Accurate microwave filter design based on particle swarm optimization and one‐dimensional convolution autoencoders
This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm optimization (PSO) algorithm for microwave filter design. The 1D‐CAE is a flexible neural network structure that can be used as surrogate mo...
Uloženo v:
| Vydáno v: | International journal of RF and microwave computer-aided engineering Ročník 32; číslo 4 |
|---|---|
| Hlavní autoři: | , , , |
| Médium: | Journal Article |
| Jazyk: | angličtina |
| Vydáno: |
Hoboken, USA
John Wiley & Sons, Inc
01.04.2022
|
| Témata: | |
| ISSN: | 1096-4290, 1099-047X |
| On-line přístup: | Získat plný text |
| Tagy: |
Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
|
| Abstract | This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm optimization (PSO) algorithm for microwave filter design. The 1D‐CAE is a flexible neural network structure that can be used as surrogate model to handle forward modeling problems as well as solving inverse problems, such as extracting the coupling matrix from S‐parameters. In this paper, the 1D‐CAE is proposed to handle forward modeling problem. On the one hand, the 1D‐CAE model is adopted to as the surrogate model to the EM simulation solver to speed up the PSO algorithm optimization process. On the other hand, the 1D‐CAE model can update the data set and network parameters online to continuously improve the prediction accuracy of the surrogate model during the PSO algorithm iterations. Compared with other neural network structures, the 1D‐CAE model proposed in this paper requires less data and converges faster in the same test environment. To demonstrate the validity of the proposed method, it was used to design a sixth‐order and an eighth‐order cross‐coupled filter. The design results shown that the proposed method is valid. |
|---|---|
| AbstractList | This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm optimization (PSO) algorithm for microwave filter design. The 1D‐CAE is a flexible neural network structure that can be used as surrogate model to handle forward modeling problems as well as solving inverse problems, such as extracting the coupling matrix from S‐parameters. In this paper, the 1D‐CAE is proposed to handle forward modeling problem. On the one hand, the 1D‐CAE model is adopted to as the surrogate model to the EM simulation solver to speed up the PSO algorithm optimization process. On the other hand, the 1D‐CAE model can update the data set and network parameters online to continuously improve the prediction accuracy of the surrogate model during the PSO algorithm iterations. Compared with other neural network structures, the 1D‐CAE model proposed in this paper requires less data and converges faster in the same test environment. To demonstrate the validity of the proposed method, it was used to design a sixth‐order and an eighth‐order cross‐coupled filter. The design results shown that the proposed method is valid. |
| Author | Zhang, Zhuowei Yi, Yaxin Zhang, Yongliang Wang, Yanxing |
