Multi‐objective memetic approach for the optimal web services composition

Service composition is the process of combining a set of elementary or atomic services. The aim is to produce a new composite service to satisfy the user's request that cannot be satisfied by the atomic services. Combining multiple services is a complex problem that has been the subject of seve...

Celý popis

Uloženo v:
Podrobná bibliografie
Vydáno v:Expert systems Ročník 40; číslo 4
Hlavní autoři: Azouz, Yacine, Boughaci, Dalila
Médium: Journal Article
Jazyk:angličtina
Vydáno: Oxford Blackwell Publishing Ltd 01.05.2023
Témata:
ISSN:0266-4720, 1468-0394
On-line přístup:Získat plný text
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!
Abstract Service composition is the process of combining a set of elementary or atomic services. The aim is to produce a new composite service to satisfy the user's request that cannot be satisfied by the atomic services. Combining multiple services is a complex problem that has been the subject of several research studies. The meta‐heuristic approaches are good techniques that have been used to solve several complex problems in various domains. These techniques are able to discover promising search regions and locate good quality solutions in reasonable time without exploring the whole solution space. In this paper, we deal with the problem of optimal web service composition by using meta‐heuristic approaches. Given a set of services and a set of tasks to be completed, the problem is to find the best set of services composition to complete all tasks where each service must be assigned to a given task. This problem can be modelled as a combinatorial optimization problem with a set of objective functions that need to be optimized. We search for a composite service that allows us to execute the considered tasks and offers the best quality of services (QoS). More precisely, we search for an execution plan that indicates for each task the assigned service. First, we propose a multi‐objective local search based meta‐heuristic (MO‐LS) and a multi‐objective genetic algorithm (MO‐GA) to handle our problem. Then we propose a multi‐objective memetic algorithm (MO‐MA) that combines the two methods LS and GA. The role of GA is to detect promising regions to be explored. The role of LS is to exploit efficiently the potential regions created by GA. Four objective functions are used to compute the Pareto optimal set of solutions. The main objective is to minimize cost and time and to maximize availability and reputation and produce a good composite service. The three proposed approaches namely MO‐LS, MO‐GA, and MO‐MA are evaluated on some datasets generated randomly and on the well‐known QWS dataset to select the best fit services in terms of maximum or minimum aggregated end‐to‐end QoS parameters. The numerical results are encouraging and demonstrate the effectiveness of the proposed MO‐MA for the web service composition.
AbstractList Service composition is the process of combining a set of elementary or atomic services. The aim is to produce a new composite service to satisfy the user's request that cannot be satisfied by the atomic services. Combining multiple services is a complex problem that has been the subject of several research studies. The meta‐heuristic approaches are good techniques that have been used to solve several complex problems in various domains. These techniques are able to discover promising search regions and locate good quality solutions in reasonable time without exploring the whole solution space. In this paper, we deal with the problem of optimal web service composition by using meta‐heuristic approaches. Given a set of services and a set of tasks to be completed, the problem is to find the best set of services composition to complete all tasks where each service must be assigned to a given task. This problem can be modelled as a combinatorial optimization problem with a set of objective functions that need to be optimized. We search for a composite service that allows us to execute the considered tasks and offers the best quality of services (QoS). More precisely, we search for an execution plan that indicates for each task the assigned service. First, we propose a multi‐objective local search based meta‐heuristic (MO‐LS) and a multi‐objective genetic algorithm (MO‐GA) to handle our problem. Then we propose a multi‐objective memetic algorithm (MO‐MA) that combines the two methods LS and GA. The role of GA is to detect promising regions to be explored. The role of LS is to exploit efficiently the potential regions created by GA. Four objective functions are used to compute the Pareto optimal set of solutions. The main objective is to minimize cost and time and to maximize availability and reputation and produce a good composite service. The three proposed approaches namely MO‐LS, MO‐GA, and MO‐MA are evaluated on some datasets generated randomly and on the well‐known QWS dataset to select the best fit services in terms of maximum or minimum aggregated end‐to‐end QoS parameters. The numerical results are encouraging and demonstrate the effectiveness of the proposed MO‐MA for the web service composition.
