Accurate microwave filter design based on particle swarm optimization and one‐dimensional convolution autoencoders

This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm optimization (PSO) algorithm for microwave filter design. The 1D‐CAE is a flexible neural network structure that can be used as surrogate mo...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:International journal of RF and microwave computer-aided engineering Ročník 32; číslo 4
Hlavní autoři: Wang, Yanxing, Zhang, Zhuowei, Yi, Yaxin, Zhang, Yongliang
Médium: Journal Article
Jazyk:angličtina
Vydáno: Hoboken, USA John Wiley & Sons, Inc 01.04.2022
Témata:
ISSN:1096-4290, 1099-047X
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm optimization (PSO) algorithm for microwave filter design. The 1D‐CAE is a flexible neural network structure that can be used as surrogate model to handle forward modeling problems as well as solving inverse problems, such as extracting the coupling matrix from S‐parameters. In this paper, the 1D‐CAE is proposed to handle forward modeling problem. On the one hand, the 1D‐CAE model is adopted to as the surrogate model to the EM simulation solver to speed up the PSO algorithm optimization process. On the other hand, the 1D‐CAE model can update the data set and network parameters online to continuously improve the prediction accuracy of the surrogate model during the PSO algorithm iterations. Compared with other neural network structures, the 1D‐CAE model proposed in this paper requires less data and converges faster in the same test environment. To demonstrate the validity of the proposed method, it was used to design a sixth‐order and an eighth‐order cross‐coupled filter. The design results shown that the proposed method is valid.
AbstractList This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm optimization (PSO) algorithm for microwave filter design. The 1D‐CAE is a flexible neural network structure that can be used as surrogate model to handle forward modeling problems as well as solving inverse problems, such as extracting the coupling matrix from S‐parameters. In this paper, the 1D‐CAE is proposed to handle forward modeling problem. On the one hand, the 1D‐CAE model is adopted to as the surrogate model to the EM simulation solver to speed up the PSO algorithm optimization process. On the other hand, the 1D‐CAE model can update the data set and network parameters online to continuously improve the prediction accuracy of the surrogate model during the PSO algorithm iterations. Compared with other neural network structures, the 1D‐CAE model proposed in this paper requires less data and converges faster in the same test environment. To demonstrate the validity of the proposed method, it was used to design a sixth‐order and an eighth‐order cross‐coupled filter. The design results shown that the proposed method is valid.
Author Zhang, Zhuowei
Yi, Yaxin
Zhang, Yongliang
Wang, Yanxing
Author_xml – sequence: 1
  givenname: Yanxing
  surname: Wang
  fullname: Wang, Yanxing
  organization: Inner Mongolia University
– sequence: 2
  givenname: Zhuowei
  surname: Zhang
  fullname: Zhang, Zhuowei
  organization: Nanjing Normal University
– sequence: 3
  givenname: Yaxin
  surname: Yi
  fullname: Yi, Yaxin
  organization: Inner Mongolia University
– sequence: 4
  givenname: Yongliang
  surname: Zhang
  fullname: Zhang, Yongliang
  email: namar@imu.edu.cn
  organization: Inner Mongolia University
