e_1_2_8_18_1
e_1_2_8_39_1
e_1_2_8_35_1
e_1_2_8_16_1
e_1_2_8_37_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_33_1
e_1_2_8_54_1
e_1_2_8_52_1
e_1_2_8_50_1
References_xml – volume: 37
  start-page: 2048
  year: 2015
  end-page: 2057
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Computer Science
– volume: 33
  start-page: 731
  issue: 9
  year: 2018
  end-page: 747
  article-title: Autonomous structural visual inspection using region‐based deep learning for detecting multiple damage types
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 36
  start-page: 61
  issue: 1
  year: 2021
  end-page: 72
  article-title: Automatic detection method of cracks from concrete surface imagery using two‐step Light Gradient Boosting Machine
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 1801.05746
  year: 2018
  article-title: TernausNet: U‐Net with VGG11 encoder pre‐trained on ImageNet for image segmentation
  publication-title: ArXiv
– volume: 142
  issue: 2
  year: 2016
  article-title: A novel machine learning model for estimation of sale prices of real estate units
  publication-title: Construction Engineering and Management
– volume: 36
  start-page: 14
  issue: 1
  year: 2021
  end-page: 29
  article-title: Automated crack evaluation of a bridge pier using a climbing robot
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 100
  start-page: 417
  year: 2017b
  end-page: 427
  article-title: NEEWS: A novel earthquake early warning system using neural dynamic classification and neural dynamic optimization model
  publication-title: Soil Dynamics and Earthquake Engineering
– volume: 17
  start-page: 197
  issue: 3
  year: 2010
  end-page: 210
  article-title: Enhanced probabilistic neural network with local decision circles: A robust classifier
  publication-title: Integrated Computer‐Aided Engineering
– start-page: 558
  year: 2019
  end-page: 567
  article-title: Bag of tricks for image classification with convolutional neural networks
– volume: 6
  start-page: 492
  issue: 5
  year: 1977
  end-page: 501
  article-title: Edge detection by compass gradient masks
  publication-title: Computer Graphics and Image Processing
– volume: 11(4)
  start-page: 1
  year: 2018
  end-page: 10
  article-title: Attention U‐Net: Learning where to look for the pancreas
  publication-title: ArXiv, 1804.03999
– start-page: 5998
  year: 2017
  end-page: 6008
  article-title: Attention is all you need
– start-page: 11
  year: 1998
  end-page: 23
  article-title: Detecting cracks by image analysis on
  publication-title: Computing in Civil Engineering
– volume: 104
  start-page: 129
  year: 2019
  end-page: 139
  article-title: Computer vision‐based concrete crack detection using U‐Net fully convolutional networks
  publication-title: Automation in Construction
– volume: 9
  start-page: 567
  issue: 6
  year: 2013
  end-page: 577
  article-title: Automated image processing technique for detecting and analysing concrete surface cracks
  publication-title: Structure and Infrastructure Engineering
– year: 2014
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: Computer Science
– start-page: 103
  year: 2020
  end-page: 107
  article-title: Crack detecting by recursive attention U‐Net
– start-page: 234
  year: 2015
  end-page: 241
  article-title: U‐Net: Convolutional networks for biomedical image segmentation
– year: 2015
– volume: 114
  start-page: 237
  issue: 2
  year: 2017
  end-page: 244