| Author_xml | – sequence: 1 givenname: Yanxing surname: Wang fullname: Wang, Yanxing organization: Inner Mongolia University – sequence: 2 givenname: Zhuowei surname: Zhang fullname: Zhang, Zhuowei organization: Nanjing Normal University – sequence: 3 givenname: Yaxin surname: Yi fullname: Yi, Yaxin organization: Inner Mongolia University – sequence: 4 givenname: Yongliang surname: Zhang fullname: Zhang, Yongliang email: namar@imu.edu.cn organization: Inner Mongolia University |
| BookMark | eNp9kM9KxDAQxoMouP65-AQBb0I1adNke5Rl_QOKFwVvIU0mkqVt1iTdRU8-gs_ok9jdehLxNMN8v2-Y-Q7Qbuc7QOiEknNKSH7RthrO84IUbAdNKKmqjDDxvLvtecbyiuyjgxgXhAxaXkxQutS6DyoBbp0Ofq1WgK1rEgRsILqXDtcqgsG-w0sVktMN4LhWocV-mVzr3lVyg6a6DQJfH5_GtdDFYaYarH238k0_En3y0GlvIMQjtGdVE-H4px6ip6v54-wmu3u4vp1d3mW6IJRl1hpR8ppzyxnNNeOagjCGT7WoiqnV1lAOugZGYWq5ULQWqmBloQxXdVna4hCdjnuXwb_2EJNc-D4Ml0WZc0YqIQQhA3U2UsP_MQawchlcq8KbpERuUpWbVOU21QEmv2Dt0jaDFJRr_rbQ0bJ2Dbz9s1ze38_mo-cbX8KQ6w |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3441096 crossref_primary_10_1002_mmce_23507 crossref_primary_10_1109_TMTT_2022_3208898 crossref_primary_10_1109_MMM_2024_3486598 crossref_primary_10_1109_TEMC_2024_3502412 |
| Cites_doi | 10.1109/TMTT.2005.860327 10.1109/NEMO49486.2020.9343496 10.1137/S1052623496303470 10.1109/TMTT.2003.820897 10.1109/TMTT.2013.2296744 10.1109/TIE.2020.3009566 10.1002/mop.11187 10.1109/TMTT.2019.2952101 10.1109/6668.918262 10.1109/ICNN.1995.488968 10.1109/TAP.2018.2889029 10.1109/LMWC.2021.3062874 10.1109/TMAG.2005.846467 10.1109/ACCESS.2021.3063523 10.1109/TIE.2020.2987278 10.1017/S0962492900002518 10.1109/TMTT.2019.2932738 10.1109/MMM.2008.929554 10.1109/TEVC.2007.896686 10.1109/TMTT.2017.2661739 10.1109/APS.2000.873731 10.1002/adts.201800132 |
| ContentType | Journal Article |
| Copyright | 2021 Wiley Periodicals LLC 2022 Wiley Periodicals LLC. |
| Copyright_xml | – notice: 2021 Wiley Periodicals LLC – notice: 2022 Wiley Periodicals LLC. |
| DBID | AAYXX CITATION 7SC 7SP 8FD JQ2 L7M L~C L~D |
| DOI | 10.1002/mmce.23034 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1099-047X |
| EndPage | n/a |
| ExternalDocumentID | 10_1002_mmce_23034 MMCE23034 |
| Genre | article |
| GrantInformation_xml | – fundername: National Natural Science Foundation of China (NSFC) funderid: 62161032; 61761032 – fundername: Nature Science Foundation of Inner Mongolia funderid: 2019MS06006 |
| GroupedDBID | .3N .GA 05W 0R~ 10A 1L6 1OC 24P 31~ 33P 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHHS AAJEY AANHP AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDBF ABEML ABIJN ABJCF ABUWG ACAHQ ACBWZ ACCFJ ACCMX ACCZN ACIWK ACPOU ACRPL ACSCC ACUHS ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIMD AENEX AEQDE AEUQT AFBPY AFGKR AFKRA AFPWT AFZJQ AIURR AIWBW AJBDE AJXKR ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ARAPS ATUGU AUFTA AZBYB AZFZN AZQEC BAFTC BDRZF BENPR BFHJK BGLVJ BHBCM BMNLL BMXJE BROTX BRXPI BY8 CCPQU CS3 D-E D-F DCZOG DPXWK DR2 DRFUL DRSTM DU5 DWQXO EBS EJD ESX F00 F01 F04 FEDTE G-S G.N GNP GNUQQ GODZA H13 HCIFZ HF~ HHY HHZ HVGLF HZ~ I-F IX1 JPC K7- KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M7S MK4 MK~ MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 O66 O9- OIG P2W P2X P4D PIMPY PQQKQ PTHSS Q.N Q11 QB0 QRW R.K RHX ROL RWI RX1 SUPJJ TUS UB1 V2E W8V W99 WBKPD WIH WIK WJL WLBEL WOHZO WQJ WRC WYISQ XG1 XV2 ZZTAW ~IA ~WT AAMMB AAYXX ADMLS AEFGJ AFFHD AGQPQ AGXDD AIDQK AIDYY CITATION O8X PHGZM PHGZT PQGLB 1OB 7SC 7SP 8FD JQ2 L7M L~C L~D |