Author Azouz, Yacine
Boughaci, Dalila
Author_xml – sequence: 1
  givenname: Yacine
  orcidid: 0000-0002-0098-6688
  surname: Azouz
  fullname: Azouz, Yacine
  email: azyacine@gmail.com
  organization: USTHB
– sequence: 2
  givenname: Dalila
  orcidid: 0000-0001-5210-8951
  surname: Boughaci
  fullname: Boughaci, Dalila
  organization: USTHB
BookMark eNp9kE1OwzAQhS1UJEphwwkisUNKsZs_Z4mq8iOKWAASrCxnMlFdJXGw3ZbuOAJn5CS4hBVCzGYW872ZN--QDFrdIiEnjI6Zr3N8s9sxiyiP98iQxSkPaZTHAzKkkzQN42xCD8ihtUtKKcuydEhu71a1U5_vH7pYIji1xqDBBp2CQHad0RIWQaVN4BYY6M6pRtbBBovAolkrQBuAbjptlVO6PSL7lawtHv_0EXm6nD1Or8P5_dXN9GIeQkRZHJZliWnGJOdJVEGSJLzEMpFRDGUCMslT4JIjT3KEEjI_rwpelQXjwAEikNGInPZ7vb_XFVonlnplWn9STDj1D_M8pZ6iPQVGW2uwEqCc3Pl0RqpaMCp2kYldZOI7Mi85-yXpjP_YbP-GWQ9vVI3bf0gxe3546TVf8nSCFQ
CitedBy_id crossref_primary_10_3390_app14104157
crossref_primary_10_1007_s11227_025_06937_0
crossref_primary_10_1016_j_future_2025_108039
crossref_primary_10_1007_s13198_024_02367_y
crossref_primary_10_1002_cpe_70175
Cites_doi 10.1007/978-1-84800-382-8
10.1007/978-3-540-74565-5_31
10.1007/s11227-016-1814-8
10.1109/TSC.2013.2295791
10.1515/jisys-2015-0032
10.1109/IPDPSW.2012.281
10.1007/978-3-319-23485-4_31
10.1016/j.ins.2014.11.051
10.1007/978-3-642-29694-9_29
10.4236/am.2012.330217
10.1016/j.cie.2015.12.018
10.1007/s12293-015-0153-2
10.1007/0-306-48056-5_5
10.1109/SYNASC.2010.35
10.1007/s11280-019-00742-5
10.1016/B978-1-55860-872-6.X5016-1
10.1109/TSC.2012.7
10.1145/2480741.2480752
10.1109/COMPSAC.2010.76
10.32604/csse.2021.014513
10.1145/1242572.1242795
10.1109/ICCCN.2007.4317873
10.1007/s41870-020-00564-z
10.1007/978-3-642-45005-1_21
10.1007/s10489-014-0617-y
10.1007/3-540-36440-4_20
10.1002/spe.2598
10.3233/IDT-190131
10.1145/2180861.2180864
10.7551/mitpress/3927.001.0001
ContentType Journal Article
Copyright 2022 John Wiley & Sons Ltd.
2023 John Wiley & Sons, Ltd
Copyright_xml – notice: 2022 John Wiley & Sons Ltd.