  article-title: Supervised deep restricted boltzmann machine for estimation of concrete compressive strength
  publication-title: ACI Materials Journal
– volume: 32
  start-page: 805
  issue: 10
  year: 2017
  end-page: 819
  article-title: Automated pixel‐level pavement crack detection on 3D asphalt surfaces using a deep‐learning network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 10
  start-page: 8089
  issue: 8089
  year: 2020
  article-title: Improved photoacoustic imaging of numerical bone model based on attention block U‐Net deep learning network
  publication-title: Applied Sciences
– volume: 32
  start-page: 6393
  issue: 10
  year: 2020
  end-page: 6404
  article-title: FEMa: A finite element machine for fast learning
  publication-title: Neural Computing and Applications
– volume: 114
  year: 2020
  article-title: An integrated approach to automatic pixel‐level crack detection and quantification of asphalt pavement
  publication-title: Automation in Construction
– volume: 92
  start-page: 1
  issue: 10
  year: 2009
  end-page: 12
  article-title: Practical image measurement of crack width for real concrete structure
  publication-title: Electronics and Communications in Japan
– volume: 30
  start-page: 759
  issue: 10
  year: 2015
  end-page: 770
  article-title: Vision‐based automated crack detection for bridge inspection
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: PAMI‐8
  start-page: 679
  issue: 6
  year: 1986
  end-page: 698
  article-title: A computational approach to edge detection
  publication-title: IEEE Transactions on Pattern Analysis and Machine Intelligence
– volume: 9
  start-page: 62
  issue: 1
  year: 1979
  end-page: 66
  article-title: A threshold selection method from gray level histograms
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– year: 2019
  article-title: Automatic crack detection using mask R‐CNN
– volume: 27
  start-page: 236
  year: 1984
  end-page: 239
  article-title: A fast parallel algorithm for thinning digital patterns
  publication-title: Communications of the ACM
– volume: 37
  issue: 6
  year: 2020
  article-title: Deep learning techniques for recommender systems based on collaborative filtering
  publication-title: Expert Systems
– volume: 28
  start-page: 3074
  issue: 12
  year: 2017a
  end-page: 3083
  article-title: A new neural dynamic classification algorithm
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 83
  start-page: 602
  issue: 6
  year: 2020
  end-page: 614
  article-title: Detection of epileptic seizure using pre‐trained deep convolutional neural network and transfer learning
  publication-title: European Neurology
– volume: 144
  start-page: 2018
  issue: 12
  year: 2018
  article-title: A novel machine learning model for construction cost estimation taking into account economic variables and indices
  publication-title: Journal of Construction Engineering and Management
– volume: 2674
  start-page: 328
  issue: 2
  year: 2020
  end-page: 339
  article-title: Pavement image datasets: A new benchmark dataset to classify and densify pavement distresses
  publication-title: Transportation Research Record
– volume: 33
  start-page: 1127
  issue: 2
  year: 2018
  end-page: 1141
  article-title: Road damage detection and classification using deep neural networks with smartphone images: Road damage detection and classification
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  start-page: 713
