Optimal portfolio trading subject to stochastic dominance constraints under second‐order autoregressive price dynamics
This paper studies the optimal portfolio trading problem under the generalized second‐order autoregressive execution price model. The problem of minimizing expected execution cost under the proposed price model is formulated as a quadratic programming (QP) problem. For a risk‐averse trader, problem...
Uloženo v:
| Vydáno v: | International transactions in operational research Ročník 27; číslo 3; s. 1771 - 1803 |
|---|---|
| Hlavní autoři: | , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Oxford
Blackwell Publishing Ltd
01.05.2020
|
| Témata: | |
| ISSN: | 0969-6016, 1475-3995 |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Shrnutí: | This paper studies the optimal portfolio trading problem under the generalized second‐order autoregressive execution price model. The problem of minimizing expected execution cost under the proposed price model is formulated as a quadratic programming (QP) problem. For a risk‐averse trader, problem formulation under the second‐order stochastic dominance constraints results in a quadratically constrained QP problem. Under some conditions on the execution price model, it is proved that the portfolio trading problems for risk‐neutral and risk‐averse traders become convex programming problems, which have many theoretical and computational advantages over the general class of optimization problems. Extensive numerical illustrations are provided, which render the practical significance of the proposed execution price model and the portfolio trading problems. |
|---|---|
| Bibliografie: | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ISSN: | 0969-6016 1475-3995 |
| DOI: | 10.1111/itor.12435 |