– notice: 2023 John Wiley & Sons, Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
DOI 10.1111/exsy.13084
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Computer and Information Systems Abstracts Professional
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1468-0394
EndPage n/a
ExternalDocumentID 10_1111_exsy_13084
EXSY13084
Genre article
GroupedDBID -~X
.3N
.4S
.DC
.GA
.Y3
05W
0B8
0R~
10A
1OB
1OC
29G
31~
33P
3SF
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
5GY
5HH
5LA
5VS
66C
6TJ
702
77K
7PT
8-0
8-1
8-3
8-4
8-5
8UM
8VB
930
9M8
A03
AAESR
AAEVG
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCQN
ABCUV
ABDBF
ABDPE
ABEML
ABLJU
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACIWK
ACNCT
ACPOU
ACRPL
ACSCC
ACUHS
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADMHC
ADMLS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEMOZ
AENEX
AEQDE
AEUYR
AFBPY
AFEBI
AFFPM
AFGKR
AFWVQ
AFZJQ
AHBTC
AHEFC
AHQJS
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
AKVCP
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ARCSS
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CAG
COF
CS3
CWDTD
D-E
D-F
DC6
DCZOG
DPXWK
DR2
DRFUL
DRSTM
DU5
EAD
EAP
EBA
EBR
EBS
EBU
EDO
EJD
EMK
EST
ESX
F00
F01
F04
FEDTE
FZ0
G-S
G.N
GODZA
H.T
H.X
HF~
HGLYW
HVGLF
HZI
HZ~
I-F
IHE
IX1
J0M
K1G
K48
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MK~
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QWB
R.K
RIWAO
RJQFR
ROL
RX1
SAMSI
SUPJJ
TAE
TH9
TN5
TUS
UB1
VH1
W8V
W99
WBKPD
WH7
WIH
WIK
WLBEL
WOHZO
WQJ
WXSBR
WYISQ
XG1
ZL0
ZZTAW
~02
~IA
~WT
77I
AAMMB
AAYXX
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
O8X
7SC
7TB
8FD
F28
FR3
JQ2
L7M
L~C
L~D
ID FETCH-LOGICAL-c3014-ddde671a8853fc5558ded5a34cd5ca596c8a8e859ecdc7555fb8fdb18c8cc3ca3
IEDL.DBID DRFUL
ISICitedReferencesCount 7
ISICitedReferencesURI http://www.webofscience.com/api/gateway?GWVersion=2&SrcApp=Summon&SrcAuth=ProQuest&DestLinkType=CitingArticles&DestApp=WOS_CPL&KeyUT=000824489300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
ISSN 0266-4720
IngestDate Tue Aug 19 04:20:41 EDT 2025
Tue Nov 18 22:28:59 EST 2025
Sat Nov 29 07:39:27 EST 2025
Wed Mar 05 09:44:52 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3014-ddde671a8853fc5558ded5a34cd5ca596c8a8e859ecdc7555fb8fdb18c8cc3ca3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-0098-6688
0000-0001-5210-8951
PQID 2800398960
PQPubID 32130
PageCount 28
ParticipantIDs proquest_journals_2800398960
crossref_citationtrail_10_1111_exsy_13084
crossref_primary_10_1111_exsy_13084
wiley_primary_10_1111_exsy_13084_EXSY13084
PublicationCentury 2000
PublicationDate May 2023
2023-05-00
20230501
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: May 2023
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle Expert systems
PublicationYear 2023
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2012
2017; 26
2010
2013; 45
1998
2008
2007
2020; 14
2003
2002
2015; 7
2013; 6
2003; 10
2021; 92
2016; 99
1993; 15
2017; 73
2021; 36
2012; 3
2021
2001; 5
2015; 299
2015; 42
2019
2018
2017
2016; 62
2015
2020; 23
2014
2013
2012; 6
2016; 9
20
e_1_2_12_4_1
e_1_2_12_3_1
Honghao G. (e_1_2_12_18_1) 2019
e_1_2_12_6_1
e_1_2_12_5_1
e_1_2_12_19_1