| ID | FETCH-LOGICAL-c3014-ffd756b66f6412c46c1e7dd68c7938fcfd16ecbe41e8f67a1b7a3453ad6ab55f3 |
| IEDL.DBID | DRFUL |
| ISICitedReferencesCount | 8 |
| ISICitedReferencesURI | http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000734131400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| ISSN | 1096-4290 |
| IngestDate | Wed Aug 13 05:48:18 EDT 2025 Sat Nov 29 04:33:49 EST 2025 Tue Nov 18 22:37:02 EST 2025 Wed Jan 22 16:25:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c3014-ffd756b66f6412c46c1e7dd68c7938fcfd16ecbe41e8f67a1b7a3453ad6ab55f3 |
| Notes | Funding information This work was supported by the National Natural Science Foundation of China (NSFC) (Project Nos. 61761032 and 62161032) and Nature Science Foundation of Inner Mongolia (Contract No. 2019MS06006). ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2640977700 |
| PQPubID | 1026345 |
| PageCount | 10 |
| ParticipantIDs | proquest_journals_2640977700 crossref_primary_10_1002_mmce_23034 crossref_citationtrail_10_1002_mmce_23034 wiley_primary_10_1002_mmce_23034_MMCE23034 |
| PublicationCentury | 2000 |
| PublicationDate | April 2022 2022-04-00 20220401 |
| PublicationDateYYYYMMDD | 2022-04-01 |
| PublicationDate_xml | – month: 04 year: 2022 text: April 2022 |
| PublicationDecade | 2020 |
| PublicationPlace | Hoboken, USA |
| PublicationPlace_xml | – name: Hoboken, USA – name: Hoboken |
| PublicationTitle | International journal of RF and microwave computer-aided engineering |
| PublicationYear | 2022 |
| Publisher | John Wiley & Sons, Inc |
| Publisher_xml | – name: John Wiley & Sons, Inc |
| References | 2021; 9 2021; 68 2004; 52 2021; 31 2001 2019; 2 2006; 54 2017; 65 2019; 67 2008; 9 2005; 41 2018 2008; 12 2006 2020; 68 2003; 39 2001; 2 2014 2018; 67 2014; 62 1995; 4 1998; 9 e_1_2_7_6_1 e_1_2_7_3_1 e_1_2_7_9_1 e_1_2_7_8_1 e_1_2_7_7_1 Kingma DP (e_1_2_7_26_1) 2014 e_1_2_7_19_1 e_1_2_7_18_1 e_1_2_7_17_1 e_1_2_7_16_1 e_1_2_7_2_1 e_1_2_7_15_1 e_1_2_7_14_1 e_1_2_7_13_1 e_1_2_7_12_1 e_1_2_7_10_1 Nocedal J (e_1_2_7_4_1) 2006 e_1_2_7_27_1 e_1_2_7_28_1 Deb K (e_1_2_7_5_1) 2001 e_1_2_7_24_1 e_1_2_7_23_1 e_1_2_7_22_1 e_1_2_7_21_1 e_1_2_7_20_1 Tschannen M (e_1_2_7_25_1) 2018 Koziel S (e_1_2_7_11_1) |
| References_xml | – volume: 65 start-page: 1976 issue: 6 year: 2017 end-page: 1985 article-title: Global optimization of microwave filters based on a surrogate model‐assisted evolutionary algorithm publication-title: IEEE Trans Microw Theory Tech – volume: 67 start-page: 1659 issue: 3 year: 2018 end-page: 1668 article-title: Support vector regression to accelerate design and crosspolar optimization of shaped‐beam reflectarray antennas for space applications publication-title: IEEE Trans Antennas Propag – volume: 2 start-page: :1800132 issue: 2 year: 2019 article-title: Machine‐learning designs of anisotropic digital coding metasurfaces publication-title: Adv Theory Simul – volume: 54 start-page: 160 issue: 1 year: 2006 end-page: 168 