BookMark eNp9kM9KxDAQxoMouP65-AQBb0I1adNke5Rl_QOKFwVvIU0mkqVt1iTdRU8-gs_ok9jdehLxNMN8v2-Y-Q7Qbuc7QOiEknNKSH7RthrO84IUbAdNKKmqjDDxvLvtecbyiuyjgxgXhAxaXkxQutS6DyoBbp0Ofq1WgK1rEgRsILqXDtcqgsG-w0sVktMN4LhWocV-mVzr3lVyg6a6DQJfH5_GtdDFYaYarH238k0_En3y0GlvIMQjtGdVE-H4px6ip6v54-wmu3u4vp1d3mW6IJRl1hpR8ppzyxnNNeOagjCGT7WoiqnV1lAOugZGYWq5ULQWqmBloQxXdVna4hCdjnuXwb_2EJNc-D4Ml0WZc0YqIQQhA3U2UsP_MQawchlcq8KbpERuUpWbVOU21QEmv2Dt0jaDFJRr_rbQ0bJ2Dbz9s1ze38_mo-cbX8KQ6w
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3441096
crossref_primary_10_1002_mmce_23507
crossref_primary_10_1109_TMTT_2022_3208898
crossref_primary_10_1109_MMM_2024_3486598
crossref_primary_10_1109_TEMC_2024_3502412
Cites_doi 10.1109/TMTT.2005.860327
10.1109/NEMO49486.2020.9343496
10.1137/S1052623496303470
10.1109/TMTT.2003.820897
10.1109/TMTT.2013.2296744
10.1109/TIE.2020.3009566
10.1002/mop.11187
10.1109/TMTT.2019.2952101
10.1109/6668.918262
10.1109/ICNN.1995.488968
10.1109/TAP.2018.2889029
10.1109/LMWC.2021.3062874
10.1109/TMAG.2005.846467
10.1109/ACCESS.2021.3063523
10.1109/TIE.2020.2987278
10.1017/S0962492900002518
10.1109/TMTT.2019.2932738
10.1109/MMM.2008.929554
10.1109/TEVC.2007.896686
10.1109/TMTT.2017.2661739
10.1109/APS.2000.873731
10.1002/adts.201800132
ContentType Journal Article
Copyright 2021 Wiley Periodicals LLC
2022 Wiley Periodicals LLC.
Copyright_xml – notice: 2021 Wiley Periodicals LLC
– notice: 2022 Wiley Periodicals LLC.
DBID AAYXX
CITATION
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
DOI 10.1002/mmce.23034
DatabaseName CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1099-047X
EndPage n/a
ExternalDocumentID 10_1002_mmce_23034
MMCE23034
Genre article
GrantInformation_xml – fundername: National Natural Science Foundation of China (NSFC)
  funderid: 62161032; 61761032
– fundername: Nature Science Foundation of Inner Mongolia
  funderid: 2019MS06006
GroupedDBID .3N
.GA
05W
0R~
10A
1L6
1OC
24P
31~
33P
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHHS
AAJEY
AANHP
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDBF
ABEML
ABIJN
ABJCF
ABUWG
ACAHQ
ACBWZ
ACCFJ
ACCMX
ACCZN
ACIWK
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIMD
AENEX
AEQDE
AEUQT
AFBPY
AFGKR
AFKRA
AFPWT
AFZJQ
AIURR
AIWBW
AJBDE
AJXKR
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ARAPS
ATUGU
AUFTA
AZBYB
AZFZN
AZQEC
BAFTC
BDRZF
BENPR
BFHJK
BGLVJ
BHBCM
BMNLL
BMXJE
BROTX
BRXPI
BY8
CCPQU
CS3
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
ESX
F00
F01
F04
FEDTE
G-S
G.N
GNP
GNUQQ
GODZA
H13
HCIFZ
HF~
HHY
HHZ
HVGLF
HZ~
I-F
IX1
JPC
K7-
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M7S
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
O66
O9-
OIG
P2W
P2X
P4D
PIMPY
PQQKQ
PTHSS
Q.N
Q11
QB0
QRW
R.K
RHX
ROL
RWI
RX1
SUPJJ
TUS
UB1
V2E
W8V
W99
WBKPD
WIH
WIK
WJL
WLBEL
WOHZO
WQJ
WRC
WYISQ
XG1
XV2
ZZTAW
~IA
~WT
AAMMB
AAYXX
ADMLS
AEFGJ
AFFHD
AGQPQ
AGXDD
AIDQK
AIDYY
CITATION
O8X
PHGZM
PHGZT
PQGLB
1OB
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3014-ffd756b66f6412c46c1e7dd68c7938fcfd16ecbe41e8f67a1b7a3453ad6ab55f3
IEDL.DBID DRFUL
ISICitedReferencesCount 8
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000734131400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 1096-4290
IngestDate Wed Aug 13 05:48:18 EDT 2025
Sat Nov 29 04:33:49 EST 2025
Tue Nov 18 22:37:02 EST 2025
Wed Jan 22 16:25:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3014-ffd756b66f6412c46c1e7dd68c7938fcfd16ecbe41e8f67a1b7a3453ad6ab55f3
Notes Funding information
This work was supported by the National Natural Science Foundation of China (NSFC) (Project Nos. 61761032 and 62161032) and Nature Science Foundation of Inner Mongolia (Contract No. 2019MS06006).