e_1_2_12_2_1
e_1_2_12_17_1
e_1_2_12_16_1
e_1_2_12_38_1
Katia S. (e_1_2_12_25_1) 2003
e_1_2_12_39_1
Chen M. (e_1_2_12_11_1) 2014
e_1_2_12_42_1
e_1_2_12_20_1
e_1_2_12_41_1
e_1_2_12_44_1
e_1_2_12_22_1
e_1_2_12_23_1
e_1_2_12_46_1
e_1_2_12_24_1
Khalaf R. (e_1_2_12_26_1) 2003
e_1_2_12_45_1
e_1_2_12_48_1
e_1_2_12_47_1
Huo Y. (e_1_2_12_21_1) 2017
Danapaquiame N. (e_1_2_12_14_1) 2015
Kreger H. (e_1_2_12_27_1) 2001
Li Y. (e_1_2_12_29_1) 2016; 62
e_1_2_12_40_1
Narzisi G. (e_1_2_12_35_1) 2008
e_1_2_12_28_1
Coello C. A. C. (e_1_2_12_12_1) 2007
e_1_2_12_30_1
Beasley D. (e_1_2_12_7_1) 1993; 15
e_1_2_12_31_1
e_1_2_12_32_1
e_1_2_12_33_1
e_1_2_12_34_1
Daniela C. B. (e_1_2_12_15_1)
e_1_2_12_36_1
Tenreiro Machado J. A. (e_1_2_12_43_1) 2021
e_1_2_12_37_1
e_1_2_12_13_1
e_1_2_12_8_1
e_1_2_12_10_1
e_1_2_12_9_1
References_xml – volume: 62
  start-page: 577
  issue: 10
  year: 2016
  end-page: 590
  article-title: Multi‐objective optimization of cloud manufacturing service composition with cloud‐entropy enhanced genetic algorithm
  publication-title: Strojniški vestnik‐Journal of Mechanical Engineering
– volume: 36
  start-page: 201
  issue: 1
  year: 2021
  end-page: 211
  article-title: Functionality aware dynamic composition of web services
  publication-title: Computer Systems Science and Engineering
– start-page: 27
  year: 2003
  end-page: 46
– volume: 7
  start-page: 59
  issue: 1
  year: 2015
  end-page: 73
  article-title: A memetic algorithm with support vector machine for feature selection and classification
  publication-title: Memetic Computing.
– volume: 73
  start-page: 1387
  year: 2017
  end-page: 1415
  article-title: QoS‐aware service composition in cloud computing using data mining techniques and genetic algorithm
  publication-title: Journal of Super computing
– start-page: 544
  year: 2014
  end-page: 551
– start-page: 208
  year: 20
  end-page: 213
– volume: 26
  start-page: 123
  issue: 1
  year: 2017
  end-page: 137
  article-title: BAT and hybrid BAT meta‐heuristic for quality of service‐based web service selection
  publication-title: Journal of Intelligent Systems
– volume: 9
  start-page: 277
  year: 2016
  end-page: 290
– year: 2007
– year: 2003
– year: 2021
  article-title: Framework for web service composition based on QoS in the multi cloud environment
  publication-title: International Journal of Information Technology
– year: 2018
– start-page: 1
  year: 2017
  end-page: 19
  article-title: Multi‐objective service composition model based on cost‐effective optimization
  publication-title: Applied Intelligence
– year: 1998
– year: 2010
– year: 2012
– volume: 15
  start-page: 56
  year: 1993
  end-page: 69
  article-title: An overview of genetic algorithms: Part 1, fundamentals
  publication-title: University Computing
– volume: 45
  start-page: 33
  issue: 3
  year: 2013
  article-title: Exploration and exploitation in evolutionary algorithms: A survey
  publication-title: ACM Computing Survey
– volume: 23
  start-page: 1665
  year: 2020
  end-page: 1692
  article-title: Automatic web service composition driven by keyword query
  publication-title: World Wide Web
– volume: 299
  start-page: 117
  year: 2015
  end-page: 142