  issue: 8
  year: 2019
  end-page: 727
  article-title: Encoder‐decoder network for pixel‐level road crack detection in black‐box images
  publication-title: Computer Aided Civil Infrastructure Engineering
– volume: 20
  start-page: 717
  issue: 3
  year: 2020
  article-title: Automatic tunnel crack detection based on U‐Net and a convolutional neural network with alternately updated clique
  publication-title: Sensors
– year: 2016
– volume: 33
  start-page: 1090
  issue: 12
  year: 2018
  end-page: 1109
  article-title: Automatic pixel‐level crack detection and measurement using fully convolutional network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 35
  start-page: 549
  issue: 6
  year: 2020
  end-page: 564
  article-title: Real‐time crack assessment using deep neural networks with wall‐climbing unmanned aerial system
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 26
  issue: 18
  year: 2017c
  article-title: A novel machine learning based algorithm to detect damage in highrise building structures
  publication-title: The Structural Design of Tall and Special Buildings
– volume: 119
  year: 2020
  article-title: Aspatial‐channel hierarchical deep learning network for pixel‐level automated crack detection
  publication-title: Automation in Construction
– volume: 32
  start-page: 361
  issue: 5
  year: 2017
  end-page: 378
  article-title: Deep learning‐based crack damage detection using convolutional neural networks
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 35
  start-page: 775
  issue: 8
  year: 2020
  end-page: 792
  article-title: Applicability of machine learning to a crack model in concrete bridges
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 34
  start-page: 616
  issue: 7
  year: 2019
  end-page: 634
  article-title: Automatic pixel‐level multiple damage detection of concrete structure using fully convolutional network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 27
  issue: 5
  year: 2020
  article-title: CrackU‐Net: A novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Structural Control and Health Monitoring
– volume: 99
  start-page: 52
  year: 2019
  end-page: 58
  article-title: Autonomous concrete crack detection using deep fully convolutional neural network
  publication-title: Automation in Construction
– volume: 27
  start-page: 29
  issue: 1
  year: 2012
  end-page: 47
  article-title: Concrete crack detection by multiple sequential image filtering
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– volume: 35
  start-page: 1291
  issue: 11
  year: 2020
  end-page: 1305
  article-title: Automated pavement crack detection and segmentation based on two‐step convolutional neural network
  publication-title: Computer‐Aided Civil and Infrastructure Engineering
– start-page: 919
  year: 2014
  end-page: 924
– volume: 32
  start-page: 8675
  issue: 10
  year: 2020
  end-page: 8690
  article-title: A dynamic ensemble learning algorithm for neural networks
  publication-title: Neural Computing with Applications
– start-page: 3708
  year: 2016
  end-page: 3712
  article-title: Road crack detection using deep convolutional neural network
– volume: 1801
  year: 2018
  ident: e_1_2_8_14_1
  article-title: TernausNet: U‐Net with VGG11 encoder pre‐trained on ImageNet for image segmentation
  publication-title: ArXiv
– ident: e_1_2_8_53_1
  doi: 10.1109/ICIP.2016.7533052
– ident: e_1_2_8_18_1
  doi: 10.1111/mice.12519