article-title: Compact microstrip dual‐band bandpass filters design using genetic‐algorithm techniques publication-title: IEEE Trans Microw Theory Tech – volume: 68 start-page: 5448 issue: 6 year: 2021 end-page: 5459 article-title: Harmonic characterizations of loaded resonators for waveguide filters publication-title: IEEE Trans Ind Electron – volume: 68 start-page: 531 issue: 2 year: 2020 end-page: 542 article-title: Multifeature‐assisted neuro‐transfer function surrogate‐based EM optimization exploiting trust‐region algorithms for microwave filter design publication-title: IEEE Trans Microw Theory Tech – volume: 4 start-page: 1 year: 1995 end-page: 51 article-title: Sequential quadratic programming publication-title: Acta Numer – volume: 9 start-page: 112 issue: 1 year: 1998 end-page: 147 article-title: Convergence properties of the Nelder–Mead simplex method in low dimensions publication-title: SIAM J Optim – year: 2018 article-title: Recent advances in autoencoder‐based representation learning publication-title: arXiv Preprint – article-title: Accurate modeling of antenna structures by means of domain confinement and pyramidal deep neural networks publication-title: IEEE Trans Antennas Propag – year: 2014 article-title: Adam: a method for stochastic optimization publication-title: arXiv Preprint – volume: 9 start-page: 38396 year: 2021 end-page: 38410 article-title: Accurate modeling of frequency selective surfaces using fully‐connected regression model with automated architecture determination and parameter selection based on bayesian optimization publication-title: IEEE Access – volume: 31 start-page: 638 issue: 6 year: 2021 end-page: 641 article-title: A novel deep‐Q‐network‐based fine‐tuning approach for planar bandpass filter design publication-title: IEEE Microw Wirel Compon Lett – volume: 62 start-page: 244 issue: 2 year: 2014 end-page: 251 article-title: A generalized coupling matrix extraction technique for bandpass filters with uneven‐Qs publication-title: IEEE Trans Microw Theory Tech – year: 2001 – volume: 52 start-page: 420 issue: 1 year: 2004 end-page: 435 article-title: EM‐based optimization of microwave circuits using artificial neural networks: The state‐of‐the‐art publication-title: IEEE Trans Microw Theory Tech – volume: 2 start-page: 46 issue: 1 year: 2001 end-page: 51 article-title: Direct electromagnetic optimization of microwave filters publication-title: IEEE Microw – year: 2006 – volume: 41 start-page: 1800 issue: 5 year: 2005 end-page: 1803 article-title: Particle swarm optimization and finite‐element based approach for microwave filter design publication-title: IEEE Trans Magn – volume: 9 start-page: 105 issue: 6 year: 2008 end-page: 122 article-title: Space mapping publication-title: IEEE Microw Mag – volume: 68 start-page: 8603 issue: 9 year: 2021 end-page: 8614 article-title: Reconfigurable cavity bandpass filters using fluid dielectric publication-title: IEEE Trans Ind Electron – volume: 67 start-page: 4140 issue: 10 year: 2019 end-page: 4155 article-title: Deep neural network technique for high‐dimensional microwave modeling and applications to parameter extraction of microwave