  article-title: An adaptive gradient descent‐based local search in memetic algorithm applied to optimal controller design
  publication-title: Information Sciences
– volume: 42
  start-page: 661
  issue: 4
  year: 2015
  end-page: 678
  article-title: Discrete gbest‐guided artificial bee colony algorithm for cloud service composition
  publication-title: Applied Intelligence
– volume: 5
  start-page: 6
  year: 2001
  end-page: 7
– volume: 99
  start-page: 423
  year: 2016
  end-page: 431
  article-title: A flexible QoS‐aware web service composition method by multi‐objective optimization in cloud manufacturing
  publication-title: Computers & Industrial Engineering
– year: 2002
– volume: 6
  start-page: 1
  year: 2012
  end-page: 31
  article-title: A hybrid approach for efficient web service composition with end‐to‐end QoS constraints
  publication-title: ACM Transactions on the Web (TWEB)
– year: 2008
– start-page: 775
  year: 2013
  end-page: 791
– volume: 3
  start-page: 1572
  year: 2012
  end-page: 1582
  article-title: Reactive search optimization; application to multiobjective optimization problems
  publication-title: Applied Mathematics
– volume: 6
  start-page: 373
  year: 2013
  end-page: 386
  article-title: QoS analysis for web service compositions with complex structures
  publication-title: IEEE Transactions on Services Computing
– start-page: 105
  year: 2003
  end-page: 144
– volume: 10
  start-page: 1
  year: 2003
  end-page: 13
– volume: 14
  start-page: 581
  issue: 4
  year: 2020
  end-page: 609
  article-title: Improved machine learning classifiers combined with a stochastic local search for web services classification
  publication-title: Intelligent Decision Technologies
– year: 2018
  article-title: A moth‐flame optimization algorithm for web service composition in cloud computing: Simulation and verification
  publication-title: Software Practice and Experience
– year: 2019
  article-title: Research on cost‐driven services composition in an uncertain environment
  publication-title: Journal of Internet Technology
– year: 2015
– volume: 92
  year: 2021
– ident: e_1_2_12_9_1
  doi: 10.1007/978-1-84800-382-8
– ident: e_1_2_12_40_1
  doi: 10.1007/978-3-540-74565-5_31
– ident: e_1_2_12_24_1
  doi: 10.1007/s11227-016-1814-8
– ident: e_1_2_12_45_1
  doi: 10.1109/TSC.2013.2295791
– volume-title: A verification strategy for web services composition using enhanced stacked automata model
  year: 2015
  ident: e_1_2_12_14_1
– ident: e_1_2_12_37_1
  doi: 10.1515/jisys-2015-0032
– ident: e_1_2_12_17_1
  doi: 10.1109/IPDPSW.2012.281
– ident: e_1_2_12_19_1
– ident: e_1_2_12_39_1
  doi: 10.1007/978-3-319-23485-4_31
– ident: e_1_2_12_5_1
  doi: 10.1016/j.ins.2014.11.051
– start-page: 1
  year: 2017
  ident: e_1_2_12_21_1
  article-title: Multi‐objective service composition model based on cost‐effective optimization
  publication-title: Applied Intelligence
– volume: 15
  start-page: 56
  year: 1993
  ident: e_1_2_12_7_1
  article-title: An overview of genetic algorithms: Part 1, fundamentals
  publication-title: University Computing
– ident: e_1_2_12_8_1
  doi: 10.1007/978-3-642-29694-9_29
– start-page: 27