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2640977700
PQPubID 1026345
PageCount 10
ParticipantIDs proquest_journals_2640977700
crossref_primary_10_1002_mmce_23034
crossref_citationtrail_10_1002_mmce_23034
wiley_primary_10_1002_mmce_23034_MMCE23034
PublicationCentury 2000
PublicationDate April 2022
2022-04-00
20220401
PublicationDateYYYYMMDD 2022-04-01
PublicationDate_xml – month: 04
  year: 2022
  text: April 2022
PublicationDecade 2020
PublicationPlace Hoboken, USA
PublicationPlace_xml – name: Hoboken, USA
– name: Hoboken
PublicationTitle International journal of RF and microwave computer-aided engineering
PublicationYear 2022
Publisher John Wiley & Sons, Inc
Publisher_xml – name: John Wiley & Sons, Inc
References 2021; 9
2021; 68
2004; 52
2021; 31
2001
2019; 2
2006; 54
2017; 65
2019; 67
2008; 9
2005; 41
2018
2008; 12
2006
2020; 68
2003; 39
2001; 2
2014
2018; 67
2014; 62
1995; 4
1998; 9
e_1_2_7_6_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_8_1
e_1_2_7_7_1
Kingma DP (e_1_2_7_26_1) 2014
e_1_2_7_19_1
e_1_2_7_18_1
e_1_2_7_17_1
e_1_2_7_16_1
e_1_2_7_2_1
e_1_2_7_15_1
e_1_2_7_14_1
e_1_2_7_13_1
e_1_2_7_12_1
e_1_2_7_10_1
Nocedal J (e_1_2_7_4_1) 2006
e_1_2_7_27_1
e_1_2_7_28_1
Deb K (e_1_2_7_5_1) 2001
e_1_2_7_24_1
e_1_2_7_23_1
e_1_2_7_22_1
e_1_2_7_21_1
e_1_2_7_20_1
Tschannen M (e_1_2_7_25_1) 2018
Koziel S (e_1_2_7_11_1)
References_xml – volume: 65
  start-page: 1976
  issue: 6
  year: 2017
  end-page: 1985
  article-title: Global optimization of microwave filters based on a surrogate model‐assisted evolutionary algorithm
  publication-title: IEEE Trans Microw Theory Tech
– volume: 67
  start-page: 1659
  issue: 3
  year: 2018
  end-page: 1668
  article-title: Support vector regression to accelerate design and crosspolar optimization of shaped‐beam reflectarray antennas for space applications
  publication-title: IEEE Trans Antennas Propag
– volume: 2
  start-page: :1800132
  issue: 2
  year: 2019
  article-title: Machine‐learning designs of anisotropic digital coding metasurfaces
  publication-title: Adv Theory Simul
– volume: 54
  start-page: 160
  issue: 1
  year: 2006
  end-page: 168
  article-title: Compact microstrip dual‐band bandpass filters design using genetic‐algorithm techniques
  publication-title: IEEE Trans Microw Theory Tech
– volume: 68
  start-page: 5448
  issue: 6
  year: 2021
  end-page: 5459
  article-title: Harmonic characterizations of loaded resonators for waveguide filters
  publication-title: IEEE Trans Ind Electron
– volume: 68
  start-page: 531
  issue: 2
  year: 2020
  end-page: 542
  article-title: Multifeature‐assisted neuro‐transfer function surrogate‐based EM optimization exploiting trust‐region algorithms for microwave filter design
  publication-title: IEEE Trans Microw Theory Tech
– volume: 4
  start-page: 1
  year: 1995