– ident: e_1_2_8_47_1
  doi: 10.1109/RCAE51546.2020.9294343
– ident: e_1_2_8_11_1
  doi: 10.1016/j.autcon.2018.11.028
– ident: e_1_2_8_33_1
  doi: 10.1109/TSMC.1979.4310076
– ident: e_1_2_8_51_1
  doi: 10.1111/mice.12141
– ident: e_1_2_8_40_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001570
– ident: e_1_2_8_28_1
  doi: 10.1111/exsy.12647
– ident: e_1_2_8_21_1
  doi: 10.1080/15732479.2011.593891
– ident: e_1_2_8_41_1
  doi: 10.14359/51689560
– ident: e_1_2_8_4_1
  doi: 10.1109/ISPA.2019.8868619
– ident: e_1_2_8_24_1
  doi: 10.1111/mice.12622
– ident: e_1_2_8_48_1
  doi: 10.1002/ecj.10151
– volume: 27
  start-page: e2551
  issue: 5
  year: 2020
  ident: e_1_2_8_19_1
  article-title: CrackU‐Net: A novel deep convolutional neural network for pixelwise pavement crack detection
  publication-title: Structural Control and Health Monitoring
– ident: e_1_2_8_50_1
  doi: 10.1061/9780784413623.088
– ident: e_1_2_8_25_1
  doi: 10.1016/j.autcon.2019.04.005
– ident: e_1_2_8_16_1
  doi: 10.1111/mice.12550
– ident: e_1_2_8_15_1
– ident: e_1_2_8_8_1
  doi: 10.1111/mice.12334
– ident: e_1_2_8_10_1
  doi: 10.1111/mice.12564
– ident: e_1_2_8_2_1
  doi: 10.3233/ICA-2010-0345
– ident: e_1_2_8_43_1
  doi: 10.1007/978-3-319-24574-4_28
– year: 2014
  ident: e_1_2_8_44_1
  article-title: Very deep convolutional networks for large‐scale image recognition
  publication-title: Computer Science
– ident: e_1_2_8_13_1
  doi: 10.1109/CVPR.2019.00065
– ident: e_1_2_8_23_1
  doi: 10.1111/mice.12433
– ident: e_1_2_8_35_1
  doi: 10.1007/s00521-019-04146-4
– volume: 11
  start-page: 1
  year: 2018
  ident: e_1_2_8_32_1
  article-title: Attention U‐Net: Learning where to look for the pancreas
  publication-title: ArXiv, 1804.03999
– ident: e_1_2_8_42_1
  doi: 10.1016/S0146-664X(77)80024-5
– ident: e_1_2_8_37_1
  doi: 10.1109/TNNLS.2017.2682102
– ident: e_1_2_8_39_1
  doi: 10.1002/tal.1400
– ident: e_1_2_8_22_1
  doi: 10.3390/s20030717
– ident: e_1_2_8_52_1
  doi: 10.1111/mice.12297
– ident: e_1_2_8_31_1
  doi: 10.1111/mice.12532
– ident: e_1_2_8_5_1
  doi: 10.1111/mice.12440
– start-page: 11
  year: 1998
  ident: e_1_2_8_45_1
  article-title: Detecting cracks by image analysis on a Parallel Computer
  publication-title: Computing in Civil Engineering
– ident: e_1_2_8_36_1
  doi: 10.1061/(ASCE)CO.1943-7862.0001047
– ident: e_1_2_8_29_1
  doi: 10.1111/j.1467-8667.2011.00716.x
– ident: e_1_2_8_7_1
  doi: 10.1111/mice.12263
– volume: 37
  start-page: 2048
  year: 2015
  ident: e_1_2_8_20_1
  article-title: Show, attend and tell: Neural image caption generation with visual attention
  publication-title: Computer Science
– ident: e_1_2_8_6_1
  doi: 10.1109/TPAMI.1986.4767851
– ident: e_1_2_8_26_1
  doi: 10.1111/mice.12387
– ident: e_1_2_8_30_1
  doi: 10.1159/000512985
– ident: e_1_2_8_9_1
  doi: 10.3390/app10228089
– ident: e_1_2_8_17_1
  doi: 10.1016/j.autcon.2020.103176
– ident: e_1_2_8_38_1
  doi: 10.1016/j.soildyn.2017.05.013
– ident: e_1_2_8_46_1
– ident: e_1_2_8_49_1
  doi: 10.1111/mice.12412
– volume-title: Deep learning
  year: 2016
  ident: e_1_2_8_12_1
– ident: e_1_2_8_3_1
  doi: 10.1007/s00521-019-04359-7
– ident: e_1_2_8_27_1
  doi: 10.1177/0361198120907283
– ident: e_1_2_8_34_1
  doi: 10.1016/j.autcon.2020.103357
– ident: e_1_2_8_54_1
  doi: 10.1145/357994.358023
SSID ssj0000443
Score 2.5733259
Snippet As the most common road distress, cracks have a substantial influence on the integrity of pavement structures. Accurate identification of crack existence and...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1721