  volume-title: Web semantics: Science, services and agents on the world wide web
  year: 2003
  ident: e_1_2_12_25_1
– ident: e_1_2_12_32_1
  doi: 10.4236/am.2012.330217
– ident: e_1_2_12_10_1
  doi: 10.1016/j.cie.2015.12.018
– year: 2019
  ident: e_1_2_12_18_1
  article-title: Research on cost‐driven services composition in an uncertain environment
  publication-title: Journal of Internet Technology
– ident: e_1_2_12_36_1
  doi: 10.1007/s12293-015-0153-2
– ident: e_1_2_12_33_1
  doi: 10.1007/0-306-48056-5_5
– start-page: 1
  volume-title: Outsourcing business to cloud computing services: Opportunities and challenges
  year: 2003
  ident: e_1_2_12_26_1
– ident: e_1_2_12_38_1
  doi: 10.1109/SYNASC.2010.35
– volume-title: Communications in nonlinear science and numerical simulation
  year: 2021
  ident: e_1_2_12_43_1
– ident: e_1_2_12_46_1
  doi: 10.1007/s11280-019-00742-5
– ident: e_1_2_12_20_1
  doi: 10.1016/B978-1-55860-872-6.X5016-1
– ident: e_1_2_12_48_1
  doi: 10.1109/TSC.2012.7
– ident: e_1_2_12_13_1
  doi: 10.1145/2480741.2480752
– start-page: 6
  volume-title: Web services conceptual architecture (WSCA 1.0)
  year: 2001
  ident: e_1_2_12_27_1
– ident: e_1_2_12_47_1
  doi: 10.1109/COMPSAC.2010.76
– ident: e_1_2_12_41_1
  doi: 10.32604/csse.2021.014513
– ident: e_1_2_12_23_1
  doi: 10.1109/IPDPSW.2012.281
– ident: e_1_2_12_3_1
  doi: 10.1145/1242572.1242795
– ident: e_1_2_12_42_1
– ident: e_1_2_12_2_1
  doi: 10.1109/ICCCN.2007.4317873
– start-page: 208
  volume-title: ICEIS
  ident: e_1_2_12_15_1
– ident: e_1_2_12_6_1
  doi: 10.1007/s41870-020-00564-z
– ident: e_1_2_12_34_1
  doi: 10.1007/978-3-642-45005-1_21
– ident: e_1_2_12_22_1
  doi: 10.1007/s10489-014-0617-y
– volume-title: Evolutionary algorithms for solving multi‐objective problems
  year: 2007
  ident: e_1_2_12_12_1
– volume-title: A quick introduction
  year: 2008
  ident: e_1_2_12_35_1
– ident: e_1_2_12_44_1
  doi: 10.1007/3-540-36440-4_20
– ident: e_1_2_12_16_1
  doi: 10.1002/spe.2598
– ident: e_1_2_12_30_1
– ident: e_1_2_12_28_1
  doi: 10.3233/IDT-190131
– volume: 62
  start-page: 577
  issue: 10
  year: 2016
  ident: e_1_2_12_29_1
  article-title: Multi‐objective optimization of cloud manufacturing service composition with cloud‐entropy enhanced genetic algorithm
  publication-title: Strojniški vestnik‐Journal of Mechanical Engineering
– ident: e_1_2_12_4_1
  doi: 10.1145/2180861.2180864
– start-page: 544
  volume-title: SCC
  year: 2014
  ident: e_1_2_12_11_1
– ident: e_1_2_12_31_1
  doi: 10.7551/mitpress/3927.001.0001
SSID ssj0001776
Score 2.3305209
Snippet Service composition is the process of combining a set of elementary or atomic services. The aim is to produce a new composite service to satisfy the user's...
SourceID proquest
crossref
wiley
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Combinatorial analysis
Datasets
genetic algorithm
Genetic algorithms
Heuristic
Heuristic methods
Internet service providers
local search
memetic algorithm
multi‐objective optimization
Optimization
Pareto optimum
QoS model
Quality of service
Solution space
web service composition
Web services
Title Multi‐objective memetic approach for the optimal web services composition