  end-page: 51
  article-title: Sequential quadratic programming
  publication-title: Acta Numer
– volume: 9
  start-page: 112
  issue: 1
  year: 1998
  end-page: 147
  article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions
  publication-title: SIAM J Optim
– year: 2018
  article-title: Recent advances in autoencoder‐based representation learning
  publication-title: arXiv Preprint
– article-title: Accurate modeling of antenna structures by means of domain confinement and pyramidal deep neural networks
  publication-title: IEEE Trans Antennas Propag
– year: 2014
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv Preprint
– volume: 9
  start-page: 38396
  year: 2021
  end-page: 38410
  article-title: Accurate modeling of frequency selective surfaces using fully‐connected regression model with automated architecture determination and parameter selection based on bayesian optimization
  publication-title: IEEE Access
– volume: 31
  start-page: 638
  issue: 6
  year: 2021
  end-page: 641
  article-title: A novel deep‐Q‐network‐based fine‐tuning approach for planar bandpass filter design
  publication-title: IEEE Microw Wirel Compon Lett
– volume: 62
  start-page: 244
  issue: 2
  year: 2014
  end-page: 251
  article-title: A generalized coupling matrix extraction technique for bandpass filters with uneven‐Qs
  publication-title: IEEE Trans Microw Theory Tech
– year: 2001
– volume: 52
  start-page: 420
  issue: 1
  year: 2004
  end-page: 435
  article-title: EM‐based optimization of microwave circuits using artificial neural networks: The state‐of‐the‐art
  publication-title: IEEE Trans Microw Theory Tech
– volume: 2
  start-page: 46
  issue: 1
  year: 2001
  end-page: 51
  article-title: Direct electromagnetic optimization of microwave filters
  publication-title: IEEE Microw
– year: 2006
– volume: 41
  start-page: 1800
  issue: 5
  year: 2005
  end-page: 1803
  article-title: Particle swarm optimization and finite‐element based approach for microwave filter design
  publication-title: IEEE Trans Magn
– volume: 9
  start-page: 105
  issue: 6
  year: 2008
  end-page: 122
  article-title: Space mapping
  publication-title: IEEE Microw Mag
– volume: 68
  start-page: 8603
  issue: 9
  year: 2021
  end-page: 8614
  article-title: Reconfigurable cavity bandpass filters using fluid dielectric
  publication-title: IEEE Trans Ind Electron
– volume: 67
  start-page: 4140
  issue: 10
  year: 2019
  end-page: 4155
  article-title: Deep neural network technique for high‐dimensional microwave modeling and applications to parameter extraction of microwave filters
  publication-title: IEEE Trans Microw Theory Tech
– volume: 39
  start-page: 267
  year: 2003
  end-page: 271
  article-title: Electromagnetic optimization using a mixed‐parameter self‐adaptive evolutionary algorithm