filters publication-title: IEEE Trans Microw Theory Tech – volume: 39 start-page: 267 year: 2003 end-page: 271 article-title: Electromagnetic optimization using a mixed‐parameter self‐adaptive evolutionary algorithm publication-title: Microw Opt Technol Lett – volume: 12 start-page: 171 issue: 2 year: 2008 end-page: 195 article-title: Particle swarm optimization: Basic concepts, variants and applications in power systems publication-title: IEEE Trans Evol Comput – ident: e_1_2_7_24_1 doi: 10.1109/TMTT.2005.860327 – ident: e_1_2_7_15_1 doi: 10.1109/NEMO49486.2020.9343496 – ident: e_1_2_7_20_1 doi: 10.1137/S1052623496303470 – ident: e_1_2_7_14_1 doi: 10.1109/TMTT.2003.820897 – ident: e_1_2_7_16_1 doi: 10.1109/TMTT.2013.2296744 – volume-title: Numerical Optimization year: 2006 ident: e_1_2_7_4_1 – ident: e_1_2_7_3_1 doi: 10.1109/TIE.2020.3009566 – volume-title: Multi‐Objective Optimization Using Evolutionary Algorithms year: 2001 ident: e_1_2_7_5_1 – ident: e_1_2_7_21_1 doi: 10.1002/mop.11187 – ident: e_1_2_7_8_1 doi: 10.1109/TMTT.2019.2952101 – ident: e_1_2_7_18_1 doi: 10.1109/6668.918262 – ident: e_1_2_7_27_1 doi: 10.1109/ICNN.1995.488968 – ident: e_1_2_7_12_1 doi: 10.1109/TAP.2018.2889029 – ident: e_1_2_7_9_1 doi: 10.1109/LMWC.2021.3062874 – ident: e_1_2_7_23_1 doi: 10.1109/TMAG.2005.846467 – ident: e_1_2_7_11_1 article-title: Accurate modeling of antenna structures by means of domain confinement and pyramidal deep neural networks publication-title: IEEE Trans Antennas Propag – ident: e_1_2_7_10_1 doi: 10.1109/ACCESS.2021.3063523 – year: 2014 ident: e_1_2_7_26_1 article-title: Adam: a method for stochastic optimization publication-title: arXiv Preprint – year: 2018 ident: e_1_2_7_25_1 article-title: Recent advances in autoencoder‐based representation learning publication-title: arXiv Preprint – ident: e_1_2_7_2_1 doi: 10.1109/TIE.2020.2987278 – ident: e_1_2_7_19_1 doi: 10.1017/S0962492900002518 – ident: e_1_2_7_17_1 doi: 10.1109/TMTT.2019.2932738 – ident: e_1_2_7_7_1 doi: 10.1109/MMM.2008.929554 – ident: e_1_2_7_28_1 doi: 10.1109/TEVC.2007.896686 – ident: e_1_2_7_6_1 doi: 10.1109/TMTT.2017.2661739 – ident: e_1_2_7_22_1 doi: 10.1109/APS.2000.873731 – ident: e_1_2_7_13_1 doi: 10.1002/adts.201800132 |
| SSID | ssj0009923 |
| Score | 2.3051717 |
| Snippet | This paper proposes a one‐dimensional convolutional autoencoders (1D‐CAE) surrogate‐based electromagnetic (EM) optimization technique exploiting particle swarm... |
| SourceID | proquest crossref wiley |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| SubjectTerms | Algorithms CAD Computer aided design Design optimization Filter design (mathematics) Inverse problems Mathematical models microwave filter design Microwave filters Modelling Neural networks one‐dimensional convolutional autoencoders Optimization techniques Parameters Particle swarm optimization surrogate model |
| Title | Accurate microwave filter design based on particle swarm optimization and one‐dimensional convolution autoencoders |
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmmce.23034 https://www.proquest.com/docview/2640977700 |
| Volume | 32 |