SubjectTerms Coders
Crack geometry
Cracks
Decoding
Flaw detection
Neural networks
Pavement condition
Pixels
Title A novel U‐shaped encoder–decoder network with attention mechanism for detection and evaluation of road cracks at pixel level
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fmice.12826
https://www.proquest.com/docview/2726031978
Volume 37
WOSCitedRecordID wos000757245200001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1467-8667
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000443
  issn: 1093-9687
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NahsxEB5Sp4f2kL821G0SBO2lhS1reS1pIZfQxuQQQigx5LZopRE1OGuz64Ye_QiFvmGepCNZa7tQCiG3XSFpF2l-PomZbwA-lHpAfkn5-i7cJNmA66Q0ziTkm0VuyOOW1oZiE_LqSt3e5tdbcNrmwiz5IVYXbl4zgr32Cq7LZkPJfbX2z2RduXgG25wEN-vA9tdvw9Hl2hJnMcA-7ye5UDLSk_pInvXovx3SGmVuYtXgbIa7T_vNPdiJIJOdLaViH7awOoDdCDhZVOeGmtqaDm3bAbzcICh8BYszVk3vccJGD4tfzXc9o-Ge-dJi_bD4bTE8sWoZSs78nS7zfJ0hgpLdoc8qHjd3jIAxszgPUV8V0xVNsiIZZ1PH6qm2zNQ-3Z_Gs9n4J31y4sOZXsNoeH7z5SKJNRsSQ6ZCJDyTg6zXc4qAjMmUVgqFNCZV0iKhSet6mEo0qF0u0bp-KSSSvGCZ5zLlOusfQqeaVvgGmCh1z7mUo3AEe0quHKaC3jzBD2I66MLHduMKEwnNfV2NSdEebPzaF2Htu_B-1Xe2pPH4Z6-jdv-LqMpNwSX3lbjptN2FT2Gn_zNDQbpzHp7ePqbzO3jBfVpFyHE8gs68_oHH8Nzcz8dNfRLF-g-Iyf83
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fa9swED-2dLDtod26jWbtNsH2soGLo9iW_Fi2ho5lYYwG-mZk6cQCqRPstOwxH2Gwb9hPspMiJymUwdibLSTZSPfnJ3H3O4B3pUrJL0lX34XrKEm5ikptdUS-Ocs1edzSGF9sQoxG8uIi_xZic1wuzIofYn3h5jTD22un4O5CekvLXbn2YzKvPLsPOwnJUdqBnU_fB-PhxhQnIcI-70d5JkXgJ3WhPJvRtz3SBmZug1XvbQZ7__mfT2A3wEx2spKLp3APq33YC5CTBYVuqKmt6tC27cPjLYrCZ7A8YdXsGqdsfLP81fxQcxruuC8N1jfL3wb9E6tWweTM3eoyx9jpYyjZJbq84klzyQgaM4MLH_dVMVXRJGuacTazrJ4pw3TtEv5pPJtPftInpy6g6TmMB6fnH8-iULUh0mQssognIk16PSsJyuhEKikxE1rHUhgkPGlsD2OBGpXNBRrbLzOBJDFY5rmIuUr6L6BTzSo8AJaVqmdtzDGzBHxKLi3GGb05ih_EOO3C-3bnCh0ozV1ljWnRHm3c2hd-7bvwdt13viLyuLPXUSsARVDmpuCCu1rcdN7uwge_1X-ZoSDtOfVPL_-l8xt4eHb-dVgMP4--HMIj7pIsfMbjEXQW9RW-ggf6ejFp6tdBxv8AwpEDNg
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1faxQxEB-0FdGHVmuLp1UD-qKwspfbTbKPpe2hWI4iHvRtySYTPLjuHbtn8fE-guA37CdxksvenSCC-LYbkuySzJ9fwsxvAN5UOie_pHx9F26SLOc6qYwzCflmURjyuJW1odiEHI3U1VVxGWNzfC7Mih9ifeHmNSPYa6_gOLduS8t9ufb3ZF65uAu7WV4I0svds8_D8cXGFGcxwr4YJIVQMvKT-lCezejfPdIGZm6D1eBthvv_-Z-PYC_CTHaykovHcAfrA9iPkJNFhW6pqavq0LUdwMMtisInsDxh9ewGp2x8u_zRftVzGu65Ly02t8ufFsMTq1fB5Mzf6jLP2BliKNk1-rziSXvNCBozi4sQ91UzXdMka5pxNnOsmWnLTOMT_mk8m0--0yenPqDpEMbD8y-nH5JYtSExZCxEwjOZZ_2-UwRlTKa0UiikMamSFglPWtfHVKJB7QqJ1g0qIZEkBquikCnX2eAIdupZjU-BiUr3nUs5CkfAp-LKYSrozVP8IKZ5D952O1eaSGnuK2tMy-5o49e-DGvfg9frvvMVkccfex13AlBGZW5LLrmvxU3n7R68C1v9lxlK0p7z8PTsXzq_gvuXZ8Py4uPo03N4wH2ORUh4PIadRfMNX8A9c7OYtM3LKOK_AEqsArE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+U%E2%80%90shaped+encoder%E2%80%93decoder+network+with+attention+mechanism+for+detection+and+evaluation+of+road+cracks+at+pixel+level&rft.jtitle=Computer-aided+civil+and+infrastructure+engineering&rft.au=Chen%2C+Jun&rft.au=He%2C+Ye&rft.date=2022-11-01&rft.pub=Wiley+Subscription+Services%2C+Inc&rft.issn=1093-9687&rft.eissn=1467-8667&rft.volume=37&rft.issue=13&rft.spage=1721&rft.epage=1736&rft_id=info:doi/10.1111%2Fmice.12826&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1093-9687&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1093-9687&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1093-9687&client=summon