  publication-title: Microw Opt Technol Lett
– volume: 12
  start-page: 171
  issue: 2
  year: 2008
  end-page: 195
  article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems
  publication-title: IEEE Trans Evol Comput
– ident: e_1_2_7_24_1
  doi: 10.1109/TMTT.2005.860327
– ident: e_1_2_7_15_1
  doi: 10.1109/NEMO49486.2020.9343496
– ident: e_1_2_7_20_1
  doi: 10.1137/S1052623496303470
– ident: e_1_2_7_14_1
  doi: 10.1109/TMTT.2003.820897
– ident: e_1_2_7_16_1
  doi: 10.1109/TMTT.2013.2296744
– volume-title: Numerical Optimization
  year: 2006
  ident: e_1_2_7_4_1
– ident: e_1_2_7_3_1
  doi: 10.1109/TIE.2020.3009566
– volume-title: Multi‐Objective Optimization Using Evolutionary Algorithms
  year: 2001
  ident: e_1_2_7_5_1
– ident: e_1_2_7_21_1
  doi: 10.1002/mop.11187
– ident: e_1_2_7_8_1
  doi: 10.1109/TMTT.2019.2952101
– ident: e_1_2_7_18_1
  doi: 10.1109/6668.918262
– ident: e_1_2_7_27_1
  doi: 10.1109/ICNN.1995.488968
– ident: e_1_2_7_12_1
  doi: 10.1109/TAP.2018.2889029
– ident: e_1_2_7_9_1
  doi: 10.1109/LMWC.2021.3062874
– ident: e_1_2_7_23_1
  doi: 10.1109/TMAG.2005.846467
– ident: e_1_2_7_11_1
  article-title: Accurate modeling of antenna structures by means of domain confinement and pyramidal deep neural networks
  publication-title: IEEE Trans Antennas Propag
– ident: e_1_2_7_10_1
  doi: 10.1109/ACCESS.2021.3063523
– year: 2014
  ident: e_1_2_7_26_1
  article-title: Adam: a method for stochastic optimization
  publication-title: arXiv Preprint
– year: 2018
  ident: e_1_2_7_25_1
  article-title: Recent advances in autoencoder‐based representation learning
  publication-title: arXiv Preprint
– ident: e_1_2_7_2_1
  doi: 10.1109/TIE.2020.2987278
– ident: e_1_2_7_19_1
  doi: 10.1017/S0962492900002518
– ident: e_1_2_7_17_1
  doi: 10.1109/TMTT.2019.2932738
– ident: e_1_2_7_7_1
  doi: 10.1109/MMM.2008.929554
– ident: e_1_2_7_28_1
  doi: 10.1109/TEVC.2007.896686
– ident: e_1_2_7_6_1
  doi: 10.1109/TMTT.2017.2661739
– ident: e_1_2_7_22_1
  doi: 10.1109/APS.2000.873731
– ident: e_1_2_7_13_1
  doi: 10.1002/adts.201800132
SSID ssj0009923
Score 2.3051717
Snippet This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
CAD
Computer aided design
Design optimization
Filter design (mathematics)
Inverse problems
Mathematical models
microwave filter design
Microwave filters
Modelling
Neural networks
one‐dimensional convolutional autoencoders
Optimization techniques
Parameters
Particle swarm optimization
surrogate model
Title Accurate microwave filter design based on particle swarm optimization and one‐dimensional convolution autoencoders
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmmce.23034
https://www.proquest.com/docview/2640977700
Volume 32
WOSCitedRecordID wos000734131400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1099-047X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0009923