| WOSCitedRecordID | wos000734131400001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVWIB databaseName: Wiley Online Library Full Collection 2020 customDbUrl: eissn: 1099-047X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0009923 issn: 1096-4290 databaseCode: DRFUL dateStart: 19980101 isFulltext: true titleUrlDefault: https://onlinelibrary.wiley.com providerName: Wiley-Blackwell |
| link | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB60etCDb7G-WNCLQmg2j90EvBS1eLBFRMFb2J3dgGDa0qbt1Z_gb_SXuJukD0EE8ZbDZFl255l88w3AOZU65D6aSjXCwAkiQR0RidgxVZjisfSkEOWwCd7pRC8v8cMSXE17YUp-iNkHN2sZhb-2Bi7ksDEnDc0y1BbG7AfLsOIZxQ1rsHLz2Hq-n5Puxl4JsI-ZY_yuO6Mn9Rrzt78HpHmWuZirFsGmtfm_bW7BRpVkkmapFduwpLs7sL5APbgLeRNxZGkiSGYheRMx1iR9tb_OiSpAHcTGN0V6XdKvtIsMJ2KQkZ5xMlnVvUlE14roz_cPZccElBQfxELZK5UmYpT3LFmmBUzvwXPr9un6zqkmMDhoSy0nTRUPmWQsZQH1MGBINVeKRWjMOkoxVZRplDqgOkoZF1Ry4QehLxQTMgxTfx9qXbOLAyAmr9HIVeQpGgfIdEy1i5QxlMI1ahTX4WJ6DQlW9OR2SsZbUhIre4k9yaQ4yTqczWT7JSnHj1LH09tMKsMcJib_c03Ky123DpfFvf2yQtJuX98WT4d_ET6CNc82SRT4nmOo5YORPoFVHOevw8FppaRfFQ3vjw |
| linkProvider | Wiley-Blackwell |
| linkToHtml | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NT9wwEB3xUQk4FFpAbAvUEr0UKSJOHDs5rrasQN1dIQQSt8gZOxIS2UX7AVd-Ar-RX1JPYnapVFWquOUwiSz7jWfGeX4D8J0XNlExuko1RRGIVPNApzoLXBVmVFZEhdZNswk1GKQ3N9mF5-bQXZhGH2J-4EaeUe_X5OB0IH2yUA2tKrTEY47FMqwKhyMH8NWfl93r3kJ1N4sahn0mA7fxhnN90uhk8fafEWmRZr5NVuto09185zi34KNPM1m7wcUnWLLDz7DxRnxwG6ZtxBkJRbCKSHmP-sGy8pZ-njNT0zoYRTjDRkN27_HFJo96XLGR22Yqf3-T6SGZ2JenZ0ONAhqRD0Zkdg9qpmfTEcllEmV6B667p1eds8D3YAiQiq2gLI1KZCFlKQWPUEjkVhkjU3SOnZZYGi4tFlZwm5ZSaV4oHYsk1kbqIknKeBdWhm4Ue8BcZmNRmTQyPBMobcZtiFxKLHTogJS14MfrOuToBcqpT8Zd3kgrRznNZF7PZAuO5rb3jSzHX632X5cz9645yV0GGLqkV4VhC47rhfvHF_J-v3NaP335H-NvsHZ21e_lvfPBr6-wHtGViZrtsw8r0_HMHsAHfJjeTsaHHrG_AV-h838 |
| linkToPdf | http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1ba9swFD5syRjdw27daLauE2wvK5hatizZj6VpWFkbwlggb0Y-kqBQJyGX9nU_Yb9xv2Q6tpJ0MAZjb344FkI6V_s73wH4yCubqRR9pZqjiESueaRzXUS-CjOqqJJK63bYhBoO88mkGAVsDvXCtPwQ2w9uZBmNvyYDt3PjTnasoXWNlnDMqXgIXUFTZDrQ7X8djC93rLtF0iLsCxl5xxtv-UmTk93bv0ekXZp5P1ltos3g2X_u8zk8DWkmO2314gU8sNOX8OQe-eA-rE4R10QUwWoC5d3pW8vcNf08Z6aBdTCKcIbNpmwe9Ist7_SiZjPvZurQv8n0lETsz-8_DA0KaEk-GIHZg1IzvV7NiC6TINOvYDw4_3b2OQozGCKkYityzqhMVlI6KXiCQiK3yhiZozfs3KEzXFqsrOA2d1JpXimdiizVRuoqy1z6GjpTv4sDYD6zsahMnhheCJS24DZGLiVWOvaKVPTg0-YeSgwE5TQn46ZsqZWTkk6ybE6yBx-2svOWluOPUoeb6yyDaS5LnwHGPulVcdyD4-bi_rJCeXV1dt48vfkX4ffweNQflJcXwy9vYS-hjokG7HMIndVibd_BI7xdXS8XR0FhfwH_WfL6 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+microwave+filter+design+based+on+particle+swarm+optimization+and+one%E2%80%90dimensional+convolution+autoencoders&rft.jtitle=International+journal+of+RF+and+microwave+computer-aided+engineering&rft.au=Wang%2C+Yanxing&rft.au=Zhang%2C+Zhuowei&rft.au=Yi%2C+Yaxin&rft.au=Zhang%2C+Yongliang&rft.date=2022-04-01&rft.issn=1096-4290&rft.eissn=1099-047X&rft.volume=32&rft.issue=4&rft_id=info:doi/10.1002%2Fmmce.23034&rft.externalDBID=n%2Fa&rft.externalDocID=10_1002_mmce_23034 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1096-4290&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1096-4290&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1096-4290&client=summon |