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fexsy.13084
https://www.proquest.com/docview/2800398960
Volume 40
WOSCitedRecordID wos000824489300001&url=https%3A%2F%2Fcvtisr.summon.serialssolutions.com%2F%23%21%2Fsearch%3Fho%3Df%26include.ft.matches%3Dt%26l%3Dnull%26q%3D
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVWIB
  databaseName: Wiley Online Library Full Collection 2020
  customDbUrl:
  eissn: 1468-0394
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001776
  issn: 0266-4720
  databaseCode: DRFUL
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://onlinelibrary.wiley.com
  providerName: Wiley-Blackwell
link http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fS8MwED5088EX50-cTgnoi0LBLmmbgi-iG4IyRB3Mp5JcU1DcJusUffNP8G_0LzFJ022CCOJboUkoudyXu3L3fQD7lMkAhd80zI-xxzKqPKEPlieyKApQIoZxasUmok6H93rx1Rwcl70wBT_E5Ieb8QyL18bBhcxnnFy95m9Gy5izeag29fqsAtWz63b3coLEfmTF5XSaEXosah45elJTyTOd_f1CmkaZs7GqvWzatf995jIsuSCTnBSnYgXm1GAVaqWAA3H-vAYXtv328_1jKB8K4CN91TdtjaTkGic6qCU6SCRDjS19vaiGXZI7gCGmIN1Vfa1Dt926PT33nLqChyaN8lINbGHkC64v7AwN7Veq0kBQhqm2XhCHyAVXPIgVphjp95nkWSp9jhyRoqAbUBkMB2oTiAi0RaVS1GeSZYqKUCd1kWKYiYBT36_DQbnFCTrqcaOA8ZiUKYjZpcTuUh32JmOfCsKNH0c1SkslzunypMlNpzHXOVkdDq1NflkhafVu7uzT1l8Gb8OiEZwvSh4bUBmPntUOLODL-D4f7boD-AXFJONd
linkProvider Wiley-Blackwell
linkToHtml http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1fS8MwED90E_TF-RenUwP6olCwS9qmj6IbE-cQ3WA-lfSaguI22abomx_Bz-gnMUnTbYII4luhaSi5u9_dhbvfARxSFnso3KpmfgwdllLpCKVYjkiDwMMY0Q8TM2wiaLV4txte29oc3QuT8UNMLty0ZRi81gauL6RnrFy-jt70MGPO5qHIlB55BSie39Q7zQkUu4GZLqfyDN9hQfXE8pPqUp7p19890jTMnA1Wjbepl_75nyuwbMNMcprpxSrMyf4alPIRDsRa9Dpcmgbcz_ePQfyQQR_pyZ5ubCQ52zhRYS1RYSIZKHTpqU0V8JKRhRiiS9Jt3dcGdOq19lnDsfMVHNSJlJMoaPMDV3DlslPUxF-JTDxBGSZKfl7oIxdcci-UmGCg3qcxT5PY5cgRKQq6CYX-oC-3gAhPyTSWkrosZqmkwldpXSAZpsLj1HXLcJSfcYSWfFzPwHiM8iREn1JkTqkMB5O1Txnlxo-rKrmoImt2o6jKda8xV1lZGY6NUH7ZIap1b-_M0_ZfFu_DYqN91YyaF63LHVjS4-ezAsgKFMbDZ7kLC_gyvh8N96w2fgFZPedN
linkToPdf http://cvtisr.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1NS8NAEB20FfFi_cRq1QW9KARMd5NsjmIbFEspaqGewmayAcV-0FTRmz_B3-gvcTfZtBVEEG-BbEKY2Xk7E2beAzimLHJQ2HXN_OhbLKHSEmpjWSLxPAcjRNePM7EJr93mvZ7fMb05ehYm54eY_nDTkZHhtQ5wOYqTuSiXr-mbFjPmbBHKzPFdFZflxk3QbU2h2PYydTlVZ7gW8-pnhp9Ut_LMnv5-Is3SzPlkNTttgso_v3MNVk2aSc7zfbEOC3KwAZVCwoGYiN6E62wA9_P9Yxg95tBH-rKvBxtJwTZOVFpLVJpIhgpd-uqlCnhJaiCG6JZ00_e1Bd2geXdxaRl9BQt1IWXFCtpczxZcHdkJauKvWMaOoAxj5T9lUOSCS-74EmP01P0k4kkc2Rw5IkVBt6E0GA7kDhDhKJ9GUlKbRSyRVLiqrPMkw0Q4nNp2FU4KG4doyMe1BsZTWBQh2kphZqUqHE3XjnLKjR9X1QpXhSbs0rDO9awxV1VZFU4zp_zyhrDZu73Prnb_svgQljuNIGxdta_3YEWrz-f9jzUoTcbPch-W8GXykI4PzGb8Agr85sg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Multi%E2%80%90objective+memetic+approach+for+the+optimal+web+services+composition&rft.jtitle=Expert+systems&rft.au=Azouz%2C+Yacine&rft.au=Boughaci%2C+Dalila&rft.date=2023-05-01&rft.issn=0266-4720&rft.eissn=1468-0394&rft.volume=40&rft.issue=4&rft.epage=n%2Fa&rft_id=info:doi/10.1111%2Fexsy.13084&rft.externalDBID=10.1111%252Fexsy.13084&rft.externalDocID=EXSY13084
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0266-4720&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0266-4720&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0266-4720&client=summon