  issn: 1096-4290
  databaseCode: DRFUL
  dateStart: 19980101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60etCDb7G-WNCLQmg2j90EvBS1eLBFRMFb2J3dgGDa0qbt1Z_gb_SXuJukD0EE8ZbDZFl255l88w3AOZU65D6aSjXCwAkiQR0RidgxVZjisfSkEOWwCd7pRC8v8cMSXE17YUp-iNkHN2sZhb-2Bi7ksDEnDc0y1BbG7AfLsOIZxQ1rsHLz2Hq-n5Puxl4JsI-ZY_yuO6Mn9Rrzt78HpHmWuZirFsGmtfm_bW7BRpVkkmapFduwpLs7sL5APbgLeRNxZGkiSGYheRMx1iR9tb_OiSpAHcTGN0V6XdKvtIsMJ2KQkZ5xMlnVvUlE14roz_cPZccElBQfxELZK5UmYpT3LFmmBUzvwXPr9un6zqkmMDhoSy0nTRUPmWQsZQH1MGBINVeKRWjMOkoxVZRplDqgOkoZF1Ry4QehLxQTMgxTfx9qXbOLAyAmr9HIVeQpGgfIdEy1i5QxlMI1ahTX4WJ6DQlW9OR2SsZbUhIre4k9yaQ4yTqczWT7JSnHj1LH09tMKsMcJib_c03Ky123DpfFvf2yQtJuX98WT4d_ET6CNc82SRT4nmOo5YORPoFVHOevw8FppaRfFQ3vjw
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3xUQk4FFpAbAvUEr0UKSJOHDs5rrasQN1dIQQSt8gZOxIS2UX7AVd-Ar-RX1JPYnapVFWquOUwiSz7jWfGeX4D8J0XNlExuko1RRGIVPNApzoLXBVmVFZEhdZNswk1GKQ3N9mF5-bQXZhGH2J-4EaeUe_X5OB0IH2yUA2tKrTEY47FMqwKhyMH8NWfl93r3kJ1N4sahn0mA7fxhnN90uhk8fafEWmRZr5NVuto09185zi34KNPM1m7wcUnWLLDz7DxRnxwG6ZtxBkJRbCKSHmP-sGy8pZ-njNT0zoYRTjDRkN27_HFJo96XLGR22Yqf3-T6SGZ2JenZ0ONAhqRD0Zkdg9qpmfTEcllEmV6B667p1eds8D3YAiQiq2gLI1KZCFlKQWPUEjkVhkjU3SOnZZYGi4tFlZwm5ZSaV4oHYsk1kbqIknKeBdWhm4Ue8BcZmNRmTQyPBMobcZtiFxKLHTogJS14MfrOuToBcqpT8Zd3kgrRznNZF7PZAuO5rb3jSzHX632X5cz9645yV0GGLqkV4VhC47rhfvHF_J-v3NaP335H-NvsHZ21e_lvfPBr6-wHtGViZrtsw8r0_HMHsAHfJjeTsaHHrG_AV-h838
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD5syRjdw27daLauE2wvK5hatizZj6VpWFkbwlggb0Y-kqBQJyGX9nU_Yb9xv2Q6tpJ0MAZjb344FkI6V_s73wH4yCubqRR9pZqjiESueaRzXUS-CjOqqJJK63bYhBoO88mkGAVsDvXCtPwQ2w9uZBmNvyYDt3PjTnasoXWNlnDMqXgIXUFTZDrQ7X8djC93rLtF0iLsCxl5xxtv-UmTk93bv0ekXZp5P1ltos3g2X_u8zk8DWkmO2314gU8sNOX8OQe-eA-rE4R10QUwWoC5d3pW8vcNf08Z6aBdTCKcIbNpmwe9Ist7_SiZjPvZurQv8n0lETsz-8_DA0KaEk-GIHZg1IzvV7NiC6TINOvYDw4_3b2OQozGCKkYityzqhMVlI6KXiCQiK3yhiZozfs3KEzXFqsrOA2d1JpXimdiizVRuoqy1z6GjpTv4sDYD6zsahMnhheCJS24DZGLiVWOvaKVPTg0-YeSgwE5TQn46ZsqZWTkk6ybE6yBx-2svOWluOPUoeb6yyDaS5LnwHGPulVcdyD4-bi_rJCeXV1dt48vfkX4ffweNQflJcXwy9vYS-hjokG7HMIndVibd_BI7xdXS8XR0FhfwH_WfL6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+microwave+filter+design+based+on+particle+swarm+optimization+and+one%E2%80%90dimensional+convolution+autoencoders&rft.jtitle=International+journal+of+RF+and+microwave+computer-aided+engineering&rft.au=Wang%2C+Yanxing&rft.au=Zhang%2C+Zhuowei&rft.au=Yi%2C+Yaxin&rft.au=Zhang%2C+Yongliang&rft.date=2022-04-01&rft.issn=1096-4290&rft.eissn=1099-047X&rft.volume=32&rft.issue=4&rft_id=info:doi/10.1002%2Fmmce.23034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mmce_23034
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-4290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-4290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-4